
  

  

Mathematics for Engineering Sciences 

Chapter 02: Matrix Analysis 

Chapter Objective:  

• Finding Eigenvalues and eigenvectors for an matrix A 

• Solve linear systems 𝐴𝑋 = 𝐵 using direct methods: 

o Gauss-Elimination Method for any matrix 𝐴. 

o Gauss-Jordan Method for any matrix 𝐴. 

o Cholesky Method for symmetric positive-definite matrices. 

• Solve linear systems 𝐴𝑋 = 𝐵 using iterative methods: 

o Jacobi Method 

• Solve deferential linear systems  

Introduction: 

A large part of linear algebra revolves around solving and manipulating the simplest types of 

equations: linear equations. 

 For example, the following are linear equations: 

 

Often, we want to solve multiple linear equations 

simultaneously, meaning we seek values for variables 

𝑥1, 𝑥2, . . . , 𝑥𝑛  such that several different linear equations are 

satisfied simultaneously. This leads us to systems of linear 

equations. Geometrically, a solution to a system of linear 

equations corresponds to the point of intersection of all the 

lines, planes or hyperplanes defined by the linear equations 

of the system. For example, consider the following linear 

system composed of two equations. 



  

  

The lines defined by these equations are shown in Figure 2.2. Based on this point, these lines 

have a unique point of intersection, located at point (2; 1). The vector x = (2; 1) therefore appears to be 

the unique solution to this system of linear equations. To find this solution algebraically, we could add 

the two equations of the linear system to obtain the new equation 3y = 3, which tells us that y = 1. Putting 

y = 1 back into the original equation x + 2y = 4, we obtain x = 2. 

I. Matrix Representation of Systems: 

Using matrices provides a compact way to work with linear systems. For a system: 

   

{
 
 

 
 
 𝑎11𝑥1 + 𝑎12𝑥2 + …… + 𝑎1𝑛𝑥𝑛 = 𝑏1 
 𝑎21𝑥1 + 𝑎22𝑥2 + …… + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
⋮

 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + …… + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

we can write it as a single matrix equation: 𝐴𝑋 = 𝐵 

where: 

• 𝐴 ∈ 𝑀𝑛×𝑛 is the coefficient matrix     

[
 
 
 
 
𝑎11  0       …  …     0
𝑎21   𝑎22   0     …   0

⋮⋱
⋮⋱

𝑎𝑛1  𝑎𝑛2   …  …  𝑎𝑛𝑛 ]
 
 
 
 

. 

• 𝑿 =

[
 
 
 
 
𝑥1
𝑥2
⋮
⋮
𝑥𝑛]
 
 
 
 

 is the variable vector. 

•  𝐵 =  

[
 
 
 
 
𝑏1
𝑏2
⋮
⋮
𝑏𝑛]
 
 
 
 

 is the constant vector. 



If A∈Mn, v 6= 0 is a vector, λ is a scalar, and Av = λv,If we allowed v = 0
as an eigenvector

then every scalar λ

would be an
eigenvalue

corresponding to it.

then we say that v is an
eigenvector of A with corresponding eigenvalue λ . Geometrically, this means
that A stretches v by a factor of λ , but does not rotate it at all (see Figure A.4).
The set of all eigenvectors corresponding to a particular eigenvalue (together
with the zero vector) is always a subspace of Rn, which we call the eigenspace
corresponding to that eigenvalue. The dimension of an eigenspace is called the
geometric multiplicity of the corresponding eigenvalue.

This matrix does
change the

direction of any
vector that is not on
one of the two lines

displayed here. x

y

v2 = (1,1)v1 = (−1,1) A=

[
21

12

]

−−−−−−−−→
x

y

Av2 = 3v2

Av1 =−v1

Figure: Matrices do not change the line on which any of their eigenvectors lie,
but rather just scale them by the corresponding eigenvalue. The matrix displayed
here has eigenvectors v1 = (−1,1) and v2 = (1,1) with corresponding eigenvalues
−1 and 3, respectively.

