
Teacher : Taouche Cherif

1

CHAPTER 3 :

Information representation

Teacher : Taouche Cherif

2

3.1. Introduction

Generally, all data in a computer is represented within computer components in binary

form. It is a representation with two states symbolized by 1 (current) and 0 (no current).

Therefore, coding is necessary to convert symbolic data from their external (usual) form

to the binary form (0 and 1) usable by the computer.

3.2. Binary coding

a. Pure binary coding

It is the binary code without coding, in other words which results directly from the

general principle of numbering. It is the natural code used in digital systems

(computer, etc.). The following table (Table 3.1) shows the pure binary code for an

example of a 4-bit word (A3 A2 A1 A0):

Valeur décimal A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Table 3.1: Pure binary coding.

b. Reflected binary code (or GRAY code)

Gray's code was established to avoid transition problems when changing from one

word to the next word. In the sequential order of the code, there is only one bit that

changes between two cursive words which are, therefore, adjacent. Additionally, this

Teacher : Taouche Cherif

3

code is cyclical. The following table (Table 3.2) shows the 4-bit Gray code.

Decimal value Gray code Decimal value Gray code

0 0000 8 1100

1 0001 9 1101

2 0011 10 1111

3 0010 11 1110

4 0110 12 1010

5 0111 13 1011

6 0101 14 1001

7 0100 15 1000

Table 3.2: GRAY code example.

Example : on 4 bits

Binary 0 0 1 0 0 1 1 1

Gray 0 0 1 1 0 1 0 0

To obtain the Gray code from the binary code we do the following operations:

- The first bit remains as it is.

- To obtain the other bits, for each bit we add the previous bit.

- If the result of the sum is '10', we keep the '0' and reject the '1'.

c. The BCD code (Binary Coded Decimal)

The BCD code was mainly used in the early days of calculating machines. It is

sometimes still used in systems that display digital information to the user or for very

simple systems that handle money. The BCD code encodes the number to be

represented in a very direct way. Each digit of the number is encoded on 4 bits.

Binary possibilities 10 to 15 are not used. The following table (Table 3.3) shows the

DCB code.

Teacher : Taouche Cherif

4

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Table 3.3 : BCD code.

Example :

Represent (863)10 using a BCD code:

8 6 3

1000 0110 0011

(863)10=(1000 0110 0011)BCD

d. Code exceeds by three

 Each decimal digit is separately encoded into its binary equivalent plus three

(3).

The following table (Table 3.4) shows the Excess-3 code.

Teacher : Taouche Cherif

5

Decimal BCD Excess -3

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

Table 3.4 : Excess -3 code
Exemple :

(129)10 = (0001 0010 1001)BCD

 + 11 + 11 + 11

 = (0100 0101 1100)Excesst-3

3.3. Character representation

For better exploitation by computers, characters must also be represented like

numbers. Generally, only bits are used for this representation in the memory boxes.

So, a numerical code is associated with each character. In the following, the most

used character coding systems are shown.

a. EBCDIC code (Extended Binary Coded Decimal Internal Code)

EBCDIC stands for Extended Binary Coding Decimal Interchange Code. IBM invented this code

to extend the binary coded decimal that existed at that time. All IBM computers and devices

use this code. It is an 8-bit code and therefore can accommodate 256 characters. Below, some

characters coded with the EBCDIC Code.

Teacher : Taouche Cherif

6

Table 3.5 : EBCDIC character table

b. ASCII code (American Standard Code for Information Interchange)

The following table (Table 3.6) of the ASCII code shows the numerical equivalents of

upper and lower case characters of the Latin alphabet, numbers and some punctuation

marks. Used at the time (1960s) in the exchange of data between terminals and

computers. A 7-bit code is required to represent one hundred and twenty-eight different

combinations. Each character is encoded on 1 byte by two hexadecimal symbols. The

column number gives the most significant hexadecimal symbol and the row number the

least significant symbol.

Teacher : Taouche Cherif

7

Table 3.6: ASCII character table

c. UTF : variable length coding

In UTF, each character is encoded on one, two or three bytes. All characters in the

ASCII code are encoded in single-byte UTF with the same value as in ASCII. In contrast, a

byte that contains a value greater than 127 announces one character over two or three

bytes and UTF is constructed in such a way that all of these bytes contain a code greater

than 127. This mechanism ensures backward and forward compatibility with the ASCII.

3.4. Representation of numbers

3.4.1. Integer numbers

There are two types of integers:

 Unsigned integers (positive) ;

 Signed integers (positive or negative).

Generally, there are three methods for representing negative numbers:

 Sign/Absolute value;

 1's complement (restricted complement);

Teacher : Taouche Cherif

8

 2's complement (true complement).

a. Unsigned representation

A natural number is a positive integer or zero. The choice to make (i.e. the number of

bits to use) depends on the range of numbers you wish to use. To encode natural

integers between 0 and 255, we will only need 8 bits (one byte) because 28=256.

Generally speaking, n-bit coding can be used to represent natural integers between 0

and (2n – 1).

To represent a natural integer after having defined the number of bits on which it is

coded, simply place each bit in the binary cell corresponding to its binary weight from

right to left, then “fill” the unused bits by zeros.

b. Representation with sign and absolute value

Dedicate one bit, the most significant, to represent the sign. The range of possible values

to represent, for an n-bit word, goes from – (2n-1-1) to +(2n-1-1) and there are two

possible representations for the value 0.

Example :

+26 = 0 0011010

 Sign bit (+) Representation of 26

-26 = 1 0011010

 Sign bit (-) Representation of 26

c. 1's complement (or restricted complement)

In a 1's complement code, we obtain the negative code of a number by

complementing the code word of this number, that is to say by inverting all the bits.

