
TD: serie d'exercices des treillis hyperstatiques

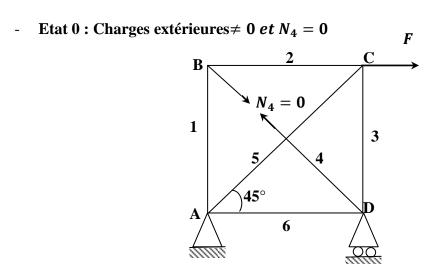
5.6. Exercices:

5.6.1. Exercice N°5.1:

Pour le treillis hyperstatique suivant, on demande :

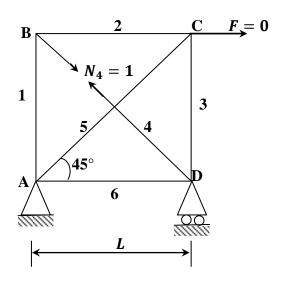
- de déterminer le degré d'hyperstaticité;
- de déterminer les efforts dans toutes les barres.

- Le degré d'hyperstaticité :


$$d = b + l - 2n = 6 + 3 - 2.4 = 1$$
 fois hyperstatique intérieurement

- Le système de base :

Le degré d'hyperstaticité valant 1, on choisit l'effort normal inconnu de la barre $4(N_4)$.


Résolution des systèmes isostatiques : Calcul des efforts normaux

Le calcul des efforts internes des barres se fait par l'une des méthodes ; soit la méthode des sections ou la méthode des nœuds. Les tableaux ci-dessous reprennent les valeurs de ces efforts normaux pour les deux états (**Etat0 et Etat 1**).

N° de la barre	Longueur de la barre	Effort normal $N_{\sum F}^0$
1	L	0
2	L	0
3	L	-F
4	1.41 <i>L</i>	-F
5	1.41 <i>L</i>	1.41 <i>F</i>
6	L	0

Etat 1 : Charges extérieures = 0 et $N_4 = 1$

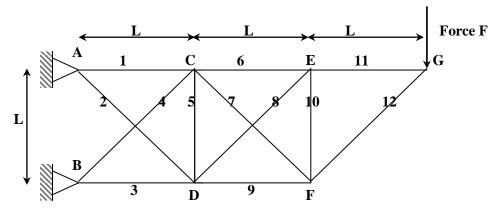
N° de la barre	Longueur de la barre	Effort normal n_1^0
1	L	-0.71
2	L	-0.71
3	L	-0.71
4	1.41 <i>L</i>	1
5	1.41L	1
6	L	-0.71

- Calculer des déplacements δ_{ij} .

$$\delta_{11} = \frac{4.82L}{EA}$$
 et $\delta_{10} = \frac{2.71FL}{EA}$

- On écrit le système d'équation canonique :

$$\frac{4.82L}{EA}N_4 + \frac{2.71FL}{EA} = 0 \quad \Rightarrow \quad N_4 = -0.56F$$


- Les efforts normaux dans les barres des systèmes réels (treillis hyperstatique)

N° de la barre	Longueur de la barre	Effort normal $N_{\sum F}^0$	Effort normal n_1^0	$N_{\sum F}^0 + N_4 n_1^0$
1	L	0	-0.71	0.398F
2	L	0	-0.71	0.398 <i>F</i>
3	L	-F	-0.71	-0.602F
4	1.41 <i>L</i>	0	1	-0.56F
5	1.41 <i>L</i>	1.41 <i>F</i>	1	0.85F
6	L	0	-0.71	0.398 <i>F</i>

5.6.2. Exercice N° **5.2**:

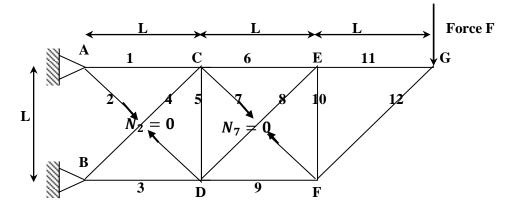
Pour le treillis hyperstatique suivant, on demande :

- de déterminer le degré d'hyperstaticité;
- de déterminer les efforts dans toutes les barres.

Module d'élasticité E et section A identiques pour toutes les barres

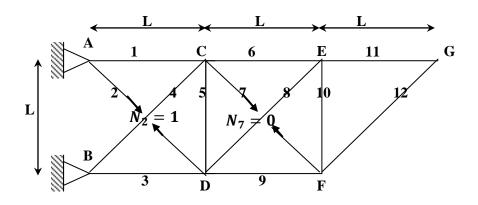
Le degré d'hyperstaticité:

$$d = b + l - 2n$$

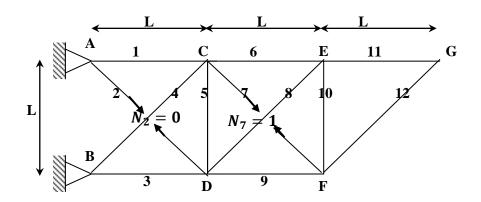

- le nombre de barres b=12 le nombre de nœuds n=7 le nombre de liaisons l=4 d=b+l-2n=12+4-2.7=2

Système de base :

On choisit les efforts normaux des barres 2 et 7 (N_2 et N_7) comme inconnus.


