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4.1. Introduction 

A processor is made up of transistors used to perform functions on digital signals. These 

transistors, assembled together, form components enabling very simple functions to be 

carried out. From these components it is possible to create circuits carrying out more 

complex operations. Boolean algebra (named after the English mathematician George 

Boole 1915 - 1864) is a means of designing such a circuit. It is a mathematical theory 

proposing to translate electrical signals (in two states) into mathematical expressions. 

4.2. Definition and Axioms of Boolean Algebra 

a. Definition 

Boolean algebra is an algebra intended to translate signals into mathematical 

expressions. To do this, each elementary signal is defined by logical variables and their 

processing by logic functions. Methods (truth table) make it possible to define the 

operations that we wish to carry out and to transcribe the result into an algebraic 

expression. Using rules, these expressions can be simplified. This will make it possible to 

represent a logical circuit using symbols without worrying about the implementation 

using transistors (physical level). 

In Boolean algebra, we manipulate the following concepts: 

 State: logical states are represented by true = 1 and false = 0; 

For example, a lamp can take two states: 

 0 = lamp off. 

 1= lamp on. 

 Variable: it is a quantity represented by a symbol, which can take a state (true =1 

or false =0); 

 Function: it represents a group of variables linked by logical operators. 

b. Axioms of Boolean algebra 

For an algebra to be said to be Boolean, it must satisfy the axioms mentioned in the 

following table (Table 4.1): 

 

Commutativity a + b = b + a has . b = b. has 
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Associativity (a + b) + c = a+ (b + c) (ab)c = a(bc) 

Distributivity a (b+c) = ab + ac a+ (bc) = (a+b) (a+c) 

Neutral elements a + 0 = a a . 1 = a 

Complementarity �̅�+ a = 1 �̅�. a = 0 

Table 4.1: Axioms of Boolean Algebra 

4.3. Theorems and properties of Boolean algebra 

A Boolean algebra must satisfy the following theorems and properties: 

Independence a + a = a a . a = a 

Absorption a + ab = a a(a+b) = a 

De Morgan 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅= �̅�.�̅� 𝑎. 𝑏̅̅ ̅̅̅= �̅�+�̅� 

Absorbent element a + 1 = 1 a . 0 = 0 

Generalized De 

Morgan 
𝑎 + 𝑏 + 𝑐 + ⋯̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅�. �̅�. 𝑐̅. … 𝑎. 𝑏. 𝑐. …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅= �̅� +  �̅�+ 𝑐̅ +… 

4.4. Basic operators 

Boolean algebra is based on three basic logical operators: 

a. AND, OR, NOT 

 The AND operator: it is a binary operator, and the symbol used is a dot “. ". We can 

write (A AND B) or simply (A.B) and it is also called logical multiplication. 

This operator is defined by the following truth table: 

A B A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

That is to say that the operator gives the value true “1” if and only if the two variables A 
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and B have the value true (A=1 and B=1) 

 The OR operator (OR): it is a binary operator, and the symbol used is a plus “+”. We 

can write (A OR B) or simply (A+B) and it is also called logical addition. 

This operator is defined by the following truth table: 

A B A+B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

That is to say, the operator gives the true value “1” if at least one variable has the true 

value. 

 The NOT operator: it is a unary operator, and the symbol used is a bar above the 

variable ( �̅�) or ( ⦢ A) and it is also called logical negation. 

This operator is defined by the following truth table: 

 

 

 

That is, the operator gives the inverse state of the variable. 

b. Schematic representations 

 NOT logic gate 

 

 

 AND logic gate 

 

A �̅� 

0 1 

1 0 
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 OR logic gate 

 

 

 

 

4.5. Other logical operators 

There are other operators which are based on the previously defined basic operators: 

NAND, NOR, , XOR, XNOR. 

a. NAND and NOR circuits 

 NAND logic operator: 

 This operator is the negation of the AND operator. It is a binary operator whose 

logical expression is as follows:𝐴. 𝐵̅̅ ̅̅ ̅ 

 This operator is characterized by the following truth table (table 4.2): 

A B 𝐴. 𝐵̅̅ ̅̅ ̅ 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 4.2: The truth table of the NAND logical operator 

Its characteristic diagram is as follows: 

 

 NOR logical operator: 

This operator is the negation of the AND operator. It is a binary operator whose logical 
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expression is as follows: 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅  

This operator is characterized by the following truth table (table 4.3): 

A B 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅  

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 4.3: The truth table of the logical operator NOR 

Its characteristic diagram is as follows: 

 

b. Exclusive OR logical operator (XOR): 

This operator is given by the following expression: 

𝑌 = 𝐴. �̅� + �̅�. 𝐵 

                          = 𝐴 ⊕ 𝐵 

It is defined by the following truth table (table 4.4): 

A B 𝐴 ⊕ 𝐵 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 4.4: The truth table of the logical operator XOR 

The operator evaluates to true if A is true or B is true, but not both. 

The corresponding logical diagram is as follows: 
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c. The Implication operator 

This operator is given by the following expression: 𝐴 ⟹ 𝐵 

The expression "A implies B" amounts to negating the antecedent and adding the 

consequent. Proposition “A” is the antecedent, and proposition “B” is the consequent. So, 

𝐴 ⟹ 𝐵 ⟺ �̅� + 𝐵 

It is defined by the following truth table: 

A B 

𝐴 ⟹ 𝐵  

𝑜𝑟 

�̅� + 𝐵 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

Table 4.5: The truth table of the logical operator XOR 

We can say that the implication operator ( 𝐴 ⟹ 𝐵)evaluates to "false" only if " A " is 

true and " B " is false. 