The standard method of computing a matrix’s eigenvalues is to construct
its characteristic polynomial pA(λ ) = det(A−λ I). This function pA really
is a polynomial in λ by virtue of the permutation formula for the determinant
(i.e., Theorem A.1.4). Furthermore, the degree of pA is n (the size of A), so
it has at most n real roots and exactly n complex roots counting multiplicity
(see the upcoming Theorem A.3.1). These roots are the eigenvalues of A, and
the eigenvectors v that they correspond to can be found by solving the linear
system (A−λ I)v = 0 for each eigenvalue λ .

Example.
Computing the

Eigenvalues and
Eigenvectors of a

Matrix

Compute all of the eigenvalues and corresponding eigenvectors of the
matrix A =

[
1 2
5 4

]
.

Solution:
To find the eigenvalues of A, we first compute

For a 2×2 matrix, the
determinant is simply

det

([
a b
c d

])
= ad−bc.

the characteristic poly-
nomial pA(λ ) = det(A−λ I):

pA(λ ) = det(A−λ I) = det

([
1−λ 2

5 4−λ

])

= (1−λ )(4−λ )−10 = λ
2−5λ −6.

Setting this determinant equal to 0 then gives

λ
2−5λ −6 = 0 ⇐⇒ (λ +1)(λ −6) = 0

⇐⇒ λ =−1 or λ = 6,

 II.1  Eigenvalues  and  Eigenvectors



so the eigenvalues of A are λ =−1 and λ = 6. To find the eigenvectors
corresponding to these eigenvalues, we solve the linear systems (A+ I)v =
0 and (A−6I)v = 0, respectively:

λ =−1: In this case, we want to solve the linear system (A−λ I)v =
(A+ I)v = 0, which we can write explicitly as follows:

2v1 +2v2 = 0
5v1 +5v2 = 0

.

To solve this linear system, we use Gaussian elimination as
usual:

[
2 2 0
5 5 0

]
R2− 5

2 R1−−−−−→

[
2 2 0
0 0 0

]
.

It follows that v2 is a free variable and v1 is a leading variable with
v1 =−v2. The eigenvectors corresponding to the eigenvalue λ =−1
are thus the non-zero vectors of the form v = (−v2,v2) = v2(−1,1).

λ = 6: Similarly, we now want to solve the linear system (A−
λ I)v = (A−6I)v = 0, which we can do as follows:

[
−5 2 0
5 −2 0

]
R2+R1−−−−→

[
−5 2 0
0 0 0

]
.

It follows thatBy multiplying (2/5,1)
by 5, we could also

say that the
eigenvectors here

are the multiples of
(2,5), which is a
slightly cleaner

answer.

v2 is a free variable and v1 is a leading variable
with v1 = 2v2/5. The eigenvectors corresponding to the eigenvalue
λ = 6 are thus the non-zero vectors of the form v = (2v2/5,v2) =
v2(2/5,1).

The multiplicity of an eigenvalue λ as a root of the characteristic polynomial
is called its algebraic multiplicity, and the sum of all algebraic multiplicities
of eigenvalues of an n× n matrix is no greater than n (and it exactly equals
n if we consider complex eigenvalues). The following remarkable (and non-
obvious) fact guarantees that the sum of geometric multiplicities is similarly
no larger than n:

! The geometric multiplicity of an eigenvalue is never larger than
its algebraic multiplicity.

II.3 Diagonalization

One of the primary reasons that eigenvalues and eigenvectors are of interest
is that they let us diagonalize a matrix. That is, they give us a way of de-
composing a matrix A ∈Mn into the form A = PDP−1, where P is invertible
and D is diagonal. If the entries of P and D can be chosen to be real, we say
that A is diagonalizable over R. However, some real matrices A can only be
diagonalized if we allow P and D to have complex entries (see the upcoming
discussion of complex numbers in Appendix A.3). In that case, we say that A
is diagonalizable over C (but not over R).



Suppose A ∈Mn. The following are equivalent:
a) A is diagonalizable over R (or C).
b) There exists a basis of Rn (or Cn) consisting of eigenvectors of A.
c) The sum of geometric multiplicities of the real (or complex) eigen-

values of A is n.
Furthermore, in any diagonalization A = PDP−1, the eigenvalues of A
are the diagonal entries of D and the corresponding eigenvectors are the
columns of P in the same order.

