Faculty of Economic Sciences, Commercial Sciences and Management Sciences
First year, common trunk
Academic year : 2023-2024

Mathematics 1 Module
 Chapter 04 : Derivatives.

Definition 01:

Let $f: D \rightarrow I R, x_{0} \in D$. The derivative of f at a point x_{0}, writtren $f^{\prime}\left(x_{0}\right)$, is given by :

$$
\lim _{x \rightarrow \mathrm{x}_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)
$$

if this limit exists.

Graphically, the derivative of a function corresponds to the slope of its tangent line at one specific point.

Note

If \boldsymbol{f} is derived at \boldsymbol{x}_{0}, it continues at this point and the opposite is not true in general.

Definition 02 :

The limites

$$
\lim _{x \rightarrow \mathrm{x}_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \quad \lim _{x \rightarrow \mathrm{x}_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

are called right-hand derivative and left-hand derivative of f at x_{0} respectively.
Note
The function \boldsymbol{f} has a derivative at a point x_{0} if and only if the function's righthand derivative and left-hand derivative are defined and equal at that point.

Examples :1) Let

$$
\begin{gathered}
h(x)=|x| \quad D_{h}=R \\
h(x)=\left\{\begin{array}{rrr}
x & \text { si } & x \geq 0 \\
-x & \text { si } & x \leq 0
\end{array}\right.
\end{gathered}
$$

$$
\lim _{\substack{>\\ x \rightarrow 0}} \frac{h(x)-h(0)}{x-0}=\lim _{\substack{>\\ x \rightarrow 0}} \frac{x}{x}=1 \quad \lim _{\substack{<\\ x \rightarrow 0}} \frac{h(x)-h(0)}{x-0}=\lim _{x \rightarrow 0} \frac{-x}{x}=-1
$$

Then the left-hand derivative and right-hand derivative of h at zero are not equal. Therefore, \boldsymbol{h} does not have a derivative at 0 .

1) Let :

$$
\begin{gathered}
g(x)=\sqrt{x} \quad D_{g}=[0,+\infty[\\
\lim _{\substack{x \rightarrow 0}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0}^{x \rightarrow 0} \frac{\sqrt{x}}{x}=\frac{0}{0} \\
=\lim _{x \rightarrow 0} \frac{\sqrt{x}}{\sqrt{x} \sqrt{x}}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x}}=+\infty
\end{gathered}
$$

Then the right-hand derivative of \boldsymbol{g} at zero does not exist. Therefore, \boldsymbol{g} does not have a derivative at 0 .

Definition 3:

Afunction f is differentiable on a closed interval $[a, b]$ if it has a derivative at every interior point on the interval and if left-hand derivative of f at b and right-hand derivative of \boldsymbol{f} at \boldsymbol{a} are exists.

List of derivative rules

- Constant Rule: $f(x)=c$ then $f^{\prime}(x)=0$
- Constant Multiple Rule: $g(x)=c \cdot f(x)$ then $g^{\prime}(x)=c \cdot f^{\prime}(x)$
- Power Rule: $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$
- Sum and Difference Rule: $h(x)=f(x) \pm g(x)$ then $h^{\prime}(x)=f^{\prime}(x) \pm g^{\prime}(x)$
- Product Rule: $h(x)=f(x) g(x)$ then $h^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- Quotient Rule: $h(x)=\frac{f(x)}{g(x)}$ then $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
- Chain Rule: $h(x)=f(g(x))$ then $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$
- Power function : $h(x)=(f(x))^{n}$, then $h^{\prime}(x)=n f^{\prime}(x)(f(x))^{n-1}$

- Trig Derivatives:

$-f(x)=\sin (x)$ then $f^{\prime}(x)=\cos (x)$
$-f(x)=\cos (x)$ then $f^{\prime}(x)=-\sin (x)$

- Exponential Derivatives
- $f(x)=e^{x}$ then $f^{\prime}(x)=e^{x}$
$-f(x)=e^{g(x)}$ then $f^{\prime}(x)=e^{g(x)} g^{\prime}(x)$
- Logarithm Derivatives
$-f(x)=\ln (x)$ then $f^{\prime}(x)=\frac{1}{x}$
$-f(x)=\ln (g(x))$ then $f^{\prime}(x)=\frac{g^{\prime}(x)}{g(x)}$

Higher-Order Derivatives

f " (x), read as " f double prime of (or at) x," is the second derivative (or the second-order derivative) of f with respect to x.

- It is the [first] derivative of $f^{\prime}(x)$ with respect to x.
$f^{\prime \prime \prime}(x)$, read as " f triple prime of (or at) x," is the third derivative (or the third-order derivative) of f with respect to x.
- It is the [first] derivative of $f^{\prime \prime}(x)$ with respect to x.

Higher-order derivatives are denoted by $f^{(4)}(x), f^{(5)}(x)$, etc.
Note: $\forall n \in I N$, the nth derivative of \boldsymbol{f} is giving by

$$
\begin{gathered}
f^{(n)}(x)=\left(f^{(n-1)}(x)\right)^{\prime} \\
f^{(0)}(x)=f(x)
\end{gathered}
$$

Example:

$$
\begin{gathered}
f(x)=x^{-1}=\frac{1}{x} \\
f^{\prime}(x)=\left(x^{-1}\right)^{\prime}=-\frac{1}{x^{2}}=-x^{-2} \\
f^{(2)(x)}=(-1)(-2) x^{-3} \\
f^{(3)(x)}=(-1)(-2)(-3)\left(x^{-4}\right. \\
f^{(4)(x)}=(-1)(-2)(-3)(-4) x^{-5} \\
f^{(n)(x)}=(-1)(-2)(-3) \ldots(-n) x^{-(n+1)}=\frac{(-1)^{n} n!}{x^{n+1}}
\end{gathered}
$$

L'Hôpital's Rule

If $\lim _{x \rightarrow c} \frac{f(x)}{g^{\prime}(x)}$ exists and has indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then $\lim _{x \rightarrow c} \frac{f(x)}{g^{\prime}(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

Examples

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{\sqrt{x}-\sqrt{4}}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{1}{2 \sqrt{x}}-0}{1-0}=\lim _{x \rightarrow 4} \frac{1}{2 \sqrt{x}}=\frac{1}{2 \sqrt{4}}=\frac{1}{4} \\
& \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=\cos (0)=1 \\
& \lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=\lim _{x \rightarrow 0} \frac{0+\sin (x)}{1}=\frac{0+0}{1}=0 \\
& \lim _{x \rightarrow 0} \frac{1+1 / x}{2+1 / x}=\lim _{x \rightarrow 0} \frac{0-1 / x^{2}}{0-1 / x^{2}}=\lim _{x \rightarrow 0} \frac{-1 / x^{2}}{-1 / x^{2}}=1
\end{aligned}
$$

