Chapter 2 : Numerical sequences

1) Definition :

A numerical sequence is a function f with

$$
\begin{gathered}
f: I N \rightarrow I R \\
n \rightarrow f(n),
\end{gathered}
$$

where $f(n)$ is the nth term in the sequence. The sequences are denoted by $\left(u_{n}\right),\left(a_{n}\right),\left(x_{n}\right), \ldots \ldots$

Example:

1) Let $\left(a_{n}\right)$ and $\left(x_{n}\right)$ is a sequences given by :

$$
\begin{gathered}
a_{n}: I N^{*} \rightarrow I R \\
n \rightarrow \frac{1}{n} . \\
x_{n}: I N \rightarrow I R \\
n \rightarrow 5^{n} .
\end{gathered}
$$

2)Increasing and decreasing sequences:

A numerical sequence $\left(a_{n}\right)$ is:

1) Strictly increasing if, for all $\mathrm{n}: \boldsymbol{a}_{\boldsymbol{n}}<\boldsymbol{a}_{\boldsymbol{n}+\boldsymbol{1}}$.
2) Increasing if, for all $\mathrm{n}: \boldsymbol{a}_{\boldsymbol{n}} \leq \boldsymbol{a}_{\boldsymbol{n}+\boldsymbol{1}}$.
3) Strictly decreasing if, for all $\mathrm{n}: \boldsymbol{a}_{\boldsymbol{n}}>\boldsymbol{a}_{\boldsymbol{n}+1}$.
4) Decreasing if, for all $\mathrm{n}: \boldsymbol{a}_{\boldsymbol{n}} \geq \boldsymbol{a}_{\boldsymbol{n + 1}}$.
5) Monotonic if it is increasing or decreasing .
6) Non-monotonic if it is neither increasing nor decreasing.
7) Fixed if, for all $n: a_{n}=a_{n+1}$.

Example Recall the sequences $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$, given by $a_{n}=n, b_{n}=(-1)^{n}$ and $c_{n}=\frac{1}{n}$. We see that:

1. for all $n, a_{n}=n<n+1=a_{n+1}$, therefore (a_{n}) is strictly increasing;
2. $b_{1}=-1<1=b_{2}, b_{2}=1>-1=b_{3}$, therefore (b_{n}) is neither increasing nor decreasing, i.e. non-monotonic;
3. for all $n, c_{n}=\frac{1}{n}>\frac{1}{n+1}=c_{n+1}$, therefore (c_{n}) is strictly decreasing.

Proposition 01:

Let $\left(a_{n}\right)$ a numerical sequences given by a regressive expression :

$$
a_{n+1}=f\left(a_{n}\right), \forall n \in I N
$$

If f is increasing, then $\left(a_{n}\right)$ is monotonic.
Exemple: Let the numerical sequence

$$
\begin{gathered}
a_{n+1}=3 a_{n}-2, \forall n \in I N . \\
a_{0}=2 .
\end{gathered}
$$

We have $f\left(a_{n}\right)=3 a_{n}-2$, with

$$
f^{\prime}=3>0 \rightarrow f \text { is increasing },
$$

Then $\left(a_{n}\right)$ is monotonic such that

$$
a_{1}-a_{0}=4-2=2>0 .
$$

Finally $\left(a_{n}\right)$ is increasing.

3)Bounded sequences :

A numerical sequence $\left(a_{n}\right)$ is:

1) Bounded above if, for all n, there exists \boldsymbol{U} such that : $a_{n} \leq \boldsymbol{U}$. U is an upper bound for $\left(a_{n}\right)$.
2) Bounded below if, for all n, there exists \boldsymbol{U} such that : $a_{n} \geq \boldsymbol{U}$. U is an lower bound for $\left(a_{n}\right)$.
3) Bounded if it is both bounded above and bounded below.

Example

1. The sequence $\left(\frac{1}{n}\right)$ is bounded since $0<\frac{1}{n} \leq 1$.
2. The sequence (n) is bounded below but is not bounded above because for each value C there exists a number n such that $n>C$.
3. Given the sequence $a_{n}=(1,2,1,2,1,2 \ldots)$, we can see that the interval [1, 2] contains every term in a_{n}. This sequence is therefore a bounded sequence.

4)Limit of sequence:

Definition : A numerical sequence ($\boldsymbol{a}_{\boldsymbol{n}}$) converges to a real number \boldsymbol{l} if :

$$
\lim _{n \rightarrow+\infty} a_{n}=l
$$

Example :

Consider the sequence (\boldsymbol{a}_{n}):

$$
2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots \ldots, 1+\frac{1}{n}, \ldots \ldots
$$

The sequence $\left(a_{n}\right)$ is converge and has the limit 1.

