University of Oum El Bouaghi
Faculty of Economic Sciences, Commercial Sciences and Management Sciences
First year, common trunk
Academic year : 2023-2024

Mathematics 1 Module Solution of Series 03 (Numerical functions).

Exercise 01: Domain of the functions

$$
\begin{gathered}
D_{f}=I R-\{-3,1\},\left(c, D_{f}=\left[\frac{-1}{2},+\infty\left[\left(b, \quad D_{f}=I R-4(a\right.\right.\right.\right. \\
D_{f}=\left[1,+\infty\left[\left(e, \quad D_{f}=\right]-\infty, 3[(d\right.\right.
\end{gathered}
$$

Exercise 02: The limits
1)

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}
$$

2)

$$
\begin{aligned}
& \lim _{x \rightarrow+0}\left(\sqrt{\frac{1}{x^{2}}+\frac{1}{x}+1}-\sqrt{\frac{1}{x^{2}}+\frac{1}{x}-1}\right)= \\
&=\lim _{x \rightarrow+0} \frac{\left(\sqrt{\frac{1}{x^{2}}+\frac{1}{x}+1}-\sqrt{\frac{1}{x^{2}}+\frac{1}{x}-1}\right)\left(\sqrt{\frac{1}{x^{2}}+\frac{1}{x}+1}+\sqrt{\frac{1}{x^{2}}+\frac{1}{x}-1}\right)}{\left(\sqrt{\frac{1}{x^{2}}+\frac{1}{x}+1}+\sqrt{\frac{1}{x^{2}}+\frac{1}{x}-1}\right)} \\
&=\lim _{x \rightarrow+0} \frac{2}{\left(\sqrt{\frac{1}{x^{2}}+\frac{1}{x}+1}+\sqrt{\frac{1}{x^{2}}+\frac{1}{x}-1}\right)}=0,
\end{aligned}
$$

3)

$\lim _{x \rightarrow+\infty} \frac{4 x^{4}-2 x^{3}+6}{2 x^{4}+2 x^{2}+3}=\lim _{x \rightarrow+\infty} \frac{4-2 / x+6 / x^{4}}{2+2 / x^{2}+3 / x^{4}}=2$.

Exercise 03:

1) We have \boldsymbol{f} is continuous for $\boldsymbol{x} \neq 5$, because it is rational function. At $\boldsymbol{x}=5$

We obtain : $\lim _{x \rightarrow 5} f(x)=f(5)$, then f is continuous on $I R$.
2) We have g is continuous for $x \neq 2$, because it is rational function. At $\boldsymbol{x}=\mathbf{2}$ We obtain :

$$
\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} \frac{1}{\sqrt{x-1}+1}=\frac{1}{2}
$$

Then g is continuous if : $2 b+1=\frac{1}{2} \rightarrow b=\frac{-1}{4}$.

Exercise 04:

1) $S=\left\{\frac{-1}{3}\right\}$,
2) $S=\emptyset$,
3) $\boldsymbol{S}=\{\boldsymbol{\operatorname { l n } (4)}\}$,
4) $\boldsymbol{S}=\{\boldsymbol{\operatorname { l n } (3)}\}$,
5) $S=\left\{e^{\frac{1}{2}}\right\}$

Exercise 05:

1) The domain of equation is

$$
\left\{\begin{array} { l }
{ x - 1 > 0 } \\
{ x - 3 > 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x>1 \\
x>3
\end{array} \Leftrightarrow\left\{\begin{array}{l}
x \in] 1 ;+\infty[\\
x \in] 3 ;+\infty[
\end{array} \Leftrightarrow x \in\right] 1 ;+\infty[\cap] 3 ;+\infty[=] 3 ;+\infty[\right.\right.
$$

Then, we have :

$$
\begin{aligned}
& \ln (x-1)+\ln (x-3)=\ln (3) \Leftrightarrow \ln ((x-1)(x-3))=\ln (3)(\text { car } \ln (a)+\ln (b)=\ln (a \times b)) \\
& \Leftrightarrow(x-1)(x-3)=3 \Leftrightarrow x^{2}-4 x=0 \Leftrightarrow x(x-4)=0 \Leftrightarrow x=0 \text { ou } x=4 .
\end{aligned}
$$

Finally $S=\{4\}$.
2) The equation is defining_if

$$
x \in] 0 ;+\infty[
$$

Then
$\ln x=2 \Leftrightarrow \ln x=2 \times 1 \Leftrightarrow \ln x=2 \times \ln e \Leftrightarrow \ln x=\ln \left(e^{2}\right) \Leftrightarrow x=e^{2}$. $S=\left\{e^{2}\right\}$
3) The domain of equation is $] 0,+\infty[$. We put $X=\ln (x)$, then

$$
\begin{aligned}
& X^{2}+X-6=0,1 \quad \text { with two solution } \\
& X=2 \Leftrightarrow \ln x=2 \Leftrightarrow x=e^{2} \\
& X=-3 \Leftrightarrow \ln x=-3 \Leftrightarrow x=e^{-3} . \\
& S=\left\{e^{2} ; e^{-3}\right\}
\end{aligned}
$$

