Reminder about vectors

THE UNIT VECTOR : it is a module vector equal to unity (the number one). We can express a vector parallel to the unit vector in the form:

$$
\vec{V}=\vec{u} V=V \vec{u} \quad 0 \xrightarrow{\vec{u}}
$$

Sum of two Vectors :

We calculate the module of the resulting vector from the law of cosines which we will demonstrate later:

$$
D=\sqrt{V_{1}^{2}+V_{2}^{2}-2 V_{1} V_{2} \cos \theta}
$$

$$
\text { Subtracting two vectors } \overrightarrow{\mathrm{D}}=\overrightarrow{\mathrm{V}}_{2}-\vec{V}_{1}
$$

the vector D represents the result of the subtraction between the two vectors We can write $\overrightarrow{\mathrm{D}}=\overrightarrow{\mathrm{V}}_{2}-\vec{V}_{1}$

This equation can also

$$
\text { : to be written: } \vec{D}=\vec{V}_{2}+\left(-\vec{V}_{1}\right)
$$

The module of vector D

$$
D=\sqrt{V_{1}^{2}+V_{2}^{2}-2 V_{1} V_{2} \cos \theta}
$$

Différence de deux vecteurs

Dot product between two vectors

Let there be two vectors and their scalar product is a product which gives as result
a scalar

$$
\overrightarrow{V_{1}} \cdot \overrightarrow{V_{2}}=\left|\overrightarrow{V_{1}}\right| \cdot\left|\overrightarrow{V_{2}}\right| \cdot \cos \alpha
$$

Such that α DIS the angle between the two vectors
Let the coordinates of the vector $(x 1, y 1, z 1)$ and that of the vector $(x 2, y 2, z 2)$ be Their scalar product gives

$$
\begin{aligned}
& \overrightarrow{V_{1}} \vec{V}_{2}=\left(x_{1} \vec{i}+y_{1} \vec{j}+z_{1} \vec{k}\right)\left(x_{2} \vec{i}+y_{2} \vec{j}+z_{2} \vec{k}\right) \\
& \vec{V}_{1} \cdot \vec{V}_{2}=\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
\end{aligned}
$$

From where

$$
\left|\vec{V}_{1}\right|=\sqrt{\left(x_{1}^{2}+y_{1}^{2}+z_{1}^{2}\right)}
$$

Vector product

Let two vectors be $\overrightarrow{V_{1}}$ et $\overrightarrow{V_{2}}$ their cross product is a directed vector

$$
\vec{V}_{1} \wedge \vec{V}_{2}=\vec{V}
$$

the direction is perpendicular to the plane formed by the vectors its standard is

$$
\left|\vec{V}_{1} \wedge \vec{V}_{2}\right|=\left|\vec{V}_{1}\right| \cdot\left|\vec{V}_{2}\right| \cdot \sin \alpha \quad \vec{\imath} \wedge \vec{\imath}=0 \vec{\imath} \wedge \vec{\jmath}=\vec{k}
$$

$$
\begin{aligned}
& \overrightarrow{V_{1}} \wedge \overrightarrow{V_{2}}=\left|\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=\left|\begin{array}{l}
y_{1} \\
y_{2} \\
z_{2}
\end{array}\right| \vec{i}-\left|\begin{array}{l}
x_{1} \\
x_{2} \\
z_{1}
\end{array}\right| \vec{j}+\left|\begin{array}{l}
x_{1} \\
x_{2}
\end{array} y_{z_{2}}^{y_{1}}\right| \vec{k}= \\
& =\left(y_{1} z_{2}-z_{1} y_{2}\right) \vec{i}-\left(x_{1} z_{2}-z_{1} x_{2}\right) \vec{j}+\left(x_{1} y_{2}-y_{1} x_{2}\right) \vec{k}
\end{aligned}
$$

directed work 1

Exercise1:

In a homogeneous orthogonal feature OXYZ we consider the following three rays:

$$
\vec{V}_{1}=3 \vec{i}-4 \vec{j}+4 \vec{k} \quad \vec{V}_{3}=5 \vec{i}-\vec{j}+3 \vec{k} \quad \vec{V}_{2}=2 \vec{i}+3 \vec{j}-4 \vec{k}
$$

1- Calculate their modules.
2-Calculate the components and modules of the vectors:

$$
\vec{A}=\vec{V}_{1}+\vec{V}_{2}+\vec{V}_{3} \quad \vec{B}=2 \vec{V}_{1}-\vec{V}_{2}+\vec{V}_{3}
$$

3- Determine the unit vector $\overrightarrow{\boldsymbol{U}}$ carried by the vector $\vec{C}=\vec{V}_{1}+\vec{V}_{3}$
4-Calculate the scalar and vector product of the vectors $\vec{V}_{1} \cdot \vec{V}_{3}$ and then deduce the angle between them

3- Calculate the products $\vec{V}_{2} \wedge \vec{V}_{3}$.

Exercise2:

In a homogeneous orthogonal feature $O X Y Z$, we consider the two points $P(2,-1,3), Q$ (5,1,-1).
1- Give the components of the ray, $\overrightarrow{P Q}$ then calculate the distance between P and Q.
2- Find \vec{U}, the unit radius of the ray $\overrightarrow{O A}$, where $\overrightarrow{P Q}=\overrightarrow{O A}$

Exercise3:

1/ Prove that the area of a parallelogram is $|\vec{A} \wedge \vec{B}|$ where $|\vec{A}|$ and $|\vec{B}|$ are two sides of the parallelogram formed by the two rays.
2/ Prove that these two rays are perpendicular if $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$.

Exercise 4:

Find the sum of the following three rays

$$
\vec{V}_{1}=5 \vec{i}-2 \vec{j}+2 \vec{k} \quad \vec{V}_{2}=-3 \vec{i}+\vec{j}-7 \vec{k} \quad \vec{V}_{3}=4 \vec{i}+7 \vec{j}+6 \vec{k}
$$

Calculate the long resultant as well as the angles formed with the axes $O X, O Y, O Z$.