This operator does not have any particular circuit. But we can construct the function 
with classic logic gates. In particular: 𝑌 = �̅� + 𝐵, which gives the following diagram: 

 

 

d. The Equivalence Operator (XNOR) 

This operator is given by the following expression: 
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    𝑌 = 𝐴. 𝐵 + �̅�. �̅� 

= 𝐴 ⊕ 𝐵̅̅ ̅̅ ̅̅ ̅̅  

 =  𝐵 ⊙ 𝐵 

 =  𝐴 ⊗ 𝐵 

It is defined by the following truth table: 

 

A B 𝐴 ⊕ 𝐵̅̅ ̅̅ ̅̅ ̅̅  

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

Table 4.6: The truth table of the logical operator XNOR 

 

The operator evaluates to true if variables A and B are both true and false at the same 

time. 

The corresponding logical diagram is as follows: 

 

 

 

Remark 

Except for the NOT gate, all other logic gates can have multiple inputs and a single 

output. 
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4.6. Truth table 

A truth table is a table representing the output Boolean values of a logical expression 

based on their inputs. The table thus presents all the possible combinations of input 

logic variables (generally 0/FALSE and 1/TRUE) and the result of the equation as 

output. 

The steps to follow to construct a truth table are as follows: 

- Write on the first line the name of the input variables and the output variable; 

- Divide the table into a number of columns equal to the total inputs and output. So 

the truth table of a two-input logic function will have three columns (two for the 

inputs and one for the output); 

- Determine the number of possible combinations using the input variables. This 

number is equal to two exponents the number of entries ( 2N lines, N = the number of 

entries. ). For example, with three inputs, there will be 23 = 8 possible combinations; 

- Draw horizontal lines whose number is equal to the number of possible 

combinations. Each line then corresponds to a combination and only one of the input 

variables; 

- Complete each line with a possible combination of input variables. The best way to 

list all the combinations without making a mistake is to count in binary; 

- Enter the value of the function for each combination in the “output” column. The 

following examples will help you better master this method. 

Examples of Truth tables: 

1) Truth table of a function with two input variables 

Consider a logical function F of two Boolean variables a and b. The output is in logic state 

1 when one and only one input variable is in logic state 1. 

The following figure shows the truth table of this function. 

A B F 

0 0 0 
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0 1 1 

1 0 1 

1 1 0 

 

Table 4.7: Truth table 

 

 You notice that this truth table is made up of three columns (two for inputs and 

one for output) and five rows. 

 On the first line are written the names of the input variables A and B and the 

output. 

 The four possible combinations of entries A and B are written on the next four 

lines. These combinations are listed in binary counting order, i.e. (00), (01), (10) 

and (11). 

 

The logical state of the output is written in the "output" column opposite each possible 

combination. When A and B are both in logic state 0 or in logic state 1, the function is 

equal to 0 while it is in logic state 1 when a = 0 and b = 1 or when a = 1 and b = 0. 

Truth table of a function with three input variables 

Consider a logical function F with three input variables a, b and c. The output of this logic 

function is in logic state 1 if only two input variables are in logic state 1. 

The truth table of this function is given in the following figure. 

 

 

a b c F 

0 0 0 0 

0 0 1 0 

0 1 0 0 
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0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

 

In this figure, you notice that with three input variables, there are 23 = 8 possible 

combinations. These combinations are listed according to the way of counting in binary 

with 3 bits. We obtain in order: (000), (001), (010), (011), (100), (101), (110) and (111). 

The input variables are represented as trios where the highest weight corresponds to a 

while c has the lowest weight. The output is at logic state 1 when only two inputs are at 

logic state 1. It is at logic state 0 for all other possibilities. 

Out of all the possible combinations, three possibilities give rise to cases where only 

two variables are in logic state 1, these possibilities are as follows: 

- b = 1 and c = 1 with a = 0, sequence (011), 

- a = 1 and c = 1 with b = 0, sequence (101), 

- a = 1 and b = 1 with c = 0, sequence (110). 

Remark : 

We can have more than one exit. For example, if we have N inputs and M outputs ⟹ 

(N+M) columns in the truth table. 

4.7. Logical expressions and functions 

a. Definition : 

- A logical (Boolean) function of arity n is a function from n input Boolean 

variables to an output variable. (n ≥0). 

- A logical function is a combination of logical variables linked by the AND, OR 

and NOT operators. It can be represented by an algebraic writing 
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(expression) or a truth table or a KARNAUGH table or a flowchart. 

Generally, a function can be given as an expression or truth table as follows: 

Expression : 

A logical function can be represented in algebraic form. It is a representation in the form 

of an expression. It can be expressed as an association of sums and logical products as 

follows: 

f(x,y) = xy + �̅�y 

Truth table: 

The most common representation of a logical function is the truth table. A function F of 

N variables is entirely described by the statement of all the combinations of the input 

variables and the value of the function corresponding to each combination. This 

statement generally takes the form of a table with N+1 columns (N inputs + 1 output) 

and 2N lines (on N bits, we can code 2N different values), The (N+1)th column contains the 

values that the function takes for each combination of variables. 

Simply, just give the output value for all possible combinations of values of its 

arguments. 

Example : 

The truth table of the three-argument function f which is true if and only if exactly two of 

its arguments are true: 

 

x1 x2  x3 f( x1 , x2 , x3 ) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 
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1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

The function: f=1 or f=0 is called a constant function. 

Note: Basic Boolean functions. 

Q: How many distinct Boolean functions of arity n are there? 

A: The truth table of an arity function n has 2n rows and each row of a truth table can 

take the value 0 or the value 1. 

=> there are 22𝑛
distinct truth tables. 