Calcul des efforts normaux pour les états 0, 1 et 2 :

Etat 0 : Charges extérieures $\neq 0$, $N_2 = 0$ et $N_7 = 0$


N° de la barre	Longueur de la barre	Effort normal $N_{\sum F}^0$
1	L	3 <i>F</i>
2	$\sqrt{2}L$	0
3	L	-2F
4	$\sqrt{2}L$	$-\sqrt{2}F$
5	L	F
6	L	2 <i>F</i>
7	$\sqrt{2}L$	0
8	$\sqrt{2}L$	$-\sqrt{2}F$
9	L	-F
10	L	F
11	L	F
12	$\sqrt{2}L$	$-\sqrt{2}F$

Etat 1 : Charges extérieures = 0, $N_2 = 1$ et $N_7 = 0$

N° de la barre	Longueur de la barre Effort normal n	
1	L	$-1/\sqrt{2}$
2	$\sqrt{2}L$	1
3	L	$-1/\sqrt{2}$
4	$\sqrt{2}L$	1
5	L	$-1/\sqrt{2}$
6	L	0
7	$\sqrt{2}L$	0
8	$\sqrt{2}L$	0
9	L	0
10	L	0
11	L 0	
12	$\sqrt{2}L$	0

Etat 2 : Charges extérieures = 0, $N_2 = 0$ et $N_7 = 1$

N° de la barre	Longueur de la barre	Effort normal n_2^0
1	L	0
2	$\sqrt{2}L$	0
3	L	0
4	$\sqrt{2}L$	0
5	L	$-1/\sqrt{2}$
6	L	$-1/\sqrt{2}$
7	$\sqrt{2}l$	1
8	$\sqrt{2}l$	1
9	L	$-1/\sqrt{2}$
10	L	$-1/\sqrt{2}$ $-1/\sqrt{2}$
11	L	0
12	$\sqrt{2}L$	0

Calculer des déplacements
$$\delta_{ij}$$
.
$$\delta_{11} = \frac{\left(3/2 + 2\sqrt{2}\right)L}{EA}, \qquad \delta_{12} = \delta_{21} = \frac{L}{2EA}, \qquad \delta_{22} = \frac{2\left(1 + \sqrt{2}\right)L}{EA}$$

$$\delta_{10} = -\frac{\left(2 + \sqrt{2}\right)FL}{EA} \quad et \qquad \delta_{20} = -\frac{\left(2 + \sqrt{2} + 1/\sqrt{2}\right)FL}{EA}$$

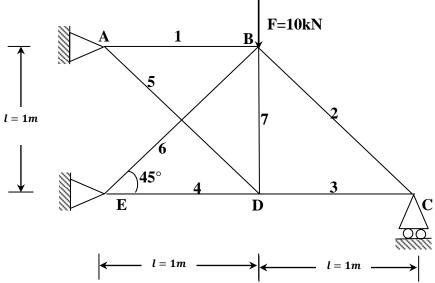
On écrit le système d'équations canoniques :

$$\begin{cases} \frac{\left(3/2 + 2\sqrt{2}\right)L}{EA}N_2 + \frac{L}{2EA}N_7 - \frac{\left(2 + \sqrt{2}\right)FL}{EA} = 0\\ \frac{L}{2EA}N_2 + \frac{2\left(1 + \sqrt{2}\right)L}{EA}N_7 - \frac{\left(2 + \sqrt{2} + 1/\sqrt{2}\right)FL}{EA} = 0 \end{cases}$$

A partir du système, on trouve :

$$\begin{cases} N_2 = 0.699F \\ N_7 = 0.781F \end{cases}$$

- Valeurs des efforts normaux du treillis hyperstatique réel


N° de la barre	Longueur de la barre	Effort normal $N_{\sum F}^0$	Effort normal n_1^0	Effort normal n_2^0	$N_{\sum F}^{0} + N_{2}n_{1}^{0} + N_{7}n_{2}^{0}$
1	L	3 <i>F</i>	$-1/\sqrt{2}$	0	2.506F
2	$\sqrt{2}L$	0	1	0	0.699 <i>F</i>
3	L	-2F	$-1/\sqrt{2}$	0	-2.494F
4	$\sqrt{2}L$	$-\sqrt{2}F$	1	0	-0.716F
5	L	F	$-1/\sqrt{2}$	$-1/\sqrt{2}$	-0.047F
6	L	2 <i>F</i>	0	$-1/\sqrt{2}$	1.448 <i>F</i>
7	$\sqrt{2}L$	0	0	1	0.781 <i>F</i>
8	$\sqrt{2}L$	$-\sqrt{2}F$	0	1	-0.633F
9	L	-F	0	$-1/\sqrt{2}$	-1.552F
10	L	F	0	$-1/\sqrt{2}$	0.448F
11	L	F	0	0	F
12	$\sqrt{2}L$	$-\sqrt{2}F$	0	0	-1.414F

