Chapter 2 : Numerical sequences

1) <u>Definition :</u> A numerical sequence is a function f with $f: IN \rightarrow IR$

 $n \rightarrow f(n),$

where f(n) is the nth term in the sequence. The sequences are denoted by $(u_n), (a_n), (x_n), \dots$... <u>Example</u>: 1) Let (a_n) and (x_n) is a sequences given by :

$$a_n: IN^* \to IR$$
$$n \to \frac{1}{n}.$$
$$x_n: IN \to IR$$
$$n \to 5^n.$$

2)Increasing and decreasing sequences :

A numerical sequence (a_n) is:

- 1) Strictly increasing if, for all $n : a_n < a_{n+1}$.
- 2) Increasing if, for all $n : a_n \le a_{n+1}$.
- 3) Strictly decreasing if, for all $n : a_n > a_{n+1}$.
- 4) Decreasing if, for all $n : a_n \ge a_{n+1}$.
- 5) Monotonic if it is increasing or decreasing .
- 6) Non-monotonic if it is neither increasing nor decreasing.
- 7) Fixed if, for all $n : a_n = a_{n+1}$.

Example Recall the sequences (a_n) , (b_n) and (c_n) , given by $a_n = n$, $b_n = (-1)^n$ and $c_n = \frac{1}{n}$. We see that:

- 1. for all $n, a_n = n < n + 1 = a_{n+1}$, therefore (a_n) is strictly increasing;
- 2. $b_1 = -1 < 1 = b_2, b_2 = 1 > -1 = b_3$, therefore (b_n) is neither increasing nor decreasing, i.e. non-monotonic;
- 3. for all $n, c_n = \frac{1}{n} > \frac{1}{n+1} = c_{n+1}$, therefore (c_n) is strictly decreasing.

Proposition 01 :

Let (a_n) a numerical sequences given by a regressive expression : $a_{n+1} = f(a_n), \forall n \in IN$, If f is increasing, then (a_n) is monotonic.

Exemple : Let the numerical sequence

$$a_{n+1} = 3a_n - 2, \forall n \in IN.$$

 $a_0 = 2.$

We have $f(a_n) = 3a_n - 2$, with

$$f' = 3 > 0 \rightarrow f$$
 is increasing,

Then (a_n) is monotonic such that

$$a_1 - a_0 = 4 - 2 = 2 > 0.$$

Finally (a_n) is increasing.

3)Bounded sequences :

A numerical sequence (a_n) is:

- 1) Bounded above if, for all n, there exists U such that : $a_n \leq U$. U is an upper bound for (a_n) .
- Bounded below if, for all n, there exists U such that : a_n ≥ U.
 U is an lower bound for (a_n).

3) Bounded if it is both bounded above and bounded below.

Example

- 1. The sequence $\left(\frac{1}{n}\right)$ is bounded since $0 < \frac{1}{n} \le 1$.
- 2. The sequence (n) is bounded below but is not bounded above because for each value C there exists a number n such that n > C.

3. Given the sequence $a_n = (1, 2, 1, 2, ...)$, we can see that the interval [1, 2] contains every term in a_n . This sequence is therefore a bounded sequence.

<u>4)Limit of sequence :</u> Definition : A numerical sequence (a_n) converges to a real number l if : $\lim_{n \to +\infty} a_n = l$

Example :

Consider the sequence (a_n) : $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots, 1 + \frac{1}{n}, \dots$

The sequence (a_n) is converge and has the limit 1.

Theorem 2.3 (Algebraic Limit Theorem). Let $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b_n$

b. Then, (i) $\lim_{n\to\infty} ca_n = ca$ for all $c \in \mathbb{R}$ (ii) $\lim_{n\to\infty} (a_n + b_n) = a + b$ (iii) $\lim_{n\to\infty} (a_n b_n) = ab$ (iv) $\lim_{n\to\infty} (a_n/b_n) = a/b$ provided $b \neq 0$

Example 2.4. If $(x_n) \rightarrow 2$, then $((2x_n - 1)/3) \rightarrow 1$.

