University of Oum El Bouaghi

Faculty of Economic Sciences, Commercial Sciences and Management Sciences

First year, common trunk

Academic year : 2023-2024

<u>Mathematics 1 Module</u> <u>Solving the second series (Numerical sequences)</u>

Exercise01:

Study of monotonicity and convergence

1) $u_{n+1} - u_n = (n+1)^2 + 3 - n^2 - 3$ = 2n + 1 > 0, $\forall n \in IN$. $lim \ u_n = +\infty$

The sequence is completely increasing and diverging.

2) $u_{n+1} - u_n = -4(5)^{n+1} + 4(5)^n = -16(5)^n < 0$ lim $u_n = +\infty$.

The sequence is completely diminished and divergent. <u>Exercise02:</u> I)

1)
$$u_0 + 20r - u_0 - 10r = 25 \rightarrow r = \frac{5}{2}$$

2) $u_7 = u_0 + 7r = 37$ and $u_3 = u_0 + 3r = 13$
 $\rightarrow u_0 = -5, r = 6, S_8 = (u_0 + u_8)\frac{9}{2} = (2u_0 + 8r)\frac{9}{2}$

II)

$$(u_3 + u_n)\frac{n-2}{2} = 6456 \rightarrow (2u_0 + 3r + nr)\frac{n-2}{2} = 6456$$

 $\rightarrow (19 + 5n)\frac{n-2}{2} = 6456 \rightarrow 5n^2 + 10n - 38 = 2 * 6456$

Exercise03:

1) First, we have

 $U_1 = U_0 + 6000 * 8\% = 6480$

And since the increase is constant,

$$U_2 = 6960$$
$$U_3 = 6960 + 6000 \times \frac{8}{100}$$
$$= 6960 + 480$$
$$U_3 = 7440$$

2) Since the increase is constant, we conclude that : $U_{n+1} - U_n = 480$.

Hence, the value of the amount each year is arithmetic successive terms, where the general term is

$$U_n = U_0 + nr = 6000 + 480n$$

The number of years that must be waited for the initial amount to double to 3 times :

$$U_n = 3 * 6000 = 18000$$

 $18000 = 6000 + 480n \rightarrow n = 2$

5

Exercise04: 1) $u_2 = 4$, $u_1 = 2$, $u_0 = 1$.

2) Since: $u_{n+1} = 2 u_n$, $\forall n \in IN$, we conclude that (u_n)

is a geometric sequence whose base is 2.

3)
$$u_0 + u_1 + \dots + u_n = u_0 \frac{1-q^{n+1}}{1-q}$$
.

4) Since q = 2 > 1, we have $(u_n)_{n \in IN}$, is divergent.

Exercise05

1) Since

$$w_{n+1} = v_{n+1} - u_{n+1} = \frac{u_n + 2v_n}{3} - \frac{2u_n + v_n}{3} = \frac{1}{3}w_n$$

we conclude that (w_n) is a geometric sequence whose base and general term are

$$q=rac{1}{3}, \qquad w_n=\left(rac{1}{3}
ight)^n.$$

2) We show that the two sequences are adjacent.

$$u_{n+1} - u_n = w_n, \ v_{n+1} - v_n = -w_n$$

Then (u_n) is \uparrow , and (v_n) is \downarrow , and $\lim((u_n) - (v_n)) = 0$.

Exercise06:

صفحة 2 من 3

$$u_1 = u_0 + 0.06 u_0 = 11000 * 1.06$$

and

 $u_2 = u_1 + 0.06 u_1 = u_1 * 1.06 : 2002$

 $u_3 = u_2 + 0.06 u_2 = u_2 * 1.06$: 2003

2) From the definition of complex interest, we are concluded

$$u_{n+1} = u_n + 0.06 u_n$$

3) We conclude that (u_n) is a geometric sequence.

Exercise07:

1)

$$u_2 = rac{26}{9}$$
 , $u_1 = rac{8}{3}$, $u_0 = 2$

2) Backward proof

First :

 $u_0 = 2$

Then, we have :

$$u_{n+1} \leq 3 \leftarrow \forall n \in IN, u_n \leq 3$$

3) The attached function of the sequence (u_n) is

$$f(x) = \frac{x}{3} + 2$$

It is an increasing function, then (u_n) is a monotonous sequence, and we have

$$u_1 \geq u_0 = 2$$

We conclude that (u_n) is increasing.

4) From the previous answers, the sequence (u_n) is increasing and limited from above, and from there it is convergent.