5.6.3. Exercice N° **5.3**:

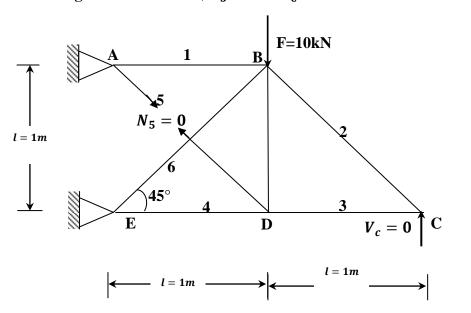
Pour le treillis hyperstatique suivant, on demande :

- de déterminer le degré d'hyperstaticité;
- de déterminer les efforts dans toutes les barres.

Module d'élasticité E et section A identiques pour toutes les barres

- Le degré d'hyperstaticité :

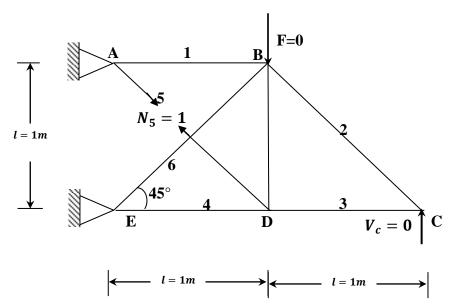
$$d = b + l - 2n = 7 + 5 - 2.5 = 2$$


- Système de base :

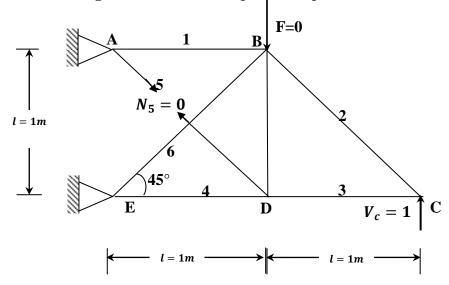
On choisit comme inconnus la réaction verticale à l'appui $C(V_c)$ et l'effort normal (N_5) de barre 5.

- Calcul des efforts normaux pour les états 0, 1 et 2 :

Les tableaux ci-dessous reprend la valeur des efforts normaux dans les barres pour chacune des structures isostatiques (Etat0, Etat 1 et Etat 2).


- Etat 0 : Charges extérieures $\neq 0$, $N_5 = 0$ et $V_C = 0$

88


N° de la barre	Longueur de la barre	Effort normal $N_{\sum F}^0$
1	1	10
2	1.41	0
3	1	0
4	1	0
5	1.41	0
6	1.41	-14.14
7	1	0

- Etat 1 : Charges extérieures = 0, $N_5 = 1$ et $V_C = 0$

N° de la barre	Longueur de la barre	Effort normal n_7^0
1	1	-0.71
2	1.41	0
3	1	0
4	1	-0.71
5	1.41	1
6	1.41	1
7	1	-0.71

- Etat 0 : Charges extérieures = 0, $N_5 = 0$ et $V_C = 1$

N° de la barre	Longueur de la barre	Effort normal $n_i(V_c = 1)$
1	1	-2
2	1.41	-1.41
3	1	1
4	1	1
5	1.41	0
6	1.41	1.41
7	1	0

Calculer des déplacements
$$\delta_{ij}$$
.
$$\delta_{11}=\frac{4.32}{EA}, \qquad \delta_{12}=\delta_{21}=\frac{2.7}{EA}, \qquad \delta_{22}=\frac{11.62}{EA}$$

$$\delta_{10} = -\frac{27.1}{EA}$$
 et $\delta_{20} = -\frac{48.11}{EA}$

On écrit le système d'équations canoniques :

$$\begin{cases} \frac{4.32}{EA}N_5 + \frac{2.7}{EA}V_c - \frac{27.1}{EA} = 0\\ \frac{2.7}{EA}N_5 + \frac{11.62}{EA}V_c - \frac{48.11}{EA} = 0 \end{cases} \Rightarrow \begin{cases} N_5 = 4.28kN\\ V_c = 3.15kN \end{cases}$$

Valeurs des efforts normaux du treillis hyperstatique réel

N° de la barre	Longueur de la barre	Effort normal $N_{\sum F}^0$	Effort normal n_5^0	Effort normal $n_i(V_c = 1)$	$N_{\sum F}^0 + N_5 n_5^0 + V_c n_i$
1	1	10	-0.71	-2	0.67
2	1.41	0	0	-1.41	-4.45
3	1	0	0	1	3.15
4	1	0	-0.71	1	0.12
5	1.41	0	1	0	4.28
6	1.41	-14.14	1	1.41	-5.4
7	1	0	-0.71	0	-3.03