Mathematics for Engineering Sciences

Chapter 02: Matrix Analysis
Chapter Objective:

o Finding Eigenvalues and eigenvectors for an matrix A
o Solve linear systems AX = B using direct methods:

o Gauss-Elimination Method for any matrix A.

o Gauss-Jordan Method for any matrix A.

o Cholesky Method for symmetric positive-definite matrices.
e Solve linear systems AX = B using iterative methods:

o Jacobi Method

o Solve deferential linear systems

Introduction:

A large part of linear algebra revolves around solving and manipulating the simplest types of

equations: linear equations.

For example, the following are linear equations:

x+3y=4, 2xv—my=3, 4x+3 =06y,
Vix—y= 15, cos(l)x+sin(l)y=2, and x+y—-2z=7.

Often, we want to solve multiple linear equations

simultaneously, meaning we seek values for variables

x1,x2,...,xn such that several different linear equations are . | / s
satisfied simultaneously. This leads us to systems of linear 5‘““\-\\ /
equations. Geometrically, a solution to a system of linear | //
equations corresponds to the point of intersection of all the | ///& .\‘\\\ ey
lines, planes or hyperplanes defined by the linear equations /‘/ , , \ .

1 2

of the system. For example, consider the following linear

system composed of two equations.



The lines defined by these equations are shown in Figure 2.2. Based on this point, these lines
have a unique point of intersection, located at point (2; 1). The vector x = (2; 1) therefore appears to be
the unique solution to this system of linear equations. To find this solution algebraically, we could add
the two equations of the linear system to obtain the new equation 3y = 3, which tells us that y = 1. Putting

y = 1 back into the original equation x + 2y = 4, we obtain x = 2.
I. Matrix Representation of Systems:

Using matrices provides a compact way to work with linear systems. For a system:

((A11X1 + Q12X + ... + aypxn, = by
Ay1X1 + Ap%, + o e + a,,x, = b,
Lanlxl + apaXxy + o + appXn, = by
we can write it as a single matrix equation: AX =B
where:
a;; 0 e o 0

a; a, 0 ... 0
o A € My, is the coefficient matrix i

An1 Apy o o Qpp
X1
X3
e X =1 i |isthe variable vector.
xTL
by
b,
e B = : |is the constant vector.



II.1 Eigenvalues and Eigenvectors

If we allowed v=10
as an eigenvector
then every scalar A
would be an
eigenvalue
corresponding fo it.

This matrix does
change the
direction of any
vector that is not on
one of the two lines
displayed here.

Example.
Computing the
Eigenvalues and
Eigenvectors of a
Matrix

For a 2 x 2 matrix, the
determinant is simply

([t )i

IfA € M,,v#0isavector, A is a scalar, and Av = A v, then we say that v is an
eigenvector of A with corresponding eigenvalue A. Geometrically, this means
that A stretches v by a factor of A, but does not rotate it at all (see Figure A.4).
The set of all eigenvectors corresponding to a particular eigenvalue (together
with the zero vector) is always a subspace of R”, which we call the eigenspace
corresponding to that eigenvalue. The dimension of an eigenspace is called the
geometric multiplicity of the corresponding eigenvalue.

y y

AV2 = 3V2

Vi :(7]71)

AV] = —Vi

Figure: Matrices do not change the line on which any of their eigenvectors lie,
but rather just scale them by the corresponding eigenvalue. The matrix displayed
here has eigenvectors vi = (—1,1) and v, = (1,1) with corresponding eigenvalues
—1 and 3, respectively.

The standard method of computing a matrix’s eigenvalues is to construct
its characteristic polynomial p4(A) = det(A — AI). This function p4 really
is a polynomial in A by virtue of the permutation formula for the determinant
(i.e., Theorem A.1.4). Furthermore, the degree of p4 is n (the size of A), so
it has at most n real roots and exactly n complex roots counting multiplicity
(see the upcoming Theorem A.3.1). These roots are the eigenvalues of A, and
the eigenvectors v that they correspond to can be found by solving the linear
system (A — AI)v = 0 for each eigenvalue A.