Example : 

If n=2 => there therefore exist 222
= 16 Boolean functions of arity 2. 

x y f 1 f 2 f 3 ……… f 6 ……….. f 16 

0 0 0 0 0              0               1 

0 1 0 0 0              1               1 

1 0 0 0 1              1               1 

1 1 0 1 0              0               1 

4.8. Algebraic writing of a function in first and second normal form 

Definition 1: 

An expression is in its canonical form if all the symbols that represent the variables 

appear in all the terms that constitute it. When an expression is written from its truth 

table, it is in its canonical form. 

There are two normal (canonical) forms for each Boolean function: 

 First normal (canonical) form in Sum of Product (SOP) form or sum of 

minterms. 

 Second normal (canonical) form in the form of Sum Product (SOP) or 
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Maxtermes product. 

Definition 2: 

We call minterm (product term) of n variables, a logical product (AND, AND) of the 

latter (complemented or not). With n variables, we construct 2n minterms, i.e. as many 

possible combinations of n elements taking two states. 

Example : 

For two variables a and b, here are the four minterms: ab , �̅�𝑏, 𝑎�̅�and �̅��̅�. 

When a variable (e.g. A) is in logical state 1, it is replaced by its name (A) and when it 

is in logical state 0, it is replaced by its negation ( �̅�) . 

For example, the first line of the truth table of a function F of two independent variables 

a and b is represented by the binary sequence (00) i.e. a = 0, b = 0. The minterm 

associated with this line is then  �̅�. �̅�, which means that for this line a = 0 AND b = 0. 

The minterms of the truth table of a logical function are denoted by the letter "m" 

and an index corresponding to the decimal value of the minterm sequence. 

Consider a logical function “F” with two input variables a and b. The following table 

(table 4.8) presents the possible combinations and the minterms associated with each 

sequence when the variable ' a ' corresponds to the highest weight. 

 

Variables 
 

a b 
Binary 

sequence 
Decimal 

value 
minterms 

0 0 00 0 𝑚0 =  �̅�. �̅� 

0 1 01 1 𝑚1 = �̅�. 𝑏 

1 0 10 2 𝑚2 = 𝑎. �̅� 

1 1 11 3 𝑚3 = 𝑎. 𝑏 

Table 4.8: Possible combinations and minterms 

 

The decimal equivalent of each binary sequence of each combination represents the 
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index of the associated minterm. The Boolean value of the minterm is then equal to 

the logical product of the Boolean variables . 

Definition 3: We call Maxterm (sum term) of n variables, a logical sum (OR) of the latter 

(complemented or not). With n variables, we construct 2 n Maxterms, i.e. as many 

possible combinations of n elements taking two states. 

Example : 

For two variables a and b, here are the four Maxterms: a+b , �̅� + 𝑏, 𝑎 + �̅�and �̅� + �̅�. 

When a variable (e.g. A) is in logical state 0 , it is replaced by its name (A) and when it 

is in logical state 1 , it is replaced by its negation ( �̅�) . 

For example, the first line of the truth table of a function F of two independent variables 

a and b is represented by the binary sequence (00) i.e. a = 0, b = 0. The Maxterms 

associated with this line is then  𝑎 + 𝑏, which means that for this line a = 0 or b = 0. 

The Maxterms of the truth table of a logical function are denoted by the letter “M” 

and an index corresponding to the decimal value of the Maxterm sequence. 

Consider a logical function “F” with two input variables a and b. The following table 

presents the possible combinations and the Maxterms associated with each sequence 

when the variable ' a ' corresponds to the highest weight. 

Variables 
 

a b 
Binary 

sequence 
Decimal 

value 
Maxterms 

0 0 00 0 𝑀0 =  𝑎 + 𝑏 

0 1 01 1 𝑀1 = 𝑎 + �̅� 

1 0 10 2 𝑀2 = �̅� + 𝑏 

1 1 11 3 𝑀3 = �̅� + �̅� 

Table 4.9: Possible combinations and Maxterms 

The decimal equivalent of each binary sequence of each combination represents the 

index of the associated Maxterm. The Boolean value of the Maxterm is then equal to 

the logical sum of the Boolean variables. 
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Remark : 

The normal (canonical) form of a function can be obtained in two different ways. The 

first is to directly extract the expression from the truth table. The second is to obtain it 

from an expression which is not in normal form using the properties (axioms and 

theorems) of Boolean algebra cited above. 

4.8.1. The first normal form: Sum of Product (SOP) 

In the 1st normal (canonical) form, the function is expressed as a sum of all combinations 

of all logical variables for which the function is “1”, each term is called min-term or 

fundamental product. For a given expression this form is unique. 

Example : 

F(A, B, C) = A�̅�𝐶 + 𝐴𝐵𝐶̅ + �̅�𝐵𝐶̅ 

4.8.1.1. From the truth table 

To derive the normal form of a function from its truth table, we consider the true states 

(1) of the function. Then extract the minterms corresponding to the true states (1) and 

sum them. 

Example : 

Consider a function given by the following truth table: 

 

 

 

 

 

 

 A B VS F(A,B,C) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

𝑚3 = �̅�𝐵𝐶 

𝑚5 = 𝐴�̅�𝐶 

𝑚6 = 𝐴𝐵𝐶 ̅ 
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Then, the expression of the function in the 1st normal form (Sum of Product) is as 

follows: 𝐹(𝐴, 𝐵, 𝐶) = �̅�𝐵𝐶 +  𝐴�̅�𝐶 + 𝐴𝐵�̅� 

4.8.1.2. From an expression 

a- Observe each element of the expression carefully 

b- For each element that is missing a variable: 

- Introduce the missing variable x by multiplying the element by ( x + �̅�). 

