Microeconomics

- Ordinal Utility

Indifference Curve, Budget Line And

Consumer Equilibrium

ndifference Curve

Based on Ordinal Approach

Explains behaviour of consumer in terms of his preferences.

- Indifference curve may be defined as locus of points, each representing a different combination of two substitute goods, which yield the same utility or level of satisfaction to the consumer.

Indifference Curve And Budget Line
Indifference curve is derived from indifference schedule.

Indifference Curves

- An indifference curve shows all combinations of goods that provide an equal level of utility or satisfaction
- Each indifference curve (Ul, Um, and Uh) represents one level of utility
- The indifference curve Um hasfour points labeled on it: A, B, C, and D
- Consider Lilia's preferencesfor the tradeoffs that she faces in her two main relaxation activities: eating doughnuts and reading paperback books

The Shape of an Indifference Curve

- Since an indifference curve representsa set of choices that have the same level of utility, Lilia must receive an equal a mount of utility
- She would also receive the same utility from any of the unlabeled intermediate points along this indifference curve
- Indifference curves have a roughly similarshape in two ways:

1. They are downward sloping from left to right
2. They are convex with respect to the origin. In other words, they are steeper on the left and flatter on the right

- The downward slope of the indifference curve means that Lilia must trade off less of one good to get more of the other, while holding utility constant

The Field of Indifference Curves

- Each indifference curve represents the choicesthat provide a single level of utility
- Every level of utility will have its own indifference curve
- Lilia's preferences will include an infinite number of indifference curves lying nestled together on the diagram
- These arguments about the sha pes of indifference curves a nd about higher or lower levels of utility do not require any numeric al estimates of utility

The Individuality of Indifference Curves

- Each person determines his or her own preferences and utility
- While indifference curves have the same general shape-they slope down, and the slope is steeper on the left and flatter on the right-the specific shape of indifference curvescan be different for every person
- People seek the highest level of utility, which meansthat they wish to be on the highest possible indifference curve, but people are limited by their budget constra ints

Preferences: What the Consumer Wants

Indifference curve:
shows consumption bundles that give the consumer the same level of satisfaction

A, B, and all other bundles on $\boldsymbol{I}_{\mathbf{1}}$ make Ahmed equally happy - he is indifferent between them.

roperties Of Indifference Curve

Negatively sloping

Neither intersect nor be tangent with one another

Higher the indifference curve represent a higher level of satisfaction.

Convex to origin

Four Properties of Indifference Curves

1. Indifference curves are downwardsloping.

If the quantity of fish is reduced, the quantity of mangos must be increased to keep Ahmed equally happy.

Quantity
of Mangos

Four Properties of Indifference Curves

2. Higher indifference curves are preferred to lower ones.

Ahmed prefers every bundle on $\boldsymbol{I}_{\mathbf{2}}$ (like \mathbf{C}) to every bundle on $\boldsymbol{I}_{\mathbf{1}}$ (like A).
He prefers every bundle on $\boldsymbol{I}_{\mathbf{1}}$ (like A) to every bundle on $\boldsymbol{I}_{\mathbf{0}}$ (like D).

Quantity
of Mangos

A few of Ahmed's indifference curves

Four Properties of Indifference Curves

3. Indifference curves cannot cross.

Suppose they did. Ahmed should prefer B to \mathbf{C}, since \mathbf{B} has more of both goods.
Yet, Ahmed is indifferent between \mathbf{B} and \mathbf{C} :
He likes \mathbf{C} as much as \mathbf{A} (both are on \boldsymbol{I}_{4}).
He likes \mathbf{A} as much as \mathbf{B} (both are on $\boldsymbol{I}_{\mathbf{1}}$).

Four Properties of Indifference Curves

4. Indifference curves are bowed inward.

Ahmed is willing to give up more mangos for a fish if he has few fish (A) than if he has many (B).

The Marginal Rate of Substitution

One Extreme Case: Perfect Substitutes

 Perfect substitutes: two goods withNickels $\begin{aligned} & \text { straight-line indifference cu } \\ & \text { constant MRS } \\ & \text { Example: nickels \& dimes }\end{aligned}$
Consumer is always willing to trade two nickels for one dime.

Another Extreme Case: Perfect Complements

Perfect complements: two goods with right-angle indifference curves

Less Extreme cases:

Close Substitutes and Close Complements

Quantity
of Pepsi
:---:
curves for close
substitutes are
not very bowed

Quantity
of Coke

Quantity
of hot
dog buns

Indifference
curves for
close
complements
are very
bowed

Quantity

of hot dogs

dget Line

- A budget line shows all possible combination of two commodities that could be pursued with a given amount of income.
- straight line that slope downwards
- The budget line, also known as the budget constrain
- The equation of the budget line equation can be represented as follows:

$$
\mathbf{M}=\mathbf{P x} \times \mathbf{Q x}+\mathbf{P y} \times \mathbf{Q y}
$$

Vhere,
$P x=$ price of product X.
$\mathbf{Q x}=$ the quantity of product X .
Py = Price of product Y.
$\mathbf{Q y}=$ quantity of product Y .
$\mathrm{M}=$ consumer's income.

	Budget schedule		
Combination	Cream biscuit (@ ₹10 per packet)	Plain biscuit (@ ₹5 per packet)	Budget allocation
A	0	10	$10 \times 0+5 \times 10=$ 50
B	1	8	$10 \times 1+5 \times 8=50$
C	2	6	$10 \times 2+5 \times 6=50$
D	3	4	$10 \times 3+5 \times 4=50$
E	4	2	$10 \times 4+5 \times 2=50$
F	5	0	$10 \times 5+5 \times 0=50$

hange in budget line

1. Change in income

Decrease lead to parallel inward shift
2. Change in price-

Increase in price of goods \mathbf{X} rotate the line clockwise.

Optimization: What the Consumer Chooses

A is the optimum: the point on the budget constraint that touches the highest possible indifference curve.

Ahmed prefers \mathbf{B} to \mathbf{A}, but he cannot afford \mathbf{B}.

Ahmed can afford C and D, but \mathbf{A} is on a higher indifference curve.

Optimization: What the Consumer Chooses

At the optimum, slope of the indifference curve equals slope of the budget constraint:
$\mathrm{MRS}=\boldsymbol{P}_{\mathrm{F}} / \boldsymbol{P}_{\mathrm{M}}$
marginal value of fish (in terms of mangos)
price of fish (in terms of mangos)

Consumer optimization is another example of "thinking at the margin."

The Effects of an Increase in Income

An increase in income shifts the budget constraint outward.

If both goods are "normal," Ahmed buys more of each.

ACTIVELEARNING 3 Inferior vs. nomal goods

- An increase in income increasesthe quantity demanded of nomal goods and reduces the quantity demanded of inferior goods.
- Suppose fish is a normal good but mangosare an inferiorgood.
- Use a diagram to show the effects of an increase in income on Ahmed'soptimal bundle of fish and mangos.

ACTIVE LEARNING 3 Answers

If mangos are inferior, the new optimum will contain fewer mangos.

The Effects of a Price Change

Initially,

$$
\boldsymbol{P