To get a feeling for why diagonalizations are useful, notice that computing
a large power of a matrix directly is quite cumbersome, as matrix multiplication
itself is an onerous process, and repeating it numerous times only makes it
worse. However, once we have diagonalized a matrix we can compute an
arbitrary power of it via just two matrix multiplications, since

Ak =
(
PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

···︷︸︸︷
P−1) · · ·

(
PDP−1)

︸ ︷︷ ︸
ktimes

= PDkP−1,

and Dk is trivial to compute (for diagonal matrices, matrix multiplication is the
same as entrywise multiplication).

Diagonalize the matrix A =
[

1 2
5 4

]
and then compute A314.

Solution:
We showed in Example A.1.1 that this matrix has eigenvalues λ1 =−1

and λ2 = 6 corresponding to the eigenvectors v1 = (−1,1) and v2 =
(2,5),We could have also

chosen v2 = (2/5,1),
but our choice here

is prettier. Which
multiple of each
eigenvector we

choose does not
matter.

respectively. Following the suggestion of Theorem A.1.5, we stick
these eigenvalues along the diagonal of a diagonal matrix D, and the
corresponding eigenvectors as columns into a matrix P in the same order:

D =

[
λ1 0
0 λ2

]
=

[
−1 0
0 6

]
and P =

[
v1 | v2

]
=

[
−1 2
1 5

]
.

It is straightforward to check that P is invertible, so Theorem A.1.5 tells
us that A is diagonalized by this D and P.

To compute A314, we first compute P−1 to beThe inverse of a 2×2
matrix is simply
[

a b
c d

]−1

=

1
det(A)

[
d −b
−c a

]
.

P−1 =
1
7

[
−5 2
1 1

]
.

We can then compute powers of A via powers of the diagonal matrix D in

Example  
Diagonalizing

a  Matrix

Theorem  
Characterization  of
  Diagonalizability



this diagonalization:

Since 314 is even,
(−1)314 = 1.

A314 = PD314P−1 =
1
7

[
−1 2
1 5

][
(−1)314 0

0 6314

][
−5 2
1 1

]

=
1
7

[
5+2 ·6314 −2+2 ·6314

−5+5 ·6314 2+5 ·6314

]
.

We close this section with a reminder of a useful connection between
diagonalizability of a matrix and the multiplicities of its eigenvalues:

! If a matrix is diagonalizable then, for each of its eigenvalues,
the algebraic and geometric multiplicities coincide.

II. 3 Gauss -Elimination Method  

II 3.1 Principle: 

The Gauss-Elimination method transforms the original system 𝐴𝑋 =  𝐵  into an equivalent 

system 𝐴’𝑋 =  𝐵’  where 𝐴’  is an upper triangular matrix. This transformation is achieved using 

elementary transformations based on Perlis operators. 

II 3.2 Method Description: 

Consider the system: 

[

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] [

𝑥1
𝑥2
𝑥3
] =  [

𝑏1
𝑏2
𝑏3

] 

We form the augmented matrix [𝐴 ∣ 𝐵], which includes both the coefficients and the constants: 

[

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] [

𝑥1
𝑥2
𝑥3
] =  [

𝑎14
𝑎24
𝑎34
]           [𝐴|   𝐵]  = [

𝑎11 𝑎12 𝑎13  
𝑎21 𝑎22 𝑎23  
𝑎31 𝑎32 𝑎33  

|  

𝑎14
𝑎24
𝑎34
  ] 

  

 Step 1: Eliminate sub-diagonal elements in the first column  

To make the elements below the pivot 𝑎11 zero, we use row transformations: 

• For row 2: 

𝑅2← 𝑅2−
𝑎21
𝑎11

𝑅1  

• For row 3: 

𝑅3← 𝑅3−
𝑎31
𝑎11

𝑅1  



  

Step 2: Eliminate the element below the diagonal in the second column 

• Modify row 3 using: 

𝑅3 ← 𝑅3 −
𝑎32

(1)

𝑎22
(1)
𝑅2 

 

At the end of these steps, the matrix will be in upper triangular form: 