Compute all of the eigenvalues and corresponding eigenvectors of the

matrix A= |1 2.
5 4

Solution:
To find the eigenvalues of A, we first compute the characteristic poly-

nomial ps(A) = det(A — Al):
2
4—2

=(1-2)(4—1)—10=2>—51—6.

pa(A) = det(A — AT) = det ( [1 ;)L

Setting this determinant equal to O then gives
A2—54-6=0 <= (A+1)(A-6)=0
A =6,

<~ A=-1 or



so the eigenvalues of A are A = —1 and A = 6. To find the eigenvectors
corresponding to these eigenvalues, we solve the linear systems (A+1)v =
0 and (A — 61)v = 0, respectively:

A = —1: In this case, we want to solve the linear system (A — A1)v =

(A+I)v =0, which we can write explicitly as follows:

2vi+2v, =0

S5vi+5v, =0

To solve this linear system, we use Gaussian elimination as

usual:
2 200 )4 5, [2 2]0
5 5/0|—2>]0 00|

It follows that v is a free variable and v, is a leading variable with
v1 = —v,. The eigenvectors corresponding to the eigenvalue A = —1
are thus the non-zero vectors of the form v = (—vp,v2) = vo(—1,1).

A = 6: Similarly, we now want to solve the linear system (A —
AI)v = (A —6I)v =0, which we can do as follows:

I E ]

5 =2/0|——>| 0 0|0
By muiltiplying (2/5,1) It follows that v, is a free variable and v; is a leading variable
by . WiO(;/OTLffllg T?‘ISZ with vi = 2v,/5. The eigenvectors corresponding to the eigenvalue
eigenvectors here A = 6 are thus the non-zero vectors of the form v= (2v,/5,v;) =
are the multiples of v (2/5,1).

(2,5), whichis a
slightly cleaner

answer. The multiplicity of an eigenvalue A as a root of the characteristic polynomial

is called its algebraic multiplicity, and the sum of all algebraic multiplicities
of eigenvalues of an n X n matrix is no greater than n (and it exactly equals
n if we consider complex eigenvalues). The following remarkable (and non-
obvious) fact guarantees that the sum of geometric multiplicities is similarly
no larger than n:

1) The geometric multiplicity of an eigenvalue is never larger than
its algebraic multiplicity.

1.3 Diagonalization

One of the primary reasons that eigenvalues and eigenvectors are of interest
is that they let us diagonalize a matrix. That is, they give us a way of de-
composing a matrix A € M, into the form A = PDP~!, where P is invertible
and D is diagonal. If the entries of P and D can be chosen to be real, we say
that A is diagonalizable over R. However, some real matrices A can only be
diagonalized if we allow P and D to have complex entries (see the upcoming
discussion of complex numbers in Appendix A.3). In that case, we say that A
is diagonalizable over C (but not over R).



Theorem

Characterization of
Diagonalizability

Example

Diagonalizing
a Matrix

We could have also

chosen v, = (2/5,1),

but our choice here
is prettier. Which
mulfiple of each
eigenvector we
choose does not
matter.

The inverse of a2 x2
matrix is simply

Suppose A € M,,. The following are equivalent:
a) A is diagonalizable over R (or C).
b) There exists a basis of R” (or C") consisting of eigenvectors of A.

¢) The sum of geometric multiplicities of the real (or complex) eigen-
values of A is n.

Furthermore, in any diagonalization A = PDP~!, the eigenvalues of A
are the diagonal entries of D and the corresponding eigenvectors are the
columns of P in the same order.

To get a feeling for why diagonalizations are useful, notice that computing
a large power of a matrix directly is quite cuambersome, as matrix multiplication
itself is an onerous process, and repeating it numerous times only makes it
worse. However, once we have diagonalized a matrix we can compute an
arbitrary power of it via just two matrix multiplications, since

P'p=1 pPlP=1

—— =
A= (pDP7")(PDP")(PDPT") = PD'P,
ktimes

and D* is trivial to compute (for diagonal matrices, matrix multiplication is the
same as entrywise multiplication).

Diagonalize the matrix A =

5 4

1 2] and then compute A>!4.

Solution:

We showed in Example A.1.1 that this matrix has eigenvalues A} = —1
and A, = 6 corresponding to the eigenvectors vi = (—1,1) and v, =
(2,5), respectively. Following the suggestion of Theorem A.1.5, we stick
these eigenvalues along the diagonal of a diagonal matrix D, and the
corresponding eigenvectors as columns into a matrix P in the same order:

A0 2_1 0 and PZ[Vl‘Vz]Z_I 2.

0o A 0 6 1 5

It is straightforward to check that P is invertible, so Theorem A.1.5 tells
us that A is diagonalized by this D and P.

