
1 Introduction

We consider the properties of the expected value and the variance of a contin-
uous random variable. These quantities are defined just as for discrete random
variables and share the same properties.

Expected Value
Definition:Term Let X be a real-valued random variable with density function
f(x). The expected value µ = E(X) is defined by µ = E(X) =

∫ +∞
−∞ xf(x)dx,

provided the integral
∫ +∞
−∞ |x|f(x)dx is finite.

The reader should compare this definition with the corresponding one for dis-
crete random variables. Intuitively, we can interpret E(X), as we did in the
previous sections, as the value that we should expect to obtain if we perform
a large number of independent experiments and average the resulting values of
X. We can summarize the properties of E(X) as follows.
Theorem If X and Y are real-valued random variables and c is any constant,
then

E(X + Y ) = E(X) + E(Y ) (1)

E(cX) = cE(X). (2)

More generally, ifX1, X2, . . . , Xn are n real-valued random variables, and c1, c2, . . . , cn
are n constants, then

E (c1X1 + c2X2 + · · ·+ cnXn) = c1E (X1) + c2E (X2) + · · ·+ cnE (Xn) .

1.

Example 1. Let X be uniformly distributed on the interval [0, 1]. Then E(X) =∫ 1

0
xdx = 1

2 It follows that if we choose a large number N of random numbers
from [0, 1] and take the average, then we can expect that this average should be
close to the expected value of 1/2.

2.

Example 2. Let Z = (x, y) denote a point chosen uniformly and randomly from

the unit disk, as in the dart game in Example 2.8, and let X =
(
x2 + y2

)1/2
be
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the distance from Z to the center of the disk. The density function of X can
easily be shown to equal f(x) = 2x, so by the definition of expected value,

E(X) =

∫ 1

0

xf(x) dx

=

∫ 1

0

x(2x) dx

=
2

3
.

3.

Example 3. In the example of the couple meeting at the Inn , each person
arrives at a time which is uniformly distributed between 5:00 and 6:00 PM. The
random variable Z under consideration is the length of time the first person has
to wait until the second one arrives. It was shown that

fZ(z) = 2(1− z) for 0 ≤ z ≤ 1.

Hence,

E(Z) =

∫ 1

0

zfZ(z) dz =

∫ 1

0

2z(1− z) dz

=

[
z2 − 2

3
z3
]1
0

=
1

3
.

Expectation of a Function of a Random Variable

Suppose that X is a real-valued random variable and ϕ(x) is a continuous func-
tion from R to R. The following theorem is the continuous analogue of Theorem
1.

Theorem: Expectation of a Continuous Function

If X is a real-valued random variable and ϕ : R → R is a continuous real-valued
function with domain [a, b], then

E(ϕ(X)) =

∫ +∞

−∞
ϕ(x)fX(x) dx

provided the integral exists.
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Theorem: Expectation of the Product of Inde-
pendent Random Variables

LetX and Y be independent real-valued continuous random variables with finite
expected values. Then we have

E(XY ) = E(X)E(Y )

Variance

Definition: Variance

LetX be a real-valued random variable with density function f(x). The variance
σ2 = V (X) is defined by

σ2 = V (X) = E((X − µ)2)

Some Properties

Linearity of Variance

If X is a real-valued random variable defined on Ω and c is any constant, then

V (cX) = c2V (X),

V (X + c) = V (X).

Variance in terms of Expectation

If X is a real-valued random variable with E(X) = µ, then

V (X) = E(X2)− µ2.

Variance of Sum of Independent Random Variables

If X and Y are independent real-valued random variables on Ω, then

V (X + Y ) = V (X) + V (Y ).

Examples

Example 1

If X is uniformly distributed on [0, 1], then, using Theorem 6, we have

V (X) =

∫ 1

0

(
x− 1

2

)2

dx =
1

12
.
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Example 2

Let X be an exponentially distributed random variable with parameter λ. Then
the density function of X is

fX(x) = λe−λx.

From the definition of expectation and integration by parts, we have

E(X) =

∫ ∞

0

xfX(x) dx =
1

λ
.

Similarly, using Theorems 1 and 6, we have

V (X) =
1

λ2
.

In this case, both E(X) and V (X) are finite if λ > 0.