[𝐴’ , 𝐵’]  =    [

𝑎11 𝑎12 𝑎13

0 𝑎22
(1)

𝑎23
(1)

0 0 𝑎33
(2)
] [

𝑥1
𝑥2
𝑥3
] =  [

𝑎14

𝑎24
(1)

𝑎34
(2)
] 

 

Step 3: Back-substitution 

Solve the triangular system from the bottom up: 

 

  

{
 
 
 

 
 
 𝑥3 = 

𝑎34
(2)

𝑎33
(2)

𝑥2 = 
1

𝑎22
(1)
 [𝑎24

(1) − 𝑎23
(1)
𝑥3]

𝑥1 = 
1

𝑎11
 [𝑎14 − 𝑎12𝑥2 − 𝑎13𝑥3]

 

 



II. 3.3  LU Factorization 
Theorem A matrix A is regular if and only if it can be factored

A = LU,

where L is a lower unitriangular matrix, having all 1’s on the diagonal, and U is upper
triangular with nonzero diagonal entries, which are the pivots of A. The nonzero off-
diagonal entries lij for i > j appearing in L prescribe the elementary row operations that
bring A into upper triangular form; namely, one subtracts lij times row j from row i at
the appropriate step of the Gaussian Elimination process.

In practice, to find the LU factorization of a square matrix A, one applies the regular
Gaussian Elimination algorithm to reduce A to its upper triangular form U . The entries
of L can be filled in during the course of the calculation with the negatives of the multiples
used in the elementary row operations. If the algorithm fails to be completed, which
happens whenever zero appears in any diagonal pivot position, then the original matrix is
not regular, and does not have an LU factorization.

Example Let us compute the LU factorization of the matrix A =

⎛⎝ 2 1 1
4 5 2
2 −2 0

⎞⎠.

Applying the Gaussian Elimination algorithm, we begin by adding −2 times the first row
to the second row, and then adding −1 times the first row to the third. The result is the

matrix

⎛⎝ 2 1 1
0 3 0
0 −3 −1

⎞⎠. The next step adds the second row to the third row, leading to the

upper triangular matrix U =

⎛⎝ 2 1 1
0 3 0
0 0 −1

⎞⎠, whose diagonal entries are the pivots. The

corresponding lower triangular matrix is L = ⎝ 1 0 0
2 1 0
1 −1 1

⎠; its entries lying below the

main diagonal are the negatives of the multiples we used during the elimination procedure.
For instance, the (2, 1) entry indicates that we added −2 times the first row to the second
row, and so on. The reader might wish to verify the resulting factorization⎛⎝ 2 1 1

4 5 2
2 −2 0

⎞⎠ = A = LU =

⎛⎝ 1 0 0
2 1 0
1 −1 1

⎞⎠⎛⎝ 2 1 1
0 3 0
0 0 −1

⎞⎠ .

  

 

 

II.4 Gauss- Jordan Method 
The Gauss-Jordan elimination method extends the Gauss method by further transforming the matrix into reduced row 

echelon form (RREF). 

Steps of Gauss-Jordan Method: 

1. Form the augmented matrix [𝐴|  𝐵 ] .   
2. Perform row operations to make each pivot equal to 1 and ensure all elements above and below the pivot are zero.

3. Continue until the matrix is in RREF. 

The final form allows direct reading of the solutions. If the matrix is inconsistent (a row of zeros except for the last element), 

the system has no solutions. 



 

 

    

I.5 Cholesky Decomposition 

For symmetric positive-definite matrices 𝐴, the Cholesky decomposition is used. 

II.5.1 Cholesky Theorem: 

If 𝐴 is symmetric and positive-definite, it can be decomposed as: 

𝐴 = 𝐿𝐿𝑇 

where 𝐿 is a lower triangular matrix. 



  

  

3. Solve 𝐿𝑇𝑋 = 𝑌 for 𝑋 (using backward substitution). 

𝑥𝑖 = 
1

𝑙𝑖𝑖
 [ 𝑦𝑖 − ∑ 𝑙𝑖𝑗𝑥𝑗  

𝑛
𝑗=𝑖+1 ]   (𝑖 = 𝑛, 𝑛 − 1,… 1) 

 

II.6 Iterative Methods 

II.6.1 Jacobi Method 

The Jacobi method iteratively finds the solution to 𝐴𝑋 = 𝐵. It constructs a sequence 𝑋(𝑘) that converges 

to the solution 𝑋. 