Proposition 2

Let $(a_n), (b_n)$ and (c_n) are a numerical sequences. If $b_n \le a_n \le c_n, \forall n \in IN.$

And

$$\lim_{n\to+\infty}b_n=\lim_{n\to+\infty}c_n=l.$$

Then:

$$\lim_{n\to+\infty}a_n=l.$$

Example : Let (a_n) a numerical sequence given by

$$\forall n \in IN^*: a_n = 1 - \frac{sin(n)}{n^2}.$$

Since : $\forall n \in IN, -1 \leq sin(n) \leq 1$, we obtain :
 $\forall n \in IN^*: 1 - \frac{1}{n^2} \leq a_n \leq 1 + \frac{1}{n^2}$

We have :

$$\lim_{n \to +\infty} 1 - \frac{1}{n^2} = \lim_{n \to +\infty} 1 + \frac{1}{n^2} = 1,$$

then:

$$\lim_{n\to+\infty}a_n=1.$$

5)<u>Divergence sequences</u>: A sequence that does not have a limit or in other words, does not converge, is said to be divergent.

Example :

Consider the sequence (a_n) :

$$a_n: IN \to IR$$

 $n \to (-1)^n$.

The sequence does not converge because have two limites 1 and -1.

6)Adjacent sequences

<u>Definition :</u> two sequences are adjacent if the first is increasing, the second is decreasing, and their difference converges to 0.

Example :

Consider the sequences
$$(a_n)$$
 and (b_n) :
 $a_n = 1 + \frac{1}{n^2}, \quad b_n = 1 - \frac{1}{n^2}$

7)Arithmetic sequence

Definition: An arithmetic sequence is a sequence of the form

The number *a* is the **first term**, and *d* is the **common difference** of the sequence. The *n***th term** of an arithmetic sequence is given by

$$a_n = a + (n-1)d$$

Example :

Consider the sequence (a_n) :

 $1, 3, 7, \dots, 2n + 1, \dots$

We have

$$a_{n+1} - a_n = (2n+2) + 1 - 2n - 1 = 2,$$

Then (a_n) is a arithmetic sequence with the first term $a_0 = 1$ is and the common difference 2.

Definition: For the arithmetic sequence $a_n = a + (n-1)d$, the *n*th partial sum

$$S_n = a + (a+d) + (a+2d) + (a+3d) + \dots + [a+(n-1)d]$$

is given by either of the following formulas.

$$1)S_n = n\left(\frac{a_0 + a_n}{2}\right)$$
$$2)S_n = number of terms\left(\frac{the first term + the last term}{2}\right)$$

8)Geometric sequence Definition :

A geometric sequence has the form

in which each term is obtained from the preceding one by multiplying by a constant, called the **common ratio** and often represented by the symbol r. Note that r can be positive, negative or zero. The terms in a geometric sequence with negative r will oscillate between positive and negative.

It is easy to see that the formula for the *n*th term of a geometric sequence is

$$a_n = ar^{n-1}$$
.

Example :

Consider the sequence (a_n) : 1, 5, 25, ..., 5^n , ..., ...

We have

$$\frac{a_{n+1}}{a_n} = \frac{5^{n+1}}{5} = 5.$$

Then (a_n) is a geometric sequence with the first term $a_0 = 1$ is and the common ratio 5.

Definition: The nth partial sum of a geometic sequence is given by :

$$S_n = the \ first \ term \left(\frac{1 - (common \ ratio)^{number \ of \ terms}}{1 - common \ ratio} \right).$$

Proposition :

The convergence of the geometric sequences depends on the value of the common ratio *a*:

- If : -1 < a < 1, the sequence converges.
- If : a > 1, the sequence divergents .
- If : $a \leq -1$, the sequence divergents.