Chapter 3 Functions

Introduction

The term function was first used by Leibniz in 1673 to denote the dependence of one quantity on another. In general, if a quantity y depends on a quantity x in such a way that each value of x determines exactly one value of y, then we say that y is a "function" of x.

Definition

A function is a rule which maps a number to another unique number.

We have numerical function is giving by: $f: I \rightarrow IR$, I is a set of IR.

- Range : the set of all images of points in the domain : $R = \{f(x), x \in D\}$.
- Domain : $D(f) = \{ x \in IR, f(x) \text{ is defining} \}.$

Example

What is the domain and range of the function $f(x) = 4 - x^2$?

Solution

Here a graph of the function helps.

Since f(x) is defined for all real numbers, we have domain(f) = \mathbb{R} .

We can see from the graph that range(f) = { $y : y \le 4$ } = $(-\infty, 4]$.

1.2.4 Classification of functions

- Constant functions: f(x) = c
- Polynomial functions: $f(x) = a_0 + a_1x_1 + \cdots + a_{n-1}x^{n-1} + a_nx_n$
- Rational functions: ratio of polynomials functions,

$$f(x) = \frac{a_0 + a_1 x_1 + \dots + a_{n-1} x^{n-1} + a_n x_n}{b_0 + b_1 x_1 + \dots + b_{n-1} x^{n-1} + b_n x_n}$$

· Irrational functions: Root extractions,

$$f(x) = \sqrt[m]{\frac{a_0 + a_1 x_1 + \dots + a_{n-1} x^{n-1} + a_n x_n}{b_0 + b_1 x_1 + \dots + b_{n-1} x^{n-1} + b_n x_n}}$$

- Piece-wise functions.e.g. f(x) = | x − 1 |
- Transcendental: trigonometric expressions, exponentials and logarithms¹.

For example:

- The function $y = \frac{1}{x}$ has domain $\{x \in \mathbb{R} \mid x \neq 0\}$, which is also written as $\mathbb{R} \setminus \{0\}$.
- The function y = log₂ x has domain {x∈R|x>0}, which is also written as R⁺.

1.2.3 Composition of functions

Composition of f with g: (f∘g)(x) = f((g(x)), the domain of f∘g consists
of all x in the domain of g for which g(x) is in the domain of f.

Example

Given $f(x) = 2x^2 + 1$ and g(x) = 3x - 5, find the following:

$$f(g(x)) = 2(3x-5)^2 + 1 = 2(9x^2 - 30x + 25) + 1 = 18x^2 - 60x + 51$$

$$g(f(x)) = 3(2x^2 + 1) - 5 = 6x^2 - 2$$

$$g(g(x)) = 3(3x-5) - 5 = 9x - 20$$

Lecture 5 : Continuous Functions

Definition 1 We say the function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a).$$

Note that this definition implies that the function f has the following three properties if f is continuous at a:

- 1. f(a) is defined (a is in the domain of f).
- 2. $\lim_{x\to a} f(x)$ exists.
- 3. $\lim_{x\to a} f(x) = f(a)$. (Note that this implies that $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ both exist and are equal).

Example 2 Consider the graph shown below of the function

$$k(x) = \begin{cases} x^2 & -3 < x < 3 \\ x & 3 \le x < 5 \\ 0 & x = 5 \\ x & 5 < x \le 7 \\ \frac{1}{x-10} & x > 7 \end{cases}$$

Where is the function discontinuous and why?

Definition A function f is continuous from the right at a number a if $\lim_{x\to a^+} = f(a)$. A function f is continuous from the left at a number a if $\lim_{x\to a^-} = f(a)$.

Definition A function f is <u>continuous on an interval</u> if it is continuous at every number in the interval. (If f is defined only on one side of an endpoint of the interval, we understand *continuous* at the endpoint to mean *continuous from the right or continuous from the left* at the endpoint as appropriate.)

Catalogue of functions continuous on their domains

From the last day we know:

Polynomials and Rational functions

- A polynomial function, $P(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n$, is continuous everywhere i.e. $\lim_{x\to a} P(x) = P(a)$ for all real numbers a.
- A rational function, $f(x) = \frac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomials is continuous on its domain, i.e. $\lim_{x\to a} f(x) = \frac{P(a)}{Q(a)}$ for all values of a, where $Q(a) \neq 0$.

n th Root function

From #10 in last day's lecture, we also have that if $f(x) = \sqrt[n]{x}$, where n is a positive integer, then f(x)

is continuous on the interval $[0, \infty)$.

Example Find the domain of the following function and use the theorem above to show that it is continuous on its domain:

$$k(x) = \sqrt[3]{x}(x^2 + 2x + 1) + \frac{x+1}{x-10}.$$

k(x) is continuous on its domain, since it is a combination of root functions, polynomials and rational functions using the operations +, -, \cdot and $\dot{\cdot}$. The domain of k is all values of x except x = 10 and this function is continuous on the intervals $(-\infty, 10)$ and $(10, \infty)$.

