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Mathematics 1 Module
Chapter 04 : Derivatives.

Definition 01:
Let f: D — IR, x, € D. The derivative of f at a point x, , writtren f’(xg), is given
by :

i 100 = £ o)
im
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= f’ (x0)
if this limit exists.

Graphically, the derivative of a function corresponds to the slope of its tangent line at
one specific point.
Note

If £ is derived at x,, it continues at this point and the opposite is not true in
general.

Definition 02 :
The limites
_ f(x) = f(xo) .. JGx)—fxo)
ll>m =lx<m
X=X, X — Xo X=X X = xO

are called right-hand derivative and left-hand derivative of f at x, respectively.
Note

The function f has a derivative at a point x, if and only if the function’s right-
hand derivative and left-hand derivative are defined and equal at that point.
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Then the left-hand derivative and right-hand derivative of h at zero are not
equal. Therefore, h does not have a derivative at 0.

1) Let:
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Then the right-hand derivative of g at zero does not exist. Therefore, g does not
have a derivative at 0.

Definition 3 :

Afunction f is differentiable on a closed interval [a, b] if it has a derivative at
every interior point on the interval and if left-hand derivative of f at b and
right-hand derivative of f at a are exists.

List of derivative rules

e Constant Rule: f(z) =c then f'(z) =0

Constant Multiple Rule: g(z) = ¢- f(z) then ¢'(z) = ¢ f'(z)

Power Rule: f(z) = z" then f'(z) = nz"™"

Sum and Difference Rule: h(zx) = f(z)+g(zr) then h'(z) = f(z)+g'(z)

Product Rule: h(z) = f(x)g(z) then h'(z) = f'(z)g(z) + f(z)g (z)

Quoticnt Rule: h(l‘) = % then h’(.’E) = f’(l')g(-rg)[;){(x)g'(ﬂ')

e Chain Rule: h(z) = f(g(z)) then A'(z) = f'(g(z))g ()

e Power function : h(x) = (f(x))* then h'(x) = nf'(x)(f(x))"*1




s Trig Derivatives:

— fi(x)} = sin(zx) then f'(xr) = cos(z)
— fi(x) = cos(x) then f'{z) = —=in(x)

» Exponential Derivatives
— flz) =€" then f'(z) ="

— flz) = 817 then f(z) = e#g/(z)
e Logarithm Derivatives
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 J(e) = In(g(e)) then f'(z) = L2

glz

Higher-Order Derivatives

f”(x), read as “f double prime of (or at) x,” is the second derivative
(or the second-order derivative) of f with respect to x.

» It is the [first] derivative of f’(x) with respect to x.

f”(x), read as “f triple prime of (or at) x,” is the third derivative
(or the third-order derivative) of f with respect to x.

» It is the [first] derivative of £”(x) with respect to x.

Higher-order derivatives are denoted by f®(x), f® (x), etc.

Note : Vn € IN, the nth derivative of f is giving by
f®@ = (f"2®)’

fO@) = f(x)
Example :
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fO® = (—1)(-2)(-3)(- x5

FOO = (-1)(-2)(-3) . (-mx-en = ETT

L’Hoépital’s Rule
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Iflim iy exists and has indeterminate form § or 2, then lim 7 = lim 7.
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