Boolean Algebra

F	1.	D	41- a	4 4 1 -	4-1-1-	- f +1	£ - 11	· · · · · ·	
Exercise	1:	Draw	the	truth	table	or the	TOIL	owing	expressions:

А	В	AB	ĀB	3	F	(A,1	B)=	A+.	AB					А	В	AB	ĀB	A+B	F(A,B)=AB(A+B)	
0	0	0	1		1									0	0	0	1	0	0	
0	1	0	1		1									0	1	0	1	1	1	
1	0	0	1		1									1	0	0	1	1	1	
1	1	1	0		1									1	1	1	0	1	0	
			[А	в	c	B	Ē	ABC	ABC	ABC	ABC	F(A	.,B,C)=	ABC	-ABC+AI	BC+ABC			
			İ	0	0	0	1	1	0	0	0	0	0							
			[0	0	1	1	0	0	0	0	0	0							
				0	1	0	0	1	0	0	0	0	0							
				0	1	1	0	0	0	0	0	0	0							
				1	0	0	1	1	0	0	0	1	1							
				1	0	1	1	0	0	0	1	0	1							
				1	1	0	0	1	0	1	0	0	1							
				1	1	1	0	0	1	0	0	0	1							

Exercise 2: Prove the following theorems by the truth table

1 Idempotence : $a + a + a + \dots = a$

a	a	a	a + a + a + a + a + a + a	a.a.a.a.a
0	0	0	0	0
1	1	1	1	1

 $\begin{array}{c} \hline 2 & \text{Identity } a+0=a \\ & a.1=a \end{array}$

a	0	1	a+0	a.1
0	0	1	0	0
1	0	1	1	1

3 Absorption a.0 = 0a+1=1

a	0	1	<i>a</i> .0	a+1
0	0	1	0	1
1	0	1	0	1

4 Complementary $a + \overline{a} = 1$ $a.\overline{a} = 0$

a	$a + \overline{a}$	$a.\overline{a}$
0	1	0
1	1	0

 $\overline{a.b} = \overline{a} + \overline{b}$

a	b	'a	b'	a.b	$\overline{a.b}$	$\overline{a} + \overline{b}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

 $\overline{a+b}=\overline{a}.\overline{b}$

a	b	'a	b'	a+b	$\overline{a+b}$	$\overline{a}.\overline{b}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Exercise 3: Prove the following equations using the properties of Boolean algebra:

 $1^{\circ} a + a.b = a. (1+b)$ (common factors) = a.1 (absorption) (identity) = a 2° a.(a+b)= a.a + a.b (distribution of . over +) = a + a.b(idempotence) = a.(1+b)(common factors) (absorption) = a.1 (identity) = a

3°

$$a+\overline{a}.b = (a+\overline{a}) . (a+b)$$
$$= 1. (a+b)$$
$$= (a+b)$$

(distribution of + over .)

University of Larbi Ben M'Hidi, Oum El Bouaghi Department of Mathematics and Computer Science

4°

$$(a+b).(a+\overline{b}) = a+b\overline{b}$$

=a

Exercise 4:

 $1^{\circ} (a+b)(a+c) = a+(b.c)$ (distribution of + over .) 2°

$$(a+b).(a+c) = a.a+a.c+ab+b.c$$
$$=0+ac+ab+b.c (a+a)$$
$$=ac+ab+abc+abc$$
$$=ab(1+c)+ac(1+b)$$
$$=ab+ac$$

3°

 $\overline{\overline{a}.b} + \overline{\overline{a}+b}$

$$\overline{\overline{a}.b + \overline{\overline{a} + b}} = (\overline{\overline{a}.b}).(\overline{\overline{a} + b})$$

$$= (\overline{\overline{a}} + \overline{b}).(\overline{\overline{a}} + b)$$

$$= (a + \overline{b})(\overline{\overline{a}} + b)$$

$$= a.\overline{a} + a.b + \overline{a}.\overline{b} + b.\overline{b}$$

$$= a.b + \overline{a}.\overline{b}$$

Exercise 5:

$1 \quad f1(x,y,z) = xy + x\overline{z} + \overline{y}z$

х	у	\mathbf{Z}	f1	Minterm	Maxterm
0	0	0	0		(x+y+z)
0	0	1	1	$\overline{x}.\overline{y}z$	
0	1	0	0		$(x + .\overline{y} + z)$
0	1	1	0		$(x + .\overline{y} + .\overline{z})$
1	0	0	1	$x.\overline{y}.\overline{z}$	
1	0	1	1	$x.\overline{y}z$	
1	1	0	1	$xy.\overline{z}$	
1	1	1	1	xyz	

