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3.1. Introduction  

Generally, all data in a computer is represented within computer components in binary 

form. It is a representation with two states symbolized by 1 (current) and 0 (no current). 

Therefore, coding is necessary to convert symbolic data from their external (usual) form 

to the binary form (0 and 1) usable by the computer.  

3.2. Binary coding  

a. Pure binary coding 

It is the binary code without coding, in other words which results directly from the 

general principle of numbering. It is the natural code used in digital systems 

(computer, etc.). The following table (Table 3.1) shows the pure binary code for an 

example of a 4-bit word (A3 A2 A1 A0): 

Valeur décimal A3  A2  A1 A0 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

11 1 0 1 1 

12 1 1 0 0 

13 1 1 0 1 

14 1 1 1 0 

15 1 1 1 1 

 

Table 3.1: Pure binary coding. 

b. Reflected binary code (or GRAY code) 

Gray's code was established to avoid transition problems when changing from one 

word to the next word. In the sequential order of the code, there is only one bit that 

changes between two cursive words which are, therefore, adjacent. Additionally, this 
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code is cyclical. The following table (Table 3.2) shows the 4-bit Gray code. 

Decimal value Gray code  Decimal value Gray code  

0 0000 8 1100 

1 0001 9 1101 

2 0011 10 1111 

3 0010 11 1110 

4 0110 12 1010 

5 0111 13 1011 

6 0101 14 1001 

7 0100 15 1000 

Table 3.2: GRAY code example. 

Example : on 4 bits 

   

Binary 0 0 1 0 0 1 1 1 

Gray 0 0 1 1 0 1 0 0 

To obtain the Gray code from the binary code we do the following operations: 

- The first bit remains as it is.  

- To obtain the other bits, for each bit we add the previous bit. 

- If the result of the sum is '10', we keep the '0' and reject the '1'. 

c. The BCD code (Binary Coded Decimal) 

The BCD code was mainly used in the early days of calculating machines. It is 

sometimes still used in systems that display digital information to the user or for very 

simple systems that handle money. The BCD code encodes the number to be 

represented in a very direct way. Each digit of the number is encoded on 4 bits. 

Binary possibilities 10 to 15 are not used. The following table (Table 3.3) shows the 

DCB code. 
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Decimal BCD 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

Table 3.3 : BCD code. 

Example : 

Represent (863)10 using a BCD code: 

8 6 3 

1000 0110 0011 

(863)10=(1000 0110 0011)BCD 

d. Code exceeds by three 

 Each decimal digit is separately encoded into its binary equivalent plus three 

(3). 

 

The following table (Table 3.4) shows the Excess-3 code. 
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Decimal BCD Excess -3 

0 0000 0011 

1 0001 0100 

2 0010 0101 

3 0011 0110 

4 0100 0111 

5 0101 1000 

6 0110 1001 

7 0111 1010 

8 1000 1011 

9 1001 1100 

Table 3.4 : Excess -3 code 
Exemple : 

(129)10 = (0001 0010 1001)BCD 

                      + 11   + 11  + 11                 

                = (0100 0101 1100)Excesst-3  

3.3. Character representation 

For better exploitation by computers, characters must also be represented like 

numbers. Generally, only bits are used for this representation in the memory boxes. 

So, a numerical code is associated with each character. In the following, the most 

used character coding systems are shown. 

a. EBCDIC code (Extended Binary Coded Decimal Internal Code) 

EBCDIC stands for Extended Binary Coding Decimal Interchange Code. IBM invented this code 

to extend the binary coded decimal that existed at that time. All IBM computers and devices 

use this code. It is an 8-bit code and therefore can accommodate 256 characters. Below, some 

characters coded with the EBCDIC Code. 