1.Exponential function

Definition

For any positive number a > 0, there is a function $f : \mathbb{R} \to (0, \infty)$ called an *exponential function* that is defined as $f(x) = a^x$.

For example, $f(x) = 3^x$ is an exponential function, and $g(x) = (\frac{4}{17})^x$ is an exponential function.

• Natural exponential function is the function $f(x) = e^x$, $e \approx 2.7182...$

Properties of exponential functions

- 1) The domain $D = IR \ and \ \forall x \in IR : f(x) > 0$.
- 2) An exponential function is increasing when a>1 and decreasing when 0< a<1.

4

- 3) If $a^x = a^y$ then x = y.
- 4) We have

$$e^{0} = 1$$
, $lne^{x} = x$, $e^{lnx} = x$; $\forall x, y \in R$, $e^{x+y} = e^{x}$. e^{y} , $e^{x-y} = \frac{e^{x}}{e^{y}}$
 $\forall x \in R$, $(e^{u(x)})' = u'(x)e^{u(x)}$

Some limits

$$\lim_{x\to 0}\frac{e^x-1}{x}=1,\qquad \lim_{x\to +\infty}e^x=+\infty,\qquad \lim_{x\to -\infty}e^x=0\,, \lim_{x\to +\infty}\frac{e^x}{x^\alpha}=+\infty\,\,\alpha\in R$$

Example: Solve $4^{x^2} = 2^x$

(i) Rewrite the equation in the form $a^u = a^v$ Since $4 = 2^2$, we can rewrite the equation as $(2^2)^{x^2} = 2^x$

Using properties of exponents we get $2^{2x^2} = 2^x$.

Since $2^{2x^2} = 2^x$ we have $2x^2 = x$. Solve the equation u = v

$$2x^{2} = x$$

$$2x^{2} - x = 0$$

$$x(2x - 1) = 0$$

$$x = 0 2x - 1 = 0$$

$$x = 1/2$$

Solution set = $\{0, \frac{1}{2}\}$

2. Logarithmic function

A logarithmic function $f(x) = \log_a(x)$, a > 0, $a \ne 1$, x > 0 (logarithm to the base a of x) is the inverse of the exponential function $y = a^x$.

Therefore, we have the following properties for this function (as the inverse function)

(I) $y = \log_a(x)$ if and only if $a^y = x$

Natural logarithm is the logarithm with the base e (the inverse of $y = e^x$): $ln(x) = log_c(x)$

Example:

- a) $log_2(8)$ is an exponent to which 2 must be raised to obtain 8 (we can write this as $2^x = 8$) Clearly this exponent is 3, thus $log_2(8) = 3$
- b) $\log_{1/3}(9)$ is an exponent to which 1/3 must be raised to obtain 9: $(1/3)^x = 9$. Solving this equation for x, we get $3^{-x} = 3^2$ and -x = 2 or x = -2. Thus $\log_{1/3}(9) = -2$.

Properties of logarithm functions

- 1) The domain $D = (0, +\infty)$ and R = IR.
- 2) We have:

$$lnxy = lnx + lny$$
; $ln\frac{1}{x} = -lnx$; $ln\frac{x}{y} = lnx - lny$; $lnx^2 = 2lnx$

Some limits

$$\lim_{x\to 0} \ln x = -\infty; \ \lim_{x\to +\infty} \ln x = +\infty; \ \lim_{x\to 0} \frac{\ln(x+1)}{x} = 1; \lim_{x\to +\infty} \frac{\ln x}{x^{\alpha}} = 0 \ , \quad \infty > 0$$

Example: Solve the following equations

a) $\log_5(x^2 + x + 4) = 2$

Find the domain of the logarithm(s)

$$x^2 + x + 4 > 0$$

$$x^2 + x + 4 = 0$$

$$x = \frac{-1 \pm \sqrt{1 - 4(1)(4)}}{2} = \frac{-1 \pm \sqrt{-15}}{2}$$
 not a real number

 $x = \frac{-1 \pm \sqrt{1 - 4(1)(4)}}{2} = \frac{-1 \pm \sqrt{-15}}{2}$ not a real number Since $y = x^2 + x + 4$ has no x-intercepts and the graph is a parabola that opens up, the graph must always stay above x-axis. Therefore, $x^2 + x + 4 > 0$ for all x

(ii) Change the equation to the exponential form and solve

$$x^{2} + x + 4 = 5^{2}$$

 $x^{2} + x + 4 = 25$

$$x^2 + x - 21 = 0$$

$$X = \frac{-1 \pm \sqrt{1 - 4(1)(-21)}}{2} = \frac{-1 \pm \sqrt{85}}{2}$$

since there are no restrictions on x, above numbers are solutions of the equation.