Theorem 2.3 (Algebraic Limit Theorem). Let $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=$ b. Then,
(i) $\lim _{n \rightarrow \infty} c_{n}=$ ca for all $c \in R$
(ii) $\lim _{n+\infty}\left(a_{n}+b_{n}\right)=a+b$
(iii) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a b$
(ivi) $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=a / b$ provided $b \neq 0$
Example 2.4. If $\left(x_{n}\right) \rightarrow 2$, then $\left(\left(2 x_{n}-1\right) / 3\right) \rightarrow 1$.

Proposition 2

Let $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ are a numerical sequences. If

$$
b_{\boldsymbol{n}} \leq \boldsymbol{a}_{\boldsymbol{n}} \leq \boldsymbol{c}_{\boldsymbol{n}}, \forall \boldsymbol{n} \in \mathbf{I N}
$$

And

$$
\lim _{n \rightarrow+\infty} b_{n}=\lim _{n \rightarrow+\infty} c_{n}=l .
$$

Then:

$$
\lim _{n \rightarrow+\infty} a_{n}=l .
$$

Example: Let (a_{n}) a numerical sequence given by

$$
\forall n \in I N^{*}: a_{n}=1-\frac{\sin (n)}{n^{2}}
$$

Since : $\forall n \in I N,-1 \leq \sin (n) \leq 1$, we obtain :

$$
\forall n \in I N^{*}: 1-\frac{1}{n^{2}} \leq a_{n} \leq 1+\frac{1}{n^{2}}
$$

We have :

$$
\lim _{n \rightarrow+\infty} 1-\frac{1}{n^{2}}=\lim _{n \rightarrow+\infty} 1+\frac{1}{n^{2}}=1
$$

then:

$$
\lim _{n \rightarrow+\infty} a_{n}=1
$$

5)Divergence sequences: A sequence that does not have a limit or in other words, does not converge, is said to be divergent.
Example:
Consider the sequence (a_{n}):

$$
\begin{gathered}
a_{n}: I N \rightarrow I R \\
n \rightarrow(-1)^{n} .
\end{gathered}
$$

The sequence does not converge because have two limites 1 and $\mathbf{- 1}$.
6) Adjacent sequences

Definition : two sequences are adjacent if the first is increasing, the second is decreasing, and their difference converges to 0 .

Example :

Consider the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$:

$$
a_{n}=1+\frac{1}{n^{2}}, \quad b_{n}=1-\frac{1}{n^{2}}
$$

7)Arithmetic sequence

Definition: An arithmetic sequence is a sequence of the form

$$
a, a+d, a+2 d, a+3 d, a+4 d, \ldots
$$

The number a is the first term, and d is the common difference of the sequence. The $\boldsymbol{n t h}$ term of an arithmetic sequence is given by

$$
a_{n}=a+(n-1) d
$$

Example:
Consider the sequence (a_{n}):

$$
1,3,7, \ldots \ldots, 2 n+1, \ldots \ldots
$$

We have

$$
a_{n+1}-a_{n}=(2 n+2)+1-2 n-1=2
$$

Then $\left(a_{n}\right)$ is a arithmetic sequence with the first term $a_{0}=1$ is and the common difference 2.

Definition: For the arithmetic sequence $a_{n}=a+(n-1) d$, the nth partial sum

$$
S_{n}=a+(a+d)+(a+2 d)+(a+3 d)+\ldots+[a+(n-1) d]
$$

is given by either of the following formulas.

$$
\text { 1) } S_{n}=n\left(\frac{a_{0}+a_{n}}{2}\right)
$$

$$
\text { 2) } S_{n}=\text { number of terms }\left(\frac{\text { the first term }+ \text { the last term }}{2}\right)
$$

8)Geometric sequence

Definition :

A geometric sequence has the form
$a, a r, a r^{2}, a r^{3}, \ldots$
in which each term is obtained from the preceding one by multiplying by a constant, called the common ratio and often represented by the symbol r. Note that r can be positive, negative or zero. The terms in a geometric sequence with negative r will oscillate between positive and negative.

It is easy to see that the formula for the nth term of a geometric sequence is

$$
a_{n}=a r^{n-1}
$$

Example :

Consider the sequence (a_{n}):
$1,5,25, \ldots \ldots, 5^{n}, \ldots \ldots$.
We have

$$
\frac{a_{n+1}}{a_{n}}=\frac{5^{n+1}}{5}=5
$$

Then $\left(a_{n}\right)$ is a geometric sequence with the first term $a_{0}=1$ is and the common ratio 5 .
Definition : The nth partial sum of a geometic sequence is given by :

$$
S_{n}=\text { the first term }\left(\frac{1-(\text { common ratio })^{\text {number of terms }}}{1-\text { common ratio }}\right) .
$$

Proposition :

The convergence of the geometric sequences depends on the value of the common ratio a :

- If : $-1<a<1$, the sequence converges .
- If : $a>1$, the sequence divergents .
- If : $a \leq-1$, the sequence divergents.