- Expand logical operations with elimination of duplicate elements. 

c- Repeat the same operations until you obtain an expression whose terms 

are complete (minterms). 

Examples: 

1- f(x,y,,z) = x + �̅�z 

= x(y+ �̅�) + �̅�z 

= xy + x �̅�+ �̅�z 

= xy(z+ 𝑧̅) + x �̅�+ �̅�z 

= xyz + xy 𝑧̅+ x �̅�+ �̅�z 

= xyz + xy 𝑧̅+ x �̅�(z+ 𝑧̅) + �̅�z 

= xyz + xy 𝑧̅+ x �̅�z + x �̅�𝑧̅+ �̅�z 

= xyz + xy 𝑧̅+ x �̅�z + x �̅�𝑧̅+ �̅�z(x+ �̅�) 

= xyz + xy 𝑧̅+ x �̅�z + x �̅�𝑧̅+ x �̅�z + �̅��̅�z 

= xyz + xy 𝑧̅+ x �̅�z + x �̅�𝑧̅+ �̅��̅�z 

From this expression, we can deduce the truth table by following the reverse steps: each 

minterm must be replaced by 1 in the corresponding box in the truth table. The 

remaining boxes must be set to 0. 



Teacher : Taouche Chérif 
 

18 

x y z f(x,y,z) 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

2- f(a,b,c) = a 𝑐̅+ �̅�b + bc 

                 = a 𝑐̅(b+ �̅�)+ �̅�b(c+ 𝑐̅) + bc(a+ �̅�) 

                 = ab 𝑐̅+ a �̅�c + �̅�bc + �̅�b 𝑐̅+ abc + �̅�bc 

The sum �̅�bc appears twice, we can eliminate one: 

f(a,b,c)= ab 𝑐̅+ a �̅�c + �̅�bc + �̅�b 𝑐̅+ abc 

Remark : 

The sum of all minterms of n variables is always 1 since there always exists a minterm 

of n variables worth 1. 

 

4.8.2. The second normal form: Sum Product (POS) 

In the 2nd normal (canonical) form, the function is expressed in the form of a product of 

sums, including all the variables, each term is called max-term or fundamental sum. For 

a given expression this form is unique. 

Example : F(A, B, C) = (A + �̅� + 𝐶)(𝐴 + 𝐵 + 𝐶̅)(�̅� + 𝐵 + 𝐶̅) 

4.8.2.1. From the truth table 
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To derive the normal form of a function from its truth table, we consider the false (0) 

states of the function. Then extract the Maxterms corresponding to the false (0) states 

and sum them. 

Example : 

Consider a function given by the following truth table: 

 

 

 

 

 

 

 

Then, the expression of the function in the 2nd normal form (Product of Sums) is as 

follows: 

𝐹(𝐴, 𝐵, 𝐶) = (𝐴 + 𝐵 + 𝐶)(𝐴 + 𝐵 + �̅�)(𝐴 + �̅� + 𝐶)(�̅� + 𝐵 + 𝐶)(�̅� + �̅� + �̅�) 

 

4.8.2.2. From an expression 

a- apply the distribution of addition on multiplication to eliminate the 

addition operation between the terms of the expression. 

b- For each incomplete term: 

- Introduce the missing variable x by adding x �̅�to the incomplete term. 

- Application of the distribution again with the elimination of the 

repetition of terms. 

Examples: 

f(x,y,z) = x + yz 

A B C F(A,B,C) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

𝑀0 = 𝐴 + 𝐵 + 𝐶 

𝑀1 = 𝐴 + 𝐵 + 𝐶 ̅ 

𝑀2 = 𝐴 + �̅� + 𝐶 

𝑀4 = �̅� + 𝐵 + 𝐶 

𝑀7 = �̅� + �̅� + 𝐶 ̅ 
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= (x + y)(x + z) 

= (x + y + z 𝑧̅)(x + z) 

= (x + y + z)(x + y + 𝑧̅)(x + z + y �̅�) 

= (x + y + z)(x + y + 𝑧̅)(x + z + y) (x + z + �̅�) 

= (x + y + z)(x + y + 𝑧̅)(x + �̅�+ z) 

From this expression, we can deduce the truth table by following the reverse steps: each 

Maxterm must be replaced by 0 in the corresponding box in the truth table. The 

remaining boxes must be set to 1. 

x y z f(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

4.8.3. Transition between the two normal forms 

To exchange normal (canonical) form we perform a double complementation 

(involution) of the expression followed by the application of one of De Morgan's 

theorems. 

Example: Let the function L be given by the following truth table: 
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A B C L 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 L = �̅��̅�C + �̅�𝐵𝐶̅+ A �̅�𝐶̅+ ABC 

 M = �̅�= �̅��̅�𝐶̅+ �̅�BC + 𝐴�̅�C + AB𝐶̅ 

 L = �̅�= �̅̅�=�̅��̅�𝐶̅  + �̅�BC + 𝐴�̅�C + AB𝐶̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 L = ( �̅��̅�𝐶̅̅̅ ̅̅ ̅̅ ) ( �̅�BC̅̅ ̅̅ ̅̅ ) ( 𝐴�̅�C̅̅ ̅̅ ̅̅ ) ( AB𝐶̅̅̅ ̅̅ ̅̅ ) 

 L = (A + B + C)(A + �̅�+ 𝐶̅)( �̅�+ B + 𝐶̅)( �̅� + �̅�+ C ) 

4.8.4. Decimal canonical form: 

So that the expression is not long enough, we replace each minterm or Maxterm by a 

number representing its order. 