Teacher : Taouche Cherif 
 

6 

Table 3.5 : EBCDIC character table 

 

b. ASCII code (American Standard Code for Information Interchange) 

The following table (Table 3.6) of the ASCII code shows the numerical equivalents of 

upper and lower case characters of the Latin alphabet, numbers and some punctuation 

marks. Used at the time (1960s) in the exchange of data between terminals and 

computers. A 7-bit code is required to represent one hundred and twenty-eight different 

combinations. Each character is encoded on 1 byte by two hexadecimal symbols. The 

column number gives the most significant hexadecimal symbol and the row number the 

least significant symbol. 
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Table 3.6: ASCII character table 

c. UTF : variable length coding  

In UTF, each character is encoded on one, two or three bytes. All characters in the 

ASCII code are encoded in single-byte UTF with the same value as in ASCII. In contrast, a 

byte that contains a value greater than 127 announces one character over two or three 

bytes and UTF is constructed in such a way that all of these bytes contain a code greater 

than 127. This mechanism ensures backward and forward compatibility with the ASCII. 

 

3.4. Representation of numbers  

3.4.1. Integer numbers  

There are two types of integers: 

 Unsigned integers (positive) ; 

 Signed integers (positive or negative). 

Generally, there are three methods for representing negative numbers: 

 Sign/Absolute value; 

 1's complement (restricted complement); 
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 2's complement (true complement). 

a. Unsigned representation 

A natural number is a positive integer or zero. The choice to make (i.e. the number of 

bits to use) depends on the range of numbers you wish to use. To encode natural 

integers between 0 and 255, we will only need 8 bits (one byte) because 28=256. 

Generally speaking, n-bit coding can be used to represent natural integers between 0 

and (2n – 1).  

To represent a natural integer after having defined the number of bits on which it is 

coded, simply place each bit in the binary cell corresponding to its binary weight from 

right to left, then “fill” the unused bits by zeros.  

b. Representation with sign and absolute value 

Dedicate one bit, the most significant, to represent the sign. The range of possible values 

to represent, for an n-bit word, goes from – (2n-1-1) to +(2n-1-1) and there are two 

possible representations for the value 0. 

Example : 

+26 =        0 0011010 

     Sign bit (+) Representation of 26 

-26 =        1 0011010 

 Sign bit (-) Representation of 26 

 

c. 1's complement (or restricted complement) 

In a 1's complement code, we obtain the negative code of a number by 

complementing the code word of this number, that is to say by inverting all the bits. 

With an n-bit word, it is possible to represent the values – (2n-1-1) to +(2n-1-1) and there 

are two possible representations for the value 0.  

Example :    (-26)10=( ?)1’scomplement sur 8 bits. 

Positive number :                     (+26)10 = (00011010) 1’s complement 

1’s complement :                     (-26)10  = (11100101)1’s  complement 
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d. 2's Complement (or True Complement)  

In a 2's complement code, we obtain the negative code of a number by completing the 

complement of the code word of this number and adding 1 to it without retaining. With 

an n-bit word, it is possible to represent the values – (2n-1) to +(2n-1-1) and there is only 

one possible representation for the value 0. 

Example : 

Positive number:                      +26  =                           00011010 

Inversion                           11100101 

Adding 1:                           +                1 

Negative number :                      -26 =                           (11100110)2’scomplement 

The 2's complement code is very important since it allows you to perform arithmetic 

operations with signs without having to worry about it.  

Example : 

7-4 = 7 + TC(4) = 0111 + TC(0100) = 0111 + (1011+1) = 10011 = 0011 = (+3)10 

                                                                                       The withholding must be rejected 

 

 

Decimal Binary 2’s complement 

   127    01111111       01111111 

   - 26  - 00011010 +(-00011010) 

= 101 = 01100101       01111111 

  + 11100101 

  = 101100101c-à-2 = (101)10 

The hold is rejected 
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Decimal Binary 2’s complément 

        26   00011010      00011010 

    -127 - 01111111 +(-01111111) 

= -101 We can't.       00011010 

  + 10000001 

  = 100110111’s C  

The result is negative since 

the most significant bit is “1”. 

We must find the positive 

value.  

Subtract the value 1          10011011 

-              1 

We do the reverse.       = 10011010 

We convert to decimal          01100101 = (+101)10 

Then the decimal result is (10011011)2’s C = (-101)10 

 

2's complement coding allows the representation of negative numbers used in 

calculators. The sign is the most significant bit: 0 for the + sign (compatible with 

unsigned coding) and 1 for the negative sign (-). 