To compute A3, we first compute P~! to be

p1_ L5 2
701 1)

We can then compute powers of A via powers of the diagonal matrix D in

D:




this diagonalization:

11— _1)\314 _
Since 314 is even, A =ppipt = b2p=n 0 > 2
(“1pPM =1, 711 5 0 g4l |1 1
1| 542.634 —242.631
T|-5+45.63% 245.62

We close this section with a reminder of a useful connection between
diagonalizability of a matrix and the multiplicities of its eigenvalues:

1 If a matrix is diagonalizable then, for each of its eigenvalues,
the algebraic and geometric multiplicities coincide.

113 Gauss -Elimination Method
11 3.1 Principle:

The Gauss-Elimination method transforms the original system AX = B into an equivalent

system A’X = B’ where A’ is an upper triangular matrix. This transformation is achieved using

elementary transformatis based on Perlis operators.

Il 3.2 Method Description:

Consider the system:

A1 Qi g3 by
az1 Gzz A3 = |b,
sy Az 0asz by

We form theaugmented matrix [A | B], which includes both the coefficients and the constants:

a1 Q12 Qg3 A1 Q12 W3 | 14
QAzy Gz Q3 a24 [A] Bl =|021 @2 az3| Qg4
Q31 Gz dzs Q31 Q3 Qg3 | QA3g

Step 1: Eliminate sub-diagonal elements in the first column

To make the elements below the pivot dq; zero, we use row transformations;
e Forrow2:

a
R2« R2——2R1
(2581
e Forrow 3:

a
R3<R3 °'R1

aii



Step 2: Eliminate the element below the diagonal in the second column

e  Modify row 3 using:

a
R3 < R3 ————=R2

At the end of these steps, the matrix will be in upper triangular form:

a11 A1z Qi3 A4
® @® @
[A,B] = azz a3 ] [ l [au ]

(2) @)
)
_ Q3q
o 3=
Step 3: Back-substitution Az

Solve the triangular system from the bottom up: _ (€)) 1)
gular sy P X, = (1) [asy — aj3 5]
22
S 1 [ o o a1

Par exemple, la matrice associee au systéme linéaire (A.1.1) est la suivante :

y+3zm3 ) _ 01 33
Ity— gm ] La matrice angmentée mrrespnndanteh 2 1 =111
" 1 1 1 |2

X+y+ ze=2 [A]B]

Ensuite, nous utilisons une méthode appelée élimmation de Gauss ou réduction de ligne, qui fonctionne
en utilisant I'ime des trois operations élémentaires suivantes sur les lignes pour simphfier au maximum cette
matrice :

- Ethanger deux lignes que nous notons R: — B
- Multiplier une ligne par une constante non nulle nous notons cR;.
- Ajouter ou soustraire une ligne  une autre ligne, multipliée par une constanta

gue nous notons B; + eR;.

En particulier, nous pouvons utiliser ces trois opérations £lémentaires sur les lignes pour metire n'importe
quelle matrice sous forme échelonnée rédwte (RREF), ce qui signifie qu'elle présents les trois propriétés swvantes

v Dans chaque ligne nen nulle, la premiére entrée non nulle (appelée entrée
principale) est a gauche de toutes les entrées principales en dessous d'elle.
v Chague entrée principale est égale a 1 et est la seule entrée non nulle dans sa

colonne. Par exemple, nous pouvons mettre la matrice sous forme échelonnée réduite en utilisant
la sequence d'opérations élémentaires smvante :

01 3|3 f1 1 1|27 1 1 1|2
200 =11 | &=k 12 ] =1 |1 | =3B | D =1 =3|-3
11 112 |01 3 |3] ¢ 1 3|3
. 1 1 127 Ry—Fs (1 0 =2|=1

i Y o 1 3|3 Byv=ry | D 1 3 3

_l] 1 3 3_ ’_ﬂ 0 0 0

L'une des caractéristiques utiles de la forme échelonnée réduite est que les solutions du systéme linéaire
correspondant peuvent étre lues directement. Par exemple, si nous interprétons la forme échelonnée réduite ci-
dessus comme un systéme linéaire, la derniére ligne dit simplement Ox + Oy + 0z = 0 (nous l'ignorons donc), la
deuxiéme ligne dit que y + 3z = 3, et la premiére ligne dit que x - 2z =-1. 5i nous déplagons simplement le terme

"z" dans chacune de ces équations de 'antre cdté, nous voyons que chaque solution de ce systéme linéaire a x =
2z-1ety=3 -3z, ol z est arbifraire (nous appelons donc z une variable libre et x et y des variables principales).