Example : 

F(x,y) = m 1 +m 2 = 1+2 

            = M 0 .M 3 =0×3 = 0 . 3 

F = abcd + �̅�bc �̅�+ a �̅�c �̅�+ �̅��̅�𝑐̅�̅�⟹ F(a,b,c,d) =∑(0,6,10,15) 

L= ∑(1,2,4,7)=∏(0,3,5,6) 
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4.9. Expression of a logical function with NAND or NOR circuits 

exclusively 

The universality of NAND and NOR gates makes it possible to create all basic logic 

functions. 

NAND and NOR gates offer the possibility of being able to create any logic circuit using a 

single type of component. 

a. Expression of a logical function with NAND circuits 

An expression of a logical function can be transformed into the NAND form of NANDs, by 

application of Morgan's theorem. The 1st normal form (SOP) automatically transforms 

into the NAND form of NANDs by replacing AND gates with NAND gates and OR gates 

with NAND gates. 

Knowing that the algebraic expression of the NAND logic gate is: 𝑥. 𝑦̅̅ ̅̅̅ 

Example : 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥�̅� + �̅�𝑧 + 𝑦𝑧̅ 

= 𝑥�̅� + �̅�𝑧 + 𝑦𝑧̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

= 𝑥�̅�̅̅̅̅ . �̅�𝑧̅̅ ̅. 𝑦𝑧̅̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

= 𝑥𝑦. 𝑦̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ . 𝑥. 𝑥̅̅ ̅̅̅𝑧̅̅ ̅̅ ̅̅ . 𝑦𝑧. 𝑧̅̅ ̅̅̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

b. Expression of a logical function with NOR circuits 

An expression of a logical function can be transformed into the NOR form of NORs, by 

application of Morgan's theorem. The 2nd normal form (POS) automatically transforms 

into the NOR form of NORs by replacing the OR gates and AND gates with NOR gates. 

Knowing that the algebraic expression of the NOR logic gate is: 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ 

Example : 
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𝑓(𝑥, 𝑦, 𝑧) = 𝑥�̅� + �̅�𝑧 + 𝑦𝑧̅ 

= 𝑥�̅�̅̅̅̅̅̅̅̅ + �̅�𝑧̅̅ ̅̅̅ ̅ + 𝑦𝑧̅̅̅ ̅̅̅ ̅ 

= �̅� + �̅̅�̅̅ ̅̅ ̅̅ ̅ + �̅̅� + 𝑧̅̅̅ ̅̅ ̅̅ ̅ + �̅� + 𝑧̅̅̅̅ ̅̅ ̅̅ ̅ 

= �̅� + 𝑦̅̅ ̅̅ ̅̅ ̅ + 𝑥 + 𝑧̅̅̅ ̅̅ ̅̅ ̅ + �̅� + 𝑧̅̅ ̅̅ ̅̅ ̅ 

= 𝑥 + 𝑥̅̅ ̅̅ ̅̅ ̅ + 𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑥 + 𝑧 + 𝑧̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑦 + 𝑦̅̅ ̅̅ ̅̅ ̅ + 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

= 𝑥 + 𝑥̅̅ ̅̅ ̅̅ ̅ + 𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑥 + 𝑧 + 𝑧̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑦 + 𝑦̅̅ ̅̅ ̅̅ ̅ + 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑥 + 𝑥̅̅ ̅̅ ̅̅ ̅ + 𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑥 + 𝑧 + 𝑧̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑦 + 𝑦̅̅ ̅̅ ̅̅ ̅ + 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

4.10. Schema of a function 

A function is represented as a box or a logic circuit. 

1) Box 

 

 

 

 

2) A logic circuit 

A logic circuit is a set of interconnected logic gates corresponding to a Boolean algebraic 

expression. 

Examples: 

1- f = x + yz 

 

Used 

variables  

Relationship 

between 

Inputs/Output 

Inputs 

F 

Output 
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To represent this function we used two gates: an 'AND' and an 'OR'. 

2- f = (x + y + z)(x + y + 𝑧̅)(x + �̅�+ z) 

 

To represent this function we used six doors: 

 Two 'NOT' gates 

 Three 'OR' gates 

 An 'AND' gate 

Remark : 

The expression in ‘Example 1’ and that in ‘Example 2’ are two different writings of the 

same function. 

The representation of the function by the simplified expression leads to: 

 Reduction in production cost 

 Fast processing (time saving) 

 And also reduction in energy consumption 

 This means that simplification of logic functions is essential. 

4.11. Simplifying a logical function 

There are several methods of simplifying logical functions: 

a. Algebraic method 
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To algebraically simplify a Boolean function, we use the properties of Boolean algebra: 

idempotence, absorption, distributivity, factoring, etc. 

Examples: 

1) f = xy + �̅�z + yz 

= xy + �̅�z + yz(x + �̅�) 

= xy + �̅�z + yzx + yz�̅� 

= xy(1+z) + �̅�z(1+y) 

= xy + �̅�z 

2) f = a 𝑐̅+ �̅�b + bc 

= a 𝑐̅(b + �̅�) + �̅�b(c + 𝑐̅) + bc(a + �̅�) 

= a 𝑐̅b + a 𝑐̅�̅�+ �̅�bc + �̅�b 𝑐̅+ abc + �̅�bc 

= a 𝑐̅b + a 𝑐̅�̅�+ �̅�bc + �̅�b 𝑐̅+ abc 

= ab(c + 𝑐̅) + �̅�b (c + 𝑐̅) + a�̅�𝑐 ̅

= ab + �̅�b + a�̅�𝑐̅ 

= b(a + �̅�) + a�̅�𝑐̅ 

= b + a �̅�𝑐̅⟹ there is a simplification 

= b(1 + a 𝑐̅)+ a�̅�𝑐̅ 

= b + ab 𝑐̅+ a�̅�𝑐̅ 

= b + a 𝑐̅(b + �̅�) 

= b + a 𝑐̅⟹ there is one more simplification 

Remark: 
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The disadvantage of this method is that we are not sure that we have obtained the 

most simplified form. 