With an n-bit word, it is possible to represent the values – (2n-1-1) to +(2n-1-1) and there

are two possible representations for the value 0.

Example : (-26)10=(?)1’scomplement sur 8 bits.

Positive number : (+26)10 = (00011010) 1’s complement

1’s complement : (-26)10 = (11100101)1’s complement

Teacher : Taouche Cherif

9

d. 2's Complement (or True Complement)

In a 2's complement code, we obtain the negative code of a number by completing the

complement of the code word of this number and adding 1 to it without retaining. With

an n-bit word, it is possible to represent the values – (2n-1) to +(2n-1-1) and there is only

one possible representation for the value 0.

Example :

Positive number: +26 = 00011010

Inversion 11100101

Adding 1: + 1

Negative number : -26 = (11100110)2’scomplement

The 2's complement code is very important since it allows you to perform arithmetic

operations with signs without having to worry about it.

Example :

7-4 = 7 + TC(4) = 0111 + TC(0100) = 0111 + (1011+1) = 10011 = 0011 = (+3)10

 The withholding must be rejected

Decimal Binary 2’s complement

 127 01111111 01111111

 - 26 - 00011010 +(-00011010)

= 101 = 01100101 01111111

 + 11100101

 = 101100101c-à-2 = (101)10

The hold is rejected

Teacher : Taouche Cherif

10

Decimal Binary 2’s complément

 26 00011010 00011010

 -127 - 01111111 +(-01111111)

= -101 We can't. 00011010

 + 10000001

 = 100110111’s C

The result is negative since

the most significant bit is “1”.

We must find the positive

value.

Subtract the value 1 10011011

- 1

We do the reverse. = 10011010

We convert to decimal 01100101 = (+101)10

Then the decimal result is (10011011)2’s C = (-101)10

2's complement coding allows the representation of negative numbers used in

calculators. The sign is the most significant bit: 0 for the + sign (compatible with

unsigned coding) and 1 for the negative sign (-).

Decimal 2’s Complement Decimal 2’s Complement2

+7 0111 -7 1001

+6 0110 -6 1010

+5 0101 -5 1011

+4 0100 -4 1100

Teacher : Taouche Cherif

11

+3 0011 -3 1101

+2 0010 -2 1110

+1 0001 -1 1111

+0 0000 -0 0000

4.1. Fractional numbers:

There are two representations used to represent fractional numbers in calculators:

 fixed point coding;

 floating point coding.

Generally, a fractional number is a number that has two parts::

 An integer value;

 A fractional value.

The two parts are separated by a comma which is placed to the right of the least

significant digit of the integer part (unit weight digit).

a. Fixed point

At the machine level, computers do not have commas. The numbers are considered as

integers; it is left to the programmer to move the decimal point (virtual comma).

Depending on the number of bits, we cannot represent the largest ones. The Binary

number system is a weighted system; each bit of a binary number has a weight

depending on its rank (Numbering and representation of numbers).

Example :

Let the binary number N = (1 0 0 1.0 1 0 0 1)2

Teacher : Taouche Cherif

12

Fixed-point coding

Integer part: Fractional part:

1×23+0×22+0×21+1×20

 8+1

 9

0 ×2-1+1×2-2+0×2-3+0×2-4+1×2-5

 0,25+0,125

 0,357

(1001.01001)2 = (9,375)10

b. Floating point (IEEE 754 standard)

Floating numbers make it possible to represent, in an approximate manner, a part of the

real numbers. The value of a real cannot be too large or too precise. It depends on the

number of bits used (usually 32 or 64 bits).

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-

point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers

(IEEE). The binary encoding is of the following form:

 S E M

S : sign ; E : Exponent (signed) ; M : fractional part of the mantissa (unsigned)

 We call scientific notation each number written in the form 1,M 2, where:

 M is called the mantissa of the number ;

 E is the exponent.

 As the mantissa always begins with an integer part equal to 1, we do not write it

and we only express the fractional part, M, called “pseudo-mantissa”.

The IEEE 754 standard representation defines two main types of floating point numbers,

32-bit single precision and 64-bit double precision.

 Single precision numbers have a 23-bit pseudo-mantissa (corresponding to

negative powers of 2), an 8-bit exponent and a sign bit (Table.3.7) :

Teacher : Taouche Cherif

13

1 bit 8 bits 23 bits -126 +127

Sign Exponent Pseudo

Machine

E min E max

Table 3.7: The simple precision

Example 1 :

We want to represent 278 in simple precision IEEE 754 format.

We start by writing 278 in base 2, and then we put it in scientific form.

(278)10 = (100010110)2= 1,0001011 28.

So we have:

 S = 0 because 278 is positive.

 Eb =E + 127 = 8 + 127 = (135)10 = (10000111)2 in base 2 on 8 bits.

 M = 00010110000000000000000.

We obtain the following representation:

1 bit 8 bits 23 bits

Sign Exponenet Pseudo Machine

0 1000111 00010110000000000000000

Example 2 :

We want to represent -6.53125 in simple-precision IEEE 754 format.

We start by writing 6.53125 in base 2, and then we put it in scientific form.

(6,53125)10 = (110,10001)2 = 1,1010001 22.

So we have:

 S = 1 because -6,53125 is negative.

 Eb =E + 127 = 2 + 127 = (129)10 = (10000001)2 in base 2 on 8 bits.

 M = 10100010000000000000000.

Teacher : Taouche Cherif

14

We obtain the following representation:

1 bit 8 bits 23 bits

Sign Exponent Pseudo Machine

1 10000001 10100010000000000000000

 Double-precision numbers have a 52-bit pseudo-mantissa, an 11-bit exponent,

and a sign bit (Table 3.8).

1 bit 11 bits 52 bits -1022 +1023

Sign Exponent Pseudo Machine E min E max

Table 3.8: The double precision