Example 3

Let Z be a standard normal random variable with density function

fZ(x) =
1√
2π

e−x2/2.

To calculate the variance of Z, we begin by applying Theorem 6:

V (Z) =

∫ +∞

−∞
x2fZ(x) dx− µ2.

If we write x2 as x · x, and integrate by parts, we obtain

1√
2π

(
−xe−x2/2

) ∣∣∣+∞

−∞
+

1√
2π

∫ +∞

−∞
e−x2/2 dx.

The first term can be shown to equal 0, and the second term is just the
standard normal density integrated over its domain, so its value is 1. Therefore,
the variance of the standard normal density equals 1.

Example 4

Let X and Y be independent random variables, each with mean µ and variance
σ2.

Expected value of S = E(X + Y ) = µ+ µ = 2µ,

Variance of S = V (X + Y ) = σ2 + σ2 = 2σ2,

The sum of two independent random variables X and Y is denoted as X + Y .
Let µX and µY represent their respective means, and σ2

X and σ2
Y represent their

variances.
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The expected value (mean) of the sum is given by:

E(X + Y ) = E(X) + E(Y ) = µX + µY .

Now, let’s calculate the variance of the sum:

V (X + Y ) = Var(X + Y )

= Var(X) + Var(Y ) + 2Cov(X,Y ).

Since X and Y are independent, the covariance term becomes zero:

V (X + Y ) = Var(X) + Var(Y ).

Substitute the variances:

V (X + Y ) = σ2
X + σ2

Y .

This result shows that the variance of the sum of independent random vari-
ables is the sum of their individual variances.

Next, let’s explore the product of two independent random variables, denoted
as XY . The expected value of this product is given by:

E(XY ) = µX · µY = µ2
X .

Now, let’s calculate the covariance of X and Y , denoted as Cov(X,Y ):

Cov(X,Y ) = E((X − µX)(Y − µY )).

Since X and Y are independent, the joint density function is the product of
their individual density functions:

fXY (x, y) = fX(x) · fY (y).

Express the covariance as an integral:

Cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )fXY (x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )fX(x) · fY (y) dx dy.

Since X and Y are independent, the joint density factorizes:

Cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )fX(x) · fY (y) dx dy

=

(∫ ∞

−∞
(x− µX)fX(x) dx

)
·
(∫ ∞

−∞
(y − µY )fY (y) dy

)
.

Recognizing that the integrals represent the expected values of X − µX and
Y − µY , respectively, we can simplify:

Cov(X,Y ) = E(X − µX) · E(Y − µY ).

5



Now, let’s use this to express the variance of the sum:

V (X + Y ) = Var(X + Y )

= Cov(X + Y,X + Y ).

Since covariance is bilinear, we can expand this expression:

V (X + Y ) = Cov(X,X) + Cov(X,Y ) + Cov(Y,X) + Cov(Y, Y ).

Simplifying, we get:

V (X + Y ) = Var(X) + 2Cov(X,Y ) + Var(Y ).

Now, substitute in the known variances and covariance:

V (X + Y ) = σ2
X + 2 · 0 + σ2

Y = 2σ2
X .

So, we have shown that the variance of the sum of independent random
variables is the sum of their individual variances.

These examples and properties provide insights into the behavior of random
variables and expectations, especially when dealing with independent variables.

Gaussian Distribution:

Mean (µ): Represents the center of the distribution.

Variance (σ2): A measure of the spread of the distribution.

Standard Deviation (σ): The square root of the variance.

CDF: F (x) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
MGF: MX(t) = eµt+

1
2σ

2t2

Francis Galton’s Law of Regression:

Regression Coefficient (a): Indicates the strength and direction of the relationship.

Intercept (b): The value of Y when X is zero.

Covariance and Correlation: Cov(X,Y ) = a ·Var(X)

r =
Cov(X,Y )√

Var(X) ·Var(Y )
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Gumbel Distribution:

Location (µ) and Scale (β) Parameters: E(X) = µ+ 0.57721β

Var(X) =
π2

6
β2

Mode: µ

Reliability Function: R(x) = e−e−(x−µ)/β

Fréchet Distribution:

Shape (α), Location (β), and Scale (s) Parameters: E(X) =

{
∞ if α ≤ 1

β + s
α−1 if α > 1

Mode: β − s

α
for α > 1

MGF: MX(t) =

{
∞ if t < 0

∞ if t < 0

Pearson’s Correlation Coefficient:

Interpretation: A value ofr close to 1 or -1 indicates a strong linear relationship, while r close to 0 suggests a weak relationship.