The rules and properties of Boolean algebra make it possible to simplify functions 

but remain a relatively cumbersome method. It never allows us to know whether or 

not we arrive at a minimal expression of the function. 

b. Karnaugh Table (Map) 

The Karnaugh method allows you to visualize a function and intuitively derive a 

simplified function. The basic element of this method is the Karnaugh table which 

represents, in tabular form, all possible combinations of states for a given number of 

variables. Since each dimension of the array can visually represent two variables, 

functions with four variables can easily be simplified using a two-dimensional array. 

The Karnaugh table is based on the concept of adjacency. Two binary words are said to 

be adjacent if they differ only by the complementarity of one, and only one, variable. If 

two adjacent words are summed, they can be merged and the variable that differs is 

eliminated. 

Example : 

ABC and AB 𝐶̅are adjacent ⟹ ABC + AB 𝐶̅= AB 

This can be demonstrated as follows: 

ABC + AB 𝐶̅= AB (C + 𝐶̅) = AB 

The Karnaugh table was constructed to visually highlight logical adjacency. 

The numbering of rows and columns is done according to the Gray code, we go from 

one row to the next by changing a single bit and from one column to the next by also 

changing a single bit. 

If a function depends on n variables, there are 2n possible products (minterms). Each of 

these minterms is represented by a box in the Karnaugh table. The following figures give 

the structure of Karnaugh tables for 2, 3 and 4 variables. Observe how the rows and 

columns are numbered: from one box to its neighbor, only one variable changes state. 
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For 2 variables: (x, y), here is the corresponding Karnaugh table: 

 

       y 

x 
0 1 

0 m 0 m 1 

1 m 2 m 3 

 

For 3 variables: (x, y, z), here is the corresponding Karnaugh table: 

 

        yz 

x 00 01 11 10 

0 m 0 m 1 m 3 m 2 

1 m 4 m 5 m 7 m 6 

 

 

For 4 variables: ( x, y, z, w ), here is the corresponding Karnaugh table: 
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        zw 

xy 00 01 11 10 

00 m 0 m 1 m 3 m 2 

01 m 4 m 5 m 7 m 6 

11 m 12 m 13 m 15 m 14 

10 m 8 m 9 m 11 m 10 

 

Each box in a Karnaugh table corresponds to the single minterm taking the value 1 for 

the combination identified by the row and the column. For example, the dark box in the 

following table corresponds to the minterm m 1 representing ( x,y,z,w )=(0,0,0,1) which 

gives 𝑚 1 = 𝑥 ̅. 𝑦 ̅. 𝑧 ̅. w. 

        zw 

xy 00 01 11 10 

00 m 0 m 1 m 3 m 2 

01 m 4 m 5 m 7 m 6 

11 m 12 m 13 m 15 m 14 

10 m 8 m 9 m 11 m 10 
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Simplification method 

The transition from the truth table to the Karnaugh table consists of filling each box (of 

the Karnaugh table) with the value of the function for the corresponding (minterm) 

product. This table is a two-dimensional representation of the truth table. 

The simplification will consist of firstly representing the logical function by a Karnaugh 

table, then proceeding to group together all the “1s” found in symmetrical or adjacent 

boxes. 

The rules for simplification using the Karnaugh table are as follows: 

 The “1s” appearing in neighboring or symmetrical boxes can be grouped. 

 The grouping of two adjacent or symmetrical boxes reduces the initial min-

terms by one variable. 

 The grouping of 2 P adjacent or symmetrical boxes reduces the initial min-

terms by variable p. 

 The grouping must relate to a number to the power of 2 boxes. We must 

always try to group as many boxes as possible. 

 All “1s” must be contained in at least one grouping. 

 The same box can be used for different groupings. 

 Each grouping obtained represents a prime implicant. To get it, simply 

expand the grouping by eliminating the variables that change state. 

A prime implicant which contains at least 1 which cannot be included in any other prime 

implicant is said to be essential prime implicant . 

To obtain the minimal form, we first choose the essential prime implicants. Then, we 

choose among the remaining prime implicants those which are necessary to completely 

cover the original function. 

If the minimal form contains only essential prime implicants, then it is unique. 

Examples: 

1) Let the function f (x,y,z) be defined by the following truth table: 
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x y z f 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 0 

 

To simplify it using the Karnaugh table, we follow the following steps: 

 Setting the Karnaugh table: 

 

        yz 

x 00 01 11 10 

0 m0 m1 m3 m2 

1 m4 m5 m7 m6 

 

 

 Filling the Karnaugh table from the truth table: 
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        yz 

x 00 01 11 10 

0 0 1 1 0 

1 0 1 0 0 

 

 

 Simplification: 

Construction of groups: The minterms involved are m1, m3 and m5. The minterms 

m1 and m3 are adjacent, we can therefore form a group g1 . The minterms m1 and 

m5 are adjacent, we can therefore form a group g2 . 

        yz 

x 00 

 

01 11 10 

0 0 1 1 0 

1 0 1 0 0 

 

 

 Establishment of the equations for each group: 

 For the determination of g1 , we see that y changes value, it will therefore be 

eliminated, on the other hand x is at 0 and z at 1, that is to say that g1 =�̅�. 𝑧 