 

Decimal 2’s Complement Decimal 2’s Complement2 

+7 0111 -7 1001 

+6 0110 -6 1010 

+5 0101 -5 1011 

+4 0100 -4 1100 
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+3 0011 -3 1101 

+2 0010 -2 1110 

+1 0001 -1 1111 

+0 0000 -0 0000 

 

 

4.1. Fractional numbers: 

There are two representations used to represent fractional numbers in calculators:  

 fixed point coding; 

 floating point coding.  

Generally, a fractional number is a number that has two parts::  

 An integer value; 

 A fractional value.  

The two parts are separated by a comma which is placed to the right of the least 

significant digit of the integer part (unit weight digit). 

 

 

a. Fixed point 

At the machine level, computers do not have commas. The numbers are considered as 

integers; it is left to the programmer to move the decimal point (virtual comma). 

Depending on the number of bits, we cannot represent the largest ones. The Binary 

number system is a weighted system; each bit of a binary number has a weight 

depending on its rank (Numbering and representation of numbers).  

 

Example : 

Let the binary number N = (1 0 0 1.0 1 0 0 1)2  
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Fixed-point coding 

Integer part: Fractional part: 

1×23+0×22+0×21+1×20 

                   8+1 

                     9 

0 ×2-1+1×2-2+0×2-3+0×2-4+1×2-5 

                     0,25+0,125 

                         0,357 

(1001.01001)2 = (9,375)10 

 

 

b. Floating point (IEEE 754 standard) 

Floating numbers make it possible to represent, in an approximate manner, a part of the 

real numbers. The value of a real cannot be too large or too precise. It depends on the 

number of bits used (usually 32 or 64 bits).  

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-

point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers 

(IEEE). The binary encoding is of the following form: 

 

                                        S            E        M 

 

S : sign ; E : Exponent (signed) ;    M : fractional part of the mantissa (unsigned) 

 

 We call scientific notation each number written in the form 1,M 2, where:  

 M is called the mantissa of the number ; 

 E is the exponent. 

 As the mantissa always begins with an integer part equal to 1, we do not write it 

and we only express the fractional part, M, called “pseudo-mantissa”. 

The IEEE 754 standard representation defines two main types of floating point numbers, 

32-bit single precision and 64-bit double precision. 

 Single precision numbers have a 23-bit pseudo-mantissa (corresponding to 

negative powers of 2), an 8-bit exponent and a sign bit (Table.3.7) : 
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1 bit 8 bits 23 bits -126 +127 

Sign Exponent Pseudo 

Machine 

E min E max 

 

Table 3.7: The simple precision 

Example 1 : 

We want to represent 278 in simple precision IEEE 754 format.  

We start by writing 278 in base 2, and then we put it in scientific form.  

(278)10 = (100010110)2= 1,0001011 28.  

So we have:  

 S = 0 because 278 is positive.  

 Eb =E + 127 = 8 + 127 = (135)10 = (10000111)2 in base 2 on 8 bits.  

 M = 00010110000000000000000.  

We obtain the following representation: 

 

1 bit  8 bits  23 bits  

Sign Exponenet  Pseudo Machine  

0 1000111 00010110000000000000000 

 

Example 2 : 

We want to represent -6.53125 in simple-precision IEEE 754 format.  

We start by writing 6.53125 in base 2, and then we put it in scientific form.  

(6,53125)10 = (110,10001)2 = 1,1010001 22.  

So we have:  

 S = 1 because -6,53125 is negative.  

 Eb =E + 127 = 2 + 127 = (129)10 = (10000001)2 in base 2 on 8 bits.  

 M = 10100010000000000000000.  
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We obtain the following representation: 

1 bit  8 bits  23 bits  

Sign Exponent  Pseudo Machine  

1 10000001 10100010000000000000000 

 

 Double-precision numbers have a 52-bit pseudo-mantissa, an 11-bit exponent, 

and a sign bit (Table 3.8). 

 

1 bit  11 bits  52 bits  -1022 +1023  

Sign Exponent Pseudo Machine E min  E max 

 

Table 3.8: The double precision 