1st canonical form: $F1 = \overline{x}.\overline{y}z + x.\overline{y}.\overline{z} + x.\overline{y}z + xy.\overline{z} + xyz$ 2nd canonical form $F1 = (x + y + z) (x + \overline{y} + z)(x + \overline{y} + \overline{z})$

2 F2(a, b, c) = 1 if the number of variables at 1 is even

a	b	с	f2	Minterm	Maxterm
0	0	0	1	$\overline{a}\overline{b}\overline{c}$	
0	0	1	0		$(a+b+\overline{c})$
0	1	0	0		$(a + \overline{b} + c)$
0	1	1	1	$\overline{a}bc$	
1	0	0	0		$(\overline{a} + b + c)$
1	0	1	1	$a\overline{b}c$	
1	1	0	1	$ab\overline{c}$	
1	1	1	0		$(\overline{a} + \overline{b} + \overline{c})$

1st canonical form $F2 = \overline{a}.\overline{b}.\overline{c} + \overline{a}bc + a.\overline{b}c + ab.\overline{c}$ 2nd canonical form $F2 = (a + b + \overline{c})(a + \overline{b} + c)(\overline{a} + b + c)(\overline{a} + \overline{b} + \overline{c})$

a	b	с	d	f3	Minterm	Maxterm
0	0	0	0	0		(a+b+c+d)
0	0	0	1	0		$(a+b+c+\overline{d})$
0	0	1	0	0		$(a+b+\overline{c}+d)$
0	0	1	1	1	$\overline{a}\overline{b}cd$	
0	1	0	0	0		$(a+\overline{b}+c+d)$
0	1	0	1	1	$\overline{a}b\overline{c}d$	
0	1	1	0	1	$\overline{a}bc\overline{d}$	
0	1	1	1	1	$\overline{a}bcd$	
1	0	0	0	0		$(\overline{a} + b + c + d)$
1	0	0	1	1	$a\overline{b}\overline{c}d$	
1	0	1	0	1	$a\overline{b}c\overline{d}$	
1	0	1	1	1	$a\overline{b}cd$	
1	1	0	0	1	$ab\overline{c}\overline{d}$	
1	1	0	1	1	$ab\overline{c}d$	
1	1	1	0	1	$abc\overline{d}$	
1	1	1	1	1	abcd	

1st canonical form

 $\mathrm{F3} = \overline{a}\overline{b}cd + \overline{a}\overline{b}\overline{c}d + \overline{a}\overline{b}c\overline{d} + \overline{a}\overline{b}cd + a\overline{b}\overline{c}d + a\overline{b}c\overline{d} + a\overline{b}\overline{c}d + a\overline{b}\overline{c}d + a\overline{b}\overline{c}d + ab\overline{c}\overline{d} + abc\overline{d} + abc\overline{d}$

2nd Canonical form

 $F3 = (a+b+c+d)(a+b+c+\overline{d})(a+b+\overline{c}+d)(a+\overline{b}+c+d)(\overline{a}+b+c+d)$

Exercice 6:

$$1 \quad f1(x,y,z) = xy + x\overline{z} + \overline{y}z$$

$$f_1 = x + yz$$

University of Larbi Ben M'Hidi, Oum El Bouaghi Department of Mathematics and Computer Science

2 $f_2(a, b, c) = 1$ if the count of variables at 1 is even

3 $f_3(a, b, c, d) = 1$ if at least two variables are equal to 1

Exercice 7:

Logigramme de la fonction $f1(x, y, z) = xy + x\overline{z} + \overline{y}z$.

University of Larbi Ben M'Hidi, Oum El Bouaghi Department of Mathematics and Computer Science

Logigram of function $f_2(a, b, c) = 1$ if the count of variables at 1 is even.

Logigram of function f3(a, b, c, d) = 1 if at least two variables are equal to 1.

Exercice 8:

Truth table:

х	у	\mathbf{Z}	f4
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Canonical forms: 1st canonical form:

 $F4(x, y, z) = \overline{x}.y.\overline{z} + \overline{x}.y.z + x.\overline{y}.\overline{z}$

2nd canonical form:

 $F4(x, y, z) = (x + y + z)(x + y + \overline{z})(x + \overline{y} + z)(\overline{x} + \overline{y} + z)(\overline{x} + \overline{y} + \overline{z})$ yz

Logigram of $F(x, y, z) = x \oplus (y + z)$.

|Y