Coefficient of Determination (r2): r2 =
Cov(X,Y )2

Var(X) ·Var(Y )

Linear Regression Equation: Y = b+ aX

2 the problems of estimating the quantity of col-
lection, sorting and treatment of waste (sam-
pling)

2.1 Heterogeneity of Waste:

Waste streams are often heterogeneous, consisting of various materials in differ-
ent proportions. This makes it challenging to obtain representative samples.

2.2 Spatial Variation:

Waste characteristics can vary significantly across different locations within a
given area. Sampling must consider this spatial variation to ensure accurate
representation.
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2.3 Temporal Variation:

Waste composition can change over time, influenced by factors such as seasons,
holidays, and local events. Accurate estimation requires accounting for temporal
variations.

2.4 Sampling Methodology:

Selecting an appropriate sampling methodology is crucial. Improper techniques
may lead to biased samples, affecting the reliability of estimates.

2.5 Sample Size:

Determining the appropriate sample size is essential. Too small a sample may
not be representative, while an excessively large sample may be impractical or
costly.

2.6 Data Collection Frequency:

The frequency of data collection should match the rate of waste generation.
Infrequent data collection may lead to outdated information, affecting planning
and management decisions.

2.7 Data Accuracy and Precision:

The accuracy and precision of measurement instruments and analytical tech-
niques used in waste characterization impact the reliability of the collected data.

2.8 Public Participation:

Involving the community in waste estimation processes can be challenging. Pub-
lic cooperation is essential for obtaining accurate data, but it requires effective
communication and engagement strategies.

2.9 Data Management and Analysis:

Efficient management and analysis of collected data are critical. Advanced
statistical methods may be necessary to process complex waste composition
data.

2.10 Regulatory Compliance:

Compliance with regulatory standards for waste estimation is important. Failure
to meet these standards can have legal and environmental implications
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3 quantification of waste per household and num-
ber of population

Quantification of Waste

Household Waste

Data Collection:

Collect data on waste generation from a representative sample of households.

Descriptive Statistics:

Analyze the collected data to identify key statistics like mean, median, and
standard deviation of waste generated per household.

Probability Distribution:

Choose an appropriate probability distribution (e.g., Gaussian, Poisson) based
on the characteristics of the waste generation data.

Estimation:

Use the chosen distribution to estimate the waste generation per household for
the entire population.

Population Waste

Population Size:

Obtain accurate data on the total population size in the targeted area.

Scaling Factor:

Use the waste generation per household estimate and scale it up to the total
population:

Total Waste = Waste per Household× Total Population

Uncertainty and Variability

Confidence Intervals:

Calculate confidence intervals to account for uncertainty in waste generation
estimates.
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Sensitivity Analysis:

Perform sensitivity analysis to identify factors that significantly affect waste
generation estimates.

Quantification of Waste Using Gaussian Distribu-
tion

Household Waste

Data Collection:

Collect data on waste generation from a representative sample of households.

Descriptive Statistics:

Analyze the collected data to identify key statistics like mean (µ) and standard
deviation (σ) of waste generated per household.

Probability Distribution:

Assume the waste generated per household follows a Gaussian distribution:

P (X) =
1

σ
√
2π

e−
(X−µ)2

2σ2

Where:

X is the waste generated per household,

µ is the mean,

σ is the standard deviation.

Estimation:

Use the Gaussian distribution parameters (µ and σ) to estimate the waste gen-
eration per household for the entire population.

Population Waste

Population Size:

Obtain accurate data on the total population size in the targeted area.

Scaling Factor:

Use the waste generation per household estimate and scale it up to the total
population:

Total Waste = Waste per Household× Total Population
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Example Plot (Gaussian Distribution)
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Figure 1: Gaussian distribution example with mean µ = 50 and standard devi-
ation σ = 10.
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