I1. 3.3 LU Factorization

Theorem A matrix A is regular if and only if it can be factored
A=LU,

where L is a lower unitriangular matrix, having all 1’s on the diagonal, and U is upper
triangular with nonzero diagonal entries, which are the pivots of A. The nonzero off-
diagonal entries [;; for ¢ > j appearing in L prescribe the elementary row operations that
bring A into upper triangular form; namely, one subtracts [;; times row j from row ¢ at
the appropriate step of the Gaussian Elimination process.

In practice, to find the LU factorization of a square matrix A, one applies the regular
Gaussian Elimination algorithm to reduce A to its upper triangular form U. The entries
of L can be filled in during the course of the calculation with the negatives of the multiples
used in the elementary row operations. If the algorithm fails to be completed, which
happens whenever zero appears in any diagonal pivot position, then the original matrix is
not regular, and does not have an LU factorization.

2 1 1
Example Let us compute the LU factorization of the matrix A= |4 5 2
2 =20

Applying the Gaussian Elimination algorithm, we begin by adding —2 times the first row
to the second row, and then adding —1 times the first row to the third. The result is the

2 1 1
matrix | 0 3 0 |. The next step adds the second row to the third row, leading to the
0 -3 -1 5 1 1
upper triangular matrix U = | 0 3 0 |, whose diagonal entries are the pivots. The
0 0 -1
1 0 0
corresponding lower triangular matrix is L = \2 1 0 ;; its entries lying below the
1 -1 1

main diagonal are the negatives of the multiples we used during the elimination procedure.
For instance, the (2,1) entry indicates that we added — 2 times the first row to the second
row, and so on. The reader might wish to verify the resulting factorization

2 1 1 1 0 0 2 1 1
4 5 2| =A=LU=|2 1 0 0 3 0
2 -2 0 1 -1 1 0 0 -1

I1.4 Gauss Jordan Method
The Gauss-Jordan elimination method extends the Gauss method by further transforming the matrix into reduced row
echelon form (RREF).
Steps of Gauss-Jordan Method:

1. Form the augmented matrix [A| B].

2. Perform row operations to make each pivot equal to 1 and ensure all elements above and below the pivot are zero.
3. Continue until the matrix is in RREF.
The final form allows direct reading of the solutions. If the matrix is inconsistent (a row of zeros except for the last element),

the system has no solutions.



o 1 DD
——y G 1 0

a 01

5
4
—2

A partir de cette matrice finale, nous pouvons lire la solution du systéme. Elle est :

I;r=3, y=4, z=—2.|

Example NOI :
Résoudre le systéme smivant en utilisant la méthode d'élimination de Gauss-Jerdan.

. i B o 9 o P,
T+2y—3z=2 La matrice augmentse 1 - 3 2
b+ 3y —9z =6 commespondante 6 3 -9146
- * L7 14 21|13
Tw+ 1dy — 21z = 13
v [418]
Effectnons maimtenant des opérations sur les lignes de cette matrice augmentse.
12 3|27 [1 2 3| 2
6 3 —-9|6 | =2""]0 -9 9|6
T 14 21|13 L7 14 21| 13

Ha—TH)
—

Nous obtenons une ligne dont les éléments sont tous nuls a I'exception du demier a droite. Par conséquent,
nous concluons que le systéme d'équations est inconsistant, ¢'est-a-dire, il n'a pas de solutions.

1.5 Cholesky Decomposition
For symmetric positive-definite matrices A, the Cholesky decomposition is used.
I1.5.1 Cholesky Theorem:
If A is symmetric and positive-definite, it can be decomposed as:
A=LLT

where L is a lower triangular matrix.



I1.5.2 Method:

1. Decompose A into LLT

ajp A2 e e A1n Li 0 .. . 0 [lll lLi, . .. lln]

[a21 Az e e a2n] [121 b, 0 .. Ol [0 1 I3 lon |

A=LL' — | i |: i I 2 I
| | | |

l ans anz oo a b g1, Ll lo oo L]

= YD L i=l—n
j=1—n

2. Solve LY = B for Y (using forward substitution).

1

Vi = l_u [bl l_l ll]y]] (l = 1,...,7?,)

3. Solve LTX =Y for X (using backward substitution).

1
xi=l—ii[yi— i= l+1ll]x]] (i=nn—-1,..1)

11.6 Iterative Methods
11.6.1 Jacobi Method

The Jacobi method iteratively finds the solution to AX = B. It constructs a sequence X ¥) that converges

to the solution X.