II.1.1 Convergence Condition: 

The Jacobi method converges if the matrix 𝐴 is diagonally dominant (i.e.,|𝑎𝑖𝑖| > ∑ |𝑎𝑖𝑗|𝑖≠𝑗 ). 

II.1.2 Jacobi Algorithm: 

𝒙𝒊
(𝒙+𝟏)

=
𝟏

𝒂𝒊𝒊
(𝒃𝒊 −∑𝒂𝒊𝒋𝒙𝒋

(𝒌)

𝒊≠𝒋

). 

II.1.3 Stopping Criteria: 

The iteration stops when: 

‖𝑋(𝑘+1) − 𝑋(𝑘)‖

𝑋(𝑘+1)
< 𝜖, 

where 𝜖 is a small tolerance value. 

 

 

 

 

 

 

        𝑎𝑖𝑗 = ∑ 𝑙𝑖𝑘
min (𝑖,𝑗)
𝑘=1  𝑙𝑗𝑘      i =1 → n 

                                                j = 1 → n 
 

2. Solve 𝐿𝑌 = 𝐵 for 𝑌 (using forward substitution). 

𝑦𝑖 = 
1

𝑙𝑖𝑖
 [ 𝑏𝑖 − ∑ 𝑙𝑖𝑗𝑦𝑗  

𝑖−1
𝑗=1 ]   (𝑖 = 1,… , 𝑛) 

 

 

 

 

 

 

 

II.5.2 Method: 

1. Decompose 𝐴 into 𝐿𝐿𝑇 

A = L Lt  →   

[
 
 
 
 
𝑎11  𝑎12      …  …    𝑎1𝑛
𝑎21   𝑎22   …     …  𝑎2𝑛

⋮⋱
⋮⋱

𝑎𝑛1  𝑎𝑛2   …  …  𝑎𝑛𝑛 ]
 
 
 
 

=   

[
 
 
 
 
𝑙11  0       …  …     0
𝑙21   𝑙22   0     …   0

⋮⋱
⋮⋱

𝑙𝑛1  𝑙𝑛2   …  …  𝑙𝑛𝑛 ]
 
 
 
 

   

[
 
 
 
 
𝑙11  𝑙12        …  …    𝑙1𝑛
0      𝑙22    𝑙23     …   𝑙2𝑛

⋮⋱
⋮⋱

0      0  …  …    …    𝑙𝑛𝑛 ]
 
 
 
 

  

 



~v1 =

[
α + iβ
γ + iδ

]
.

Then, by taking real and imaginary parts, the solutions are

~Y1(t) = eat
[
α cos(bt)− β sin(bt)
γ cos(bt)− δ sin(bt)

]
~Y2(t) = eat

[
β cos(bt) + α sin(bt)
δ cos(bt) + γ sin(bt)

]
.

If you want to write the solutions in terms of complex numbers, you can always write
~Y1(t) = ~v1e

(a+bi)t, ~Y2(t) = ~v2e
(a−bi)t but the first form of the solution is better, as it

involves only real numbers.
For 3), if the eigenvalue is λ1, with an eigenvector ~v1, then the solutions are

~Y1(t) = ~v1e
λ1t, ~Y2(t) = (~v1t+ ~v2) eλ1t,

where ~v2 is a solution to (A− λ1I)~v2 = ~v1.

Examples. Next, we carry out this process for three examples, to show how it works in
each case. Consider the system

dx

dt
= 2x+ 2y,

dy

dt
= 3x+ y.

To write this as a matrix, let ~Y (t) =

[
x(t)
y(t)

]
and A =

[
2 2
3 1

]
. Then we have

d~Y

dt
= A~Y .

II.6  solving  ODEs (ordinary differential equations) linear  systems

  The  key  to  solving  linear ODEs  systems  is  to  find  eigenvalues  and  eigenvectors  for  the  
matrix.