 For the determination of g2 , we see that x changes value, it will therefore be 

eliminated, on the other hand y is at 0 and z is at 1, that is to say that g2 =�̅�. 𝑧 

 The simplified function is the logical sum of all the terms of each group, that is to 

say: 

g1=�̅�. 𝑧 

g2=�̅�. 𝑧 
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𝑓(𝑥, 𝑦, 𝑧) = �̅�. 𝑧 + �̅�. 𝑧 

 

2) Consider the function f (x,y,z,w) with 4 variables defined by the following 

expression: 

f(x,y,z,w) = m3 + m7 + m11 

= �̅��̅�𝑧𝑤 + �̅�𝑦𝑧𝑤 + 𝑥�̅�𝑧𝑤 

= 0011 + 0111 + 1011 

To simplify it using the Karnaugh table, we follow the following steps: 

 Setting the Karnaugh table: 

        zw 

xy 00 01 11 10 

00 m0 m1 m3 m2 

01 m4 m5 m7 m6 

11 m12 m13 m 15 m14 

10 m8 m9 m11 m10 

 

 

 Filling the Karnaugh table from the truth table: 
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         zw 

xy 00 01 11 10 

00 0 0 1 0 

01 0 0 1 0 

11 0 0 0 0 

10 0 0 1 0 

 

 Simplification: 

Construction of groups: The minterms involved are m3, m7 and m11. The 

minterms m3 and m7 are adjacent; we can therefore form a group g1. The 

minterms m3 and m11 are adjacent, we can therefore form a group g2 . 

 

        zw 

xy 00 

 

01 

 

11 10 

00 0 0 1 0 

01 0 0 1 0 

11 0 0 0 0 

10 0 0 1 0 

 

 

g1=�̅�. 𝑧𝑤 

g2=�̅�. 𝑧𝑤 
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 Establishment of the equations of each group: 

 For the determination of g1 , we see that y changes value, it will therefore be 

eliminated, on the other hand x is at 0, z at 1 and w at 1, that is to say that g1 

=�̅�. 𝑧. 𝑤 

 For the determination of g2 , we see that x changes value, it will therefore be 

eliminated, on the other hand y is at 0, z at 1 and w at 1 , that is to say that g2 

=�̅�. 𝑧. 𝑤 

 
 The simplified function is the logical sum of all the terms of each group, that is to 

say: 

𝑓(𝑥, 𝑦, 𝑧, 𝑤) = �̅�. 𝑧. 𝑤 + �̅�. 𝑧. 𝑤 

Remark : 

The Karnaugh method requires that we minimize the number of groups and maximize 

the number of 1s in a group. The 1s in a group must be in adjacent boxes, but the 

number of 1s in a group must also be a power of 2. For example, if you have three 1s in 

three boxes adjacent to each other, you will not be able to form just one group but two. 

 Special case of simplification 

 Incompletely defined functions 

An “incompletely defined function” is a function for which certain values of the 

input variables do not require a value ('0' or '1'). We denote this state by the 

letter ф or 

Karnaugh table: 

The method remains the same as that explained previously, however taking into account 

the fact that the state (ф, X) can be considered as a '0' or a '1', depending on which is 

advantageous. 

Noticed : 

When the state (ф, X) has been set to ‘0’ or ‘1’, it is no longer possible to change its state 
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to use it in another block.  

Example : 

Seven-segment displays are well known. They are used to display a number from 0 to 9. 

This number is represented on four bits which allow numbers from 0 to 15 to be 

represented. Input combinations from 10 to 15 are optional conditions since they should 

never be present. 

 Redundant implicants: 

An implicant is redundant if all the windows it covers in a Karnaugh table are already 

covered by other implicants. This term can be removed from the equation without 

changing the truth table. Under certain conditions, this term can stabilize the circuit by 

removing momentary operating errors (gliches). 

Remark : 

The Karnaugh diagram method is effective for Boolean expressions with at most 4 

entries (variables). Beyond that, the graphic representation becomes complex, it is 

difficult to highlight the symmetries, and the method becomes unusable. 

c. Quine−McCluskey method 

With the previous methods, the simplifications were obtained purely intuitively; nothing 

assures us that the function obtained is really the simplest that can be obtained. 

Furthermore, in the absence of a well-defined algorithm, these methods cannot be 

effectively implemented in software. 

The Quine/McCluskey method, consisting of a well-defined procedure. Guarantees 

maximum simplification of the function obtained, in the form of a sum of products. 

There is no other equivalent function containing fewer terms. The Quine/McCluskey 

method uses an algorithm to highlight the adjacency between terms. 

The procedure to follow is as follows: 

1. Put the function in canonical form. 

2. Transform terms into binary numbers. 

3. Group these numbers according to their weight (number of 1). 
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4. Place the numbers in ascending order within each group. 

5. Compare each term of a group with each term of the following group: two terms 

having only one bit that does not match generate a new term where the 

difference bit is replaced by an “X”; the new terms generated form a list of new 

binary numbers grouped by weight. 

6. Repeat step 5 from the new list obtained until no other new list is generated. 

7. Identify the implicants, that is to say the elements which were not used to 

generate an element of the new list. 

8. Identify the essential implicants, that is to say those whose representation is 

unique for certain solutions. 

9. Check if all the essential implications represent all the solutions. If yes, the 

minimal solution is found. If not, we must add one or more other implicants in 

order to represent all the solutions. There is no precise way to choose the other 

implicants. 

Example 1: 

We want to simplify the following function: 

𝑆 =  �̅��̅�𝐶�̅� + �̅�𝐵𝐶̅�̅� + �̅�𝐵𝐶̅𝐷 + �̅�𝐵𝐶𝐷 + 𝐴�̅�𝐶̅𝐷 + 𝐴𝐵𝐶̅𝐷 

Step 1: the function is already in canonical form. 