4) The equation is defining_if

$$
x \in]-\infty ; \frac{1}{2}[\cup] \frac{1}{2} ; 1[U] 1 ;+\infty[.
$$

Then

$$
\ln \left(\left|\frac{x-1}{2 x-1}\right|\right)=0 \Leftrightarrow\left|\frac{x-1}{2 x-1}\right|=1 \Leftrightarrow \frac{x-1}{2 x-1}=1 \text { ou } \frac{x-1}{2 x-1}=-1 .
$$

Finally

$$
S=\left\{0 ; \frac{2}{3}\right\}
$$

Exercise 06:

1) L'inequlitie is defining if

$$
2 x-5>0 \Leftrightarrow x \in] \frac{5}{2} ;+\infty[
$$

then
$\ln (2 x-5) \geq 1 \Leftrightarrow \ln (2 x-5) \geq \ln (e) \Leftrightarrow 2 x-5 \geq e \Leftrightarrow x \geq \frac{e+5}{2}$
$S=] \frac{5}{2} ;+\infty[\cap] \frac{e+5}{2} ;+\infty[=] \frac{e+5}{2} ;+\infty[]$,
2) We have

$$
S=\left[\frac{-1}{2}, 1\right]
$$

3) We put

$X=\boldsymbol{\operatorname { l n } (x) , \text { then }}$

$$
X^{2}-3 X+2 \geq 0
$$

then

$$
S=]-\infty, 0] \cup[\ln 2,+\infty[,
$$

Exercise 07:

1) The system is defining if $x>0$ and $y>0$, then :

$$
\left\{\begin{array} { c c }
{ x - y = \frac { 3 } { 2 } } & { L _ { 4 } } \\
{ \operatorname { l n } x + \operatorname { l n } y = 0 } & { L _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array} { c c }
{ y = x - \frac { 3 } { 2 } } & { L _ { 4 } } \\
{ \operatorname { l n } x + \operatorname { l n } (x - \frac { 3 } { 2 }) = 0 } & { L _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array} { c c }
{ y = x - \frac { 3 } { 2 } } & { L _ { 1 } } \\
{ \operatorname { l n } [x (x - \frac { 3 } { 2 })] = 0 } & { L _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{cc}
y=x-\frac{3}{2} & L_{1} \\
x\left(x-\frac{3}{2}\right)=1 & L_{2}
\end{array}\right.\right.\right.\right.
$$

We have :
$x^{2}-\frac{3}{2} x-1=0 \Leftrightarrow 2 x^{2}-3 x-2=0$
Finally

$$
S=\left\{\left(2 ; \frac{1}{2}\right)\right\}
$$

2) The system is defining_if $\boldsymbol{x}>0$ and $y>0$.

We put $X=\ln (x), Y=\ln (y)$, then
$\left\{\begin{array}{l}5 X+2 Y=26 \\ 2 X-3 Y=-1\end{array} L_{2} \Leftrightarrow\left\{\begin{array}{ll}15 X+6 Y=78 & 3 L_{1} \\ 4 X-6 Y=-2 & 2 L_{2}\end{array} \Leftrightarrow\left\{\begin{array}{cc}19 X=76 & 3 L_{1}-2 L_{2} \\ Y=\frac{2 X+1}{3} & L_{2}\end{array}\right.\right.\right.$
$\Leftrightarrow\left\{\begin{array}{cc}X=\frac{76}{19}=4 & 3 L_{1}-2 L_{2} \\ Y=\frac{2 \times 4+1}{3}=3 & L_{2}\end{array} \Leftrightarrow\left\{\begin{array}{cc}X=4 & 3 L_{1}-2 L_{2} \\ Y=3 & L_{2}\end{array}\right]\right.$.
$X=4 \Leftrightarrow \ln x=4 \Leftrightarrow x=e^{4}$ et $Y=3 \Leftrightarrow \ln y=3 \Leftrightarrow y=e^{3}$

$$
S=\left\{\left(e^{4} ; e^{3}\right)\right\}
$$

3) We have

$$
\begin{gathered}
\left\{\begin{array}{c}
e^{x}+2 e^{y}=3 \\
x=-y
\end{array} \rightarrow e^{-y}+2 e^{y}=3 \rightarrow 2 e^{2 y}-3 e^{y}+1=0 \rightarrow 2 Y^{2}-3 Y+1=0\right. \\
Y_{1}=1, Y_{2}=\frac{1}{2} \rightarrow y_{1}=\ln 1, y_{2}=\ln \frac{1}{2} \\
x_{1}=-\ln 1, x_{2}=-\ln \frac{1}{2}
\end{gathered}
$$