I1.1.1 Convergence Condition:

The Jacobi method converges if the matrix A is diagonally dominant (i.e.,|a;| > Y. laij|).
I1.1.2 Jacobi Algorithm:

1
xlgx+1) - —(b,- z a,,x](k) _
Qii i#j

I1.1.3 Stopping Criteria:

The iteration stops when:

e+ — x®]
X (k+1)

<e§€,

where € is a small tolerance value.



11.6 solving ODEs (ordinary differential equations) linear systems

The key to solving linear ODES systems is to find eigenvalues and eigenvectors for the
matrix.
If A is a square matrix, then we say A is an eigenvalue for A if there is a non-zero vector v
so that AU = \J. We call ¥ an eigenvector for A and \.
How to find eigenvalues. Rewriting the equation above, (A — \I)v = 0, where I is
the identity matrix. For any matrix B, BvY = 0 for a non-zero vector ¥ if and only if the
determinant of B is zero (this is the key fact about matrices mentioned earlier).

Find eigenvalues for A by solving det(A — X\I) = 0 for A.

How to find eigenvectors. Given an eigenvalue for A, say Ao, then we can plug in \g
into the matrix A — A\g/, and this is now a matrix of numbers.

Find eigenvectors for A and \g by solving (A — Aol )v = 0 for non-zero .

There will be more than one solution, so pick a simple solution.

Solutions to linear systems. The solutions can have one of three forms, depending on
the eigenvalues of the matrix. The three possibilities are 1) distinct real roots, 2) complex
roots, and 3) a repeated real root.

For 1), if the eigenvalues are A; and \g, with eigenvectors ¢, and i, then the solutions
are

Yi(t) = 0, Ya(t) = the?h

For 2), if the eigenvalues are a + bi andr g z% then the eigenvectors are going to be

complex numbers, say U1 :d{ N i 5]

Then, by taking real and imaginary parts, the solutions are
a cos(bt) — B sin(bt) Vy(t) = e B cos(bt) + asin(bt)
7 cos(bt) — & sin(bt) S d cos(bt) + ysin(bt) |
If you want to write the solutions in terms of complex numbers, you can always write
Yi(t) = 6yl Yo (t) = el but the first form of the solution is better, as it
involves only real numbers.

For 3), if the eigenvalue is A;, with an eigenvector #;, then the solutions are

Yi(t) = theMt,  Ya(t) = (Ght + 1) e,

where ¥, is a solution to (A — A1)ty = ;.

ﬁ(t) — ot

Examples. Next, we carry out this process for three examples, to show how it works in
each case. Consider the system

d d
—x:2x+2y, Y

i I 3z +vy.

3 1l Then we have — = AY.

To write this as a matrix, let Y () = [x(t)] and A = [ o

2t 2 2} dy



- 2
3 1—A

Eigenvalues. We solve ‘ = 0, which is A> — 3\ — 4 = 0. The roots are A = —1

and A\ = 4.

FEigenvectors. First we find the eigenvector for A = 4. Solve [2 g 4 1 E 4 Z = {8} .
The two equations are —2a + 2b = 0 and 3a — 3b = 0. It will always be true that
the two equations are multiplies of each other. If this does not happen, then
you’ve made a mistake somewhere. Pick a simple solution, like ¢ = 1 and b = 1. So
the eigenvector for A =4 is v; = 1 .

Next, we find the eigenvector for A = —1. Solve {2 - (=1 2 } {a} = {O} .

3 L—(=1)] [b 0
Here, the two equations are 3a + 2b = 0 and 3a + 2b = 0, so the equations are not just
multiples, but are identical. A simple solution is a = —2 and b = 3. So the eigenvector for
A= —lis i = {_2].
3

Thus, the general solution is Y (¢) = C; {ﬂ et +Cy [ 3
functions, x(t) and y(t), we have z(t) = Ce? — 2Cye™" and y(t) = —Cie* + 3Cre .

] e~ *. In terms of the component

Phase plane. The phase plane of this system is

k\\\\\%/{k//////////
I V\NN~N—~—— A~~~ ~
[ NN\~
/NN~~~
//ZLL\\EX///////////
/)] IN\NSN—=BA
/////ZL\\%//////////
LSS NN ST
L L L NS T
LS LA L LN T T T TTT
_ﬁy///g///mW////////f
DD N RPN A A A
LSS S S S S SN T T
S S S S S S S A—~~N T T T T
////////4?/ﬁ\\W7////
S S S s e~ N AN T T
S S S AN AN ] ] ]
S A NN ]
LS A — NN )

Notice the line that is multiples of the vector that is, the line y = x. On this line,

1

]
solutions move straight out, away from the origin. This is because the eigenvector gives us
a straight line of solutions through the origin on the phase plane. Moreover, because the
associated eigenvalue is positive, the solutions move away from the origin. (See the picture

on the last page.)