Step 2: transformation into binary numbers. 

S = 0010 + 0100 + 0101 + 0110 + 0111 + 1001 + 1101 

Step 3 and 4: Classification 

Weight 1 0010 

0100 

 

Weight 2 

0101 

0110 

1001 
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Weight 3 0111 

1101 

Steps 5 and 6: Comparisons. 

1 0010 a  0X10(1-4) 01XX (bf and cd) 

2 0100 b  010X (2-3)  

 ------- c  01X0 (2-4)  

3 0101 --------------  

4 0110 d  01x1 (3-6)  

5 1001 e  X101 (3-7)  

 ------- f  011X (4-6)  

6 0111 g 1X01 (5-7)  

7 1101   

Step 7:  identification of implcants 

Terms that have never spawned new terms are marked with an “*” 

0010 

0100 

------- 

0101 

0110 

1001 

------ 

0111 

1101 

0X10* 

010X 

01X0 

------- 

01X1 

X101* 

011X 

1X01* 

01XX* 
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Step 8 and 9: identification of essential implicants 

 

 

 0010 0100 0101 0110 0111 1001 1101 

0X10 [√]   (√)    

X101   √    √ 

1X01      [√] (√) 

01XX  [√] (√) (√) [√]   

√ indicates that the implicant covers the term. 

[√] indicates that the implicant is essential to this term. 

(√) indicates a term covered by an essential implicant. 

The essential implicants are: 0X10, 1X01 and 01XX. Since they are sufficient to represent 

all solutions, the simplified function is: 

Example 2: 

We want to simplify the following function: 

𝑆 =  𝐴 ̅𝐵𝐷 + 𝐴𝐵𝐶𝐷 + 𝐴�̅�𝐶𝐷 + 𝐴𝐵𝐶�̅� +  𝐴�̅�𝐶�̅� 

Step 1: Put the function in canonical form 

𝑆 =  𝐴 ̅𝐵𝐷(𝐶 + 𝐶̅) + 𝐴𝐵𝐶𝐷 + 𝐴�̅�𝐶𝐷 + 𝐴𝐵𝐶�̅� +  𝐴�̅�𝐶�̅� 

 𝑆 =  𝐴 ̅𝐵𝐶𝐷 + 𝐴 ̅𝐵𝐶̅𝐷 +  𝐴𝐵𝐶𝐷 + 𝐴�̅�𝐶𝐷 + 𝐴𝐵𝐶�̅� +  𝐴�̅�𝐶�̅� 

Step 2: Transformation into binary numbers 

𝑆 = 0111 + 0101 + 1111 + 1011 + 1110 + 1010 

Steps 3 and 4: Classification 

              Weight 2   0101 

1010 
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             Weight 3    0111 

1011 

1110 

             Weight 4    1111 

 

Steps 5, 6 and 7: Comparisons and identification of implicants 

 

0101 √                 01X1             1X1X 

1010 √                101X √ 

                              1X10 √ 

0111 √ 

1011 √                 X111 

1110 √                1X11 √ 

                              111X √ 

1111 √ 

Step 8 and 9: Identification of essential implicants 

 

 0101 1010 0111 1011 1110 1111 

01X1 [√]  (√)    

X111   √   √ 

1X1X  [√]  [√] [√] (√) 

 

The essential implicants are: 01X1 and 1X1X. Since they are sufficient to represent all 

solutions, the simplified function is: 

S =  A ̅BD + AC 
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Example 3: We want to simplify the following function. Note the optional conditions. 

 

𝐹 = ∑(2,4,7,12,10,15) +  ∅ ∑(6,9,11,14) 

Step 1: The function is in canonical form. 

 

Step 2: Transformation into binary numbers. 

 

𝐹 = 0010 + 0100 + 0111 + 1100 + 1010 + 1111 +  ∅(0110+1001+1011+1110) 

 

Steps 3 and 4: Classification 

 

From this step on, optional conditions are treated like other terms. 

 

Weight 1                 0010 

0100 

Weight 2                  0110 

                                   1001 

1010 

1100 

Weight 3                  0111 

1011 

1110 

Weight 4                  1111 
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Steps 5, 6 and 7: Comparisons and identification of participants 

0011 √               0X10 √         XX10 

0100 √               X010 √         X1X0 

                             1X10 √ 

0110 √               X100 √          X11X 

1001 √                                       1X1X 

1010 √               011X √ 

1100 √               X110 √ 

                             101X √ 

0111 √               1X10 √ 

1011 √               10X1 √ 

1110 √               11X0 √ 

 

1111 √               X111 √ 

                            1X11 √ 

                            111X √ 

 

Step 8 and 9: Identification of essential implicants 

Note that only essential terms are listed. The usefulness of optional conditions is over 

since it is limited to allowing greater simplification. 

 0010 0100 0111 1100 1010 1111 

10X1       

XX10 [√]    (√)  

X1X0  [√]  [√]   

X11X   [√]   (√) 

1X1X     √ √ 
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The essential implicants are: XX10, X1X0 and X11X. Since they are sufficient to represent 

all solutions, the simplified function is: 

S =  BA ̅ + C�̅� + 𝐶𝐵 
 

Remark: 

The choice of a simplification method depends on the function to be simplified. 

Generally, we will use: 

 The algebraic method for functions with two variables or functions with more 

than two variables but containing few terms in canonical form. 

 Karnaugh's method for functions of three, four, five or six variables. 

 The Quine/McCluskey method for functions with five or more variables. 

 