If  A  is  a  square  matrix,  then  we  say  λ  is  an  eigenvalue  for  A  if  there  is  a  non-zero  vector  ~v
so  that  A~v  =  λ~v.  We  call  ~v  an  eigenvector  for  A  and  λ.
How  to  find  eigenvalues.  Rewriting  the  equation  above,  (A  −  λI)~v  =  ~0,  where  I  is
the  identity  matrix.  For  any  matrix  B,  B~v  =  ~0  for  a  non-zero  vector  ~v  if  and  only  if  the
determinant  of  B  is  zero  (this  is  the  key  fact  about  matrices  mentioned  earlier).

Find  eigenvalues  for  A  by  solving  det(A  −  λI)  =  0  for  λ.

How  to  find  eigenvectors.  Given  an  eigenvalue  for  A,  say  λ0,  then  we  can  plug  in  λ0

into  the  matrix  A  −  λ0I,  and  this  is  now  a  matrix  of  numbers.

Find  eigenvectors  for  A  and  λ0  by  solving  (A  −  λ0I)~v  =  0  for  non-zero  ~v.

  There  will  be  more  than  one  solution,  so  pick  a  simple  solution.

Solutions  to  linear  systems.  The  solutions  can  have  one  of  three  forms,  depending  on
the  eigenvalues  of  the  matrix.  The  three  possibilities  are  1)  distinct  real  roots,  2)  complex
roots,  and  3)  a  repeated  real  root.

  For  1),  if  the  eigenvalues  are  λ1  and  λ2,  with  eigenvectors  ~v1  and  ~v2,  then  the  solutions
are

~Y1(t)  =  ~v1e
λ1t,  ~Y2(t)  =  ~v2e

λ2t.

  For  2),  if  the  eigenvalues  are  a  +  bi  and  a  −  bi,  then  the  eigenvectors  are  going  to  be
complex  numbers,  say



2

Eigenvalues. We solve

∣∣∣∣
2− λ 2

3 1− λ

∣∣∣∣ = 0, which is λ2 − 3λ− 4 = 0. The roots are λ = −1

and λ = 4.

Eigenvectors. First we find the eigenvector for λ = 4. Solve

[
2− 4 2

3 1− 4

] [
a
b

]
=

[
0
0

]
.

The two equations are −2a + 2b = 0 and 3a − 3b = 0. It will always be true that
the two equations are multiplies of each other. If this does not happen, then
you’ve made a mistake somewhere. Pick a simple solution, like a = 1 and b = 1. So

the eigenvector for λ = 4 is ~v1 =

[
1
1

]
.

Next, we find the eigenvector for λ = −1. Solve

[
2− (−1) 2

3 1− (−1)

] [
a
b

]
=

[
0
0

]
.

Here, the two equations are 3a + 2b = 0 and 3a + 2b = 0, so the equations are not just
multiples, but are identical. A simple solution is a = −2 and b = 3. So the eigenvector for

λ = −1 is ~v2 =

[
−2
3

]
.

Thus, the general solution is ~Y (t) = C1

[
1
1

]
e4t +C2

[
−2
3

]
e−t. In terms of the component

functions, x(t) and y(t), we have x(t) = C1e
4t − 2C2e

−t and y(t) = −C1e
4t + 3C2e

−t.

Phase plane. The phase plane of this system is

–10

–5

0

5

10

y

–10 –5 5 10
x

Notice the line that is multiples of the vector

[
1
1

]
, that is, the line y = x. On this line,

solutions move straight out, away from the origin. This is because the eigenvector gives us
a straight line of solutions through the origin on the phase plane. Moreover, because the
associated eigenvalue is positive, the solutions move away from the origin. (See the picture
on the last page.)



3

The other eigenvector,

[
−2
3

]
, also gives us a straight line of solutions through the origin,

now on the line y = −3x/2. Because the eigenvalue is negative, the solutions more towards
the origin on this line.

If the two eigenvalues are positive and distinct, then solutions move away from the origin
along both straightline solutions. If the two eigenvalues are negative and distinct, then
solutions move towards the origin along both straightline solutions. (See the pictures at the
end of the handout.)