3

The other eigenvector, [_32} , also gives us a straight line of solutions through the origin,

now on the line y = —3z/2. Because the eigenvalue is negative, the solutions more towards
the origin on this line.

If the two eigenvalues are positive and distinct, then solutions move away from the origin
along both straightline solutions. If the two eigenvalues are negative and distinct, then
solutions move towards the origin along both straightline solutions. (See the pictures at the
end of the handout.)

Next, we consider a system which will turn out to have complex eigenvalues,

dx dy
d—t—x—l—5y, %——x%—?)y.
v oo 1 5 s
It has the form i AY. with A = 1 3 and Y (f) in the last example.
. -A 5 1. a9 .
Eigenvalues. We solve 1 3_\~T 0, which is A*—4A+8 = 0. The roots are A = 2+2.
: . B . 1—(2—2i) 5 al |0
FEigenvectors. To find this for A\ = 2 — 2i, solve { T 3 (2— 22)} {b} = {0} )

The two equations are (—1+2i)a+5b = 0 and —a+ (1+2i)b = 0. These equations are still
multiples of each other (multiply the first by (1 4 2i)/5 to get the second) but it is maybe
more trouble than it’s worth to check this when the equations with complex numbers.

To pick a solution we set a equal to the coefficient of b in the equation and b equal to
minus the coefficient of a. Thus, a =5 and b = 1 — 2 is a solution. So the eigenvector for

. 5

A=2—21is 1— 9]

From this one eigenvector, we can find two solutions, using the formula given on the first
page. The solutions are

—

Vi) = 2 5 cos(2t) 5 sin(2t) } ‘

[cos(Qt) 42 Siﬂ(%)} Va(t) = ™ {—2 cos(2t) + sin(2t)

Notice that we do not need to find the eigenvector for the second complex eigen-
value. The general solution of the system is

= o 5 cos(2t o 5 sin(2t
Y(t)=Ce [cos(Qt) +(231)n(2t)] +Cse [—2 cos(2t)(+ lin(?t)] '



4

Phase plane. The phase plane of this system is

(g g
ST TS T AT S T T e

\
\
\
\
\
\
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S 77
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e S S S
— e A S
——e e A S

Because the eigenvalues are complex instead of real, we get a spiral instead of straight lines
of solutions. The real part of the eigenvalue tells us whether the solutions spiral inwards
toward the origin or spiral outwards away from the origin. If the real part is negative,
they spiral inward; if positive, they spiral outward; if zero, then the solutions loop, staying
roughly the same distance from the origin. (Again, see the last page of the handout.)

For the final example, we consider a solution with a repeated eigenvalue,

dx dy
A
v o 11 e
It has the form o= AY. with A = 1 3 and Y (¢) in the last example.
: I1-Xx 1 .o
FEigenvalues. We solve 13-\ = 0, which is A* —4X +4 = 0. The roots A = 2,

repeated.

FEigenvectors. First we find the eigenvector for A = 2. Solve {1__12 3 i 9 Z = {8}
The two equations are —a + b =0 and —a + b = 0, so we happen to have exactly the same
equation. Pick a solution a = 1 and b = 1. So the eigenvector for A = 2 is 07 = [ﬂ and the

first solution in the fundamental set is

There is no second eigenvalue, so we have to find a second linearly independent solution
by finding another vector. We solve the system the system given on the first page, namely

57 L L



5

This system is the equations —a +b =1 and —a + b = 1. A simple solution is a = 0 and
b = 1. According to the forumla on the first page, the second solution is

o ([Jo- )~

The general solution is

Phase plane. The phase plane of this system is

1 111711071747 77777/7777
[ A A R A A A A A A
1 V1171147777777 777
1 1117171777777 777
AR %7 AV A
AR % 1 {17 7 7 /7 77—
AN %7,/////////)
NANANANANANNY T T Y e
NNANNNAAN YT 7 e
\\‘\\\\Q\ R
R IR D NINE NN
\Mﬁe/////A/ka&N\\\\
s L L] &L\\\\\
s LV
A A A A A Ll
P A A A Ay |
VDA ANV k
s LLL

Because we have only one eigenvalue and one eigenvector, we get a single straight-line
. . . : . 1 .
solution; for this system, on the line y = x, which are multiples of the vector [1] . Notice

that the system has a bit of spiral to it.
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