University of Oum El Bouaghi
Faculty of Economic Sciences, Commercial Sciences and Management Sciences
First year, common trunk
Academic year : 2023-2024

Mathematics 1 Module
 Solving the second series (Numerical sequences)

Exercise01:

Study of monotonicity and convergence

$$
\begin{gathered}
\text { 1) } \begin{array}{c}
u_{n+1}-u_{n}=(n+1)^{2}+3-n^{2}-3 \\
=2 n+1>0, \quad \forall n \in I N
\end{array} \\
\lim u_{n}=+\infty
\end{gathered}
$$

The sequence is completely increasing and diverging.

$$
\text { 2) } \begin{gathered}
u_{n+1}-u_{n}=-4(5)^{n+1}+4(5)^{n}=-16(5)^{n}<0 \\
\lim u_{n}=+\infty
\end{gathered}
$$

The sequence is completely diminished and divergent.

Exercise02:

I)

$$
\begin{aligned}
& \text { 1) } u_{0}+20 r-u_{0}-10 r=25 \rightarrow r=\frac{5}{2} \\
& \text { 2) } u_{7}=u_{0}+7 r=37 \text { and } u_{3}=u_{0}+3 r=13 \\
& \rightarrow u_{0}=-5, r=6, S_{8}=\left(u_{0}+u_{8}\right) \frac{9}{2}=\left(2 u_{0}+8 r\right) \frac{9}{2}
\end{aligned}
$$

II)

$$
\begin{aligned}
& \left(u_{3}+u_{n}\right) \frac{n-2}{2}=6456 \rightarrow\left(2 u_{0}+3 r+n r\right) \frac{n-2}{2}=6456 \\
& \rightarrow(19+5 n) \frac{n-2}{2}=6456 \rightarrow 5 n^{2}+10 n-38=2 * 6456
\end{aligned}
$$

Exercise03:

1) First, we have

$$
U_{1}=U_{0}+6000 * 8 \%=6480
$$

And since the increase is constant,

$$
\begin{gathered}
U_{2}=6960 \\
U_{3}=6960+6000 \times \frac{8}{100} \\
=6960+480 \\
U_{3}=7440
\end{gathered}
$$

2) Since the increase is constant, we conclude that : $\boldsymbol{U}_{n+1}-\boldsymbol{U}_{\boldsymbol{n}}=480$.

Hence, the value of the amount each year is arithmetic successive terms, where the general term is

$$
U_{n}=U_{0}+n r=6000+480 n
$$

The number of years that must be waited for the initial amount to double to 3 times :

$$
\begin{gathered}
U_{n}=3 * 6000=18000 \\
18000=6000+480 n \rightarrow n=25
\end{gathered}
$$

Exercise04:

1) $u_{2}=4, u_{1}=2, u_{0}=1$.
2) Since : $u_{n+1}=2 u_{n}, \forall n \in I N$, we conclude that $\left(u_{n}\right)$ is a geometric sequence whose base is 2 .
3) $u_{0}+u_{1}+\cdots+u_{n}=u_{0} \frac{1-q^{n+1}}{1-q}$.
4) Since $\boldsymbol{q}=2>1$, we have $\left(u_{n}\right)_{n \in I N}$, is divergent.

Exercise05

1) Since

$$
w_{n+1}=v_{n+1}-u_{n+1}=\frac{u_{n}+2 v_{n}}{3}-\frac{2 u_{n}+v_{n}}{3}=\frac{1}{3} w_{n}
$$

we conclude that $\left(w_{n}\right)$ is a geometric sequence whose base and general term are

$$
q=\frac{1}{3}, \quad w_{n}=\left(\frac{1}{3}\right)^{n}
$$

2) We show that the two sequences are adjacent.

$$
u_{n+1}-u_{n}=w_{n}, \quad v_{n+1}-v_{n}=-w_{n}
$$

Then $\left(u_{n}\right)$ is \uparrow, and $\left(v_{n}\right)$ is \downarrow, and $\lim \left(\left(u_{n}\right)-\left(v_{n}\right)\right)=0$.

Exercise06:

$$
u_{1}=u_{0}+0.06 u_{0}=11000 * 1.06
$$

and
$u_{2}=u_{1}+0.06 u_{1}=u_{1} * 1.06: 2002$
$u_{3}=u_{2}+0.06 u_{2}=u_{2} * 1.06: 2003$
2) From the definition of complex interest, we are concluded

$$
u_{n+1}=u_{n}+0.06 u_{n}
$$

3) We conclude that $\left(\boldsymbol{u}_{n}\right)$ is a geometric sequence.

Exercise07:

1)

$$
u_{2}=\frac{20}{9}, u_{1}=\frac{8}{3}, u_{0}=2
$$

2) Backward proof

First :

$$
u_{0}=2
$$

Then, we have :

$$
u_{n+1} \leq 3 \leftarrow \forall n \in I N, u_{n} \leq 3
$$

3) The attached function of the sequence $\left(u_{n}\right)$ is

$$
f(x)=\frac{x}{3}+2
$$

It is an increasing function, then $\left(u_{\boldsymbol{n}}\right)$ is a monotonous sequence, and we have

$$
u_{1} \geq u_{0}=2
$$

We conclude that (u_{n}) is increasing.
4) From the previous answers, the sequence $\left(u_{n}\right)$ is increasing and limited from above, and from there it is convergent.