Next, we consider a system which will turn out to have complex eigenvalues,

dx

dt
= x+ 5y,

dy

dt
= −x+ 3y.

It has the form
d~Y

dt
= A~Y . with A =

[
1 5
−1 3

]
and ~Y (t) in the last example.

Eigenvalues. We solve

∣∣∣∣
1− λ 5
−1 3− λ

∣∣∣∣ = 0, which is λ2−4λ+8 = 0. The roots are λ = 2±2i.

Eigenvectors. To find this for λ = 2− 2i, solve

[
1− (2− 2i) 5
−1 3− (2− 2i)

] [
a
b

]
=

[
0
0

]
.

The two equations are (−1 + 2i)a+ 5b = 0 and −a+ (1 + 2i)b = 0. These equations are still
multiples of each other (multiply the first by (1 + 2i)/5 to get the second) but it is maybe
more trouble than it’s worth to check this when the equations with complex numbers.

To pick a solution we set a equal to the coefficient of b in the equation and b equal to
minus the coefficient of a. Thus, a = 5 and b = 1− 2i is a solution. So the eigenvector for

λ = 2− 2i is

[
5

1− 2i

]
.

From this one eigenvector, we can find two solutions, using the formula given on the first
page. The solutions are

~Y1(t) = e−2t

[
5 cos(2t)

cos(2t) + 2 sin(2t)

]
~Y2(t) = e−2t

[
5 sin(2t)

−2 cos(2t) + sin(2t)

]
.

Notice that we do not need to find the eigenvector for the second complex eigen-
value. The general solution of the system is

~Y (t) = C1e
−2t

[
5 cos(2t)

cos(2t) + 2 sin(2t)

]
+ C2e

−2t

[
5 sin(2t)

−2 cos(2t) + sin(2t)

]
.
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Phase plane. The phase plane of this system is

–4

–2

0
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4
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Because the eigenvalues are complex instead of real, we get a spiral instead of straight lines
of solutions. The real part of the eigenvalue tells us whether the solutions spiral inwards
toward the origin or spiral outwards away from the origin. If the real part is negative,
they spiral inward; if positive, they spiral outward; if zero, then the solutions loop, staying
roughly the same distance from the origin. (Again, see the last page of the handout.)

For the final example, we consider a solution with a repeated eigenvalue,

dx

dt
= x+ y,

dy

dt
= −x+ 3y.

It has the form
d~Y

dt
= A~Y . with A =

[
1 1
−1 3

]
and ~Y (t) in the last example.

Eigenvalues. We solve

∣∣∣∣
1− λ 1
−1 3− λ

∣∣∣∣ = 0, which is λ2 − 4λ + 4 = 0. The roots λ = 2,

repeated.

Eigenvectors. First we find the eigenvector for λ = 2. Solve

[
1− 2 1
−1 3− 2

] [
a
b

]
=

[
0
0

]
.

The two equations are −a+ b = 0 and −a+ b = 0, so we happen to have exactly the same

equation. Pick a solution a = 1 and b = 1. So the eigenvector for λ = 2 is ~v1 =

[
1
1

]
and the

first solution in the fundamental set is

~Y1(t) =

[
1
1

]
e2t.

There is no second eigenvalue, so we have to find a second linearly independent solution
by finding another vector. We solve the system the system given on the first page, namely

[
1− 2 1
−1 3− 2

] [
a
b

]
=

[
1
1

]
.



5

This system is the equations −a + b = 1 and −a + b = 1. A simple solution is a = 0 and
b = 1. According to the forumla on the first page, the second solution is

~Y2(t) =

([
1
1

]
t+

[
0
1

])
e2t.

The general solution is

~Y (t) = C1

[
1
1

]
e2t + C2

([
1
1

]
t+

[
0
1

])
e2t.

Phase plane. The phase plane of this system is

–4

–2

0

2

4

y

–4 –2 2 4
x

Because we have only one eigenvalue and one eigenvector, we get a single straight-line

solution; for this system, on the line y = x, which are multiples of the vector

[
1
1

]
. Notice

that the system has a bit of spiral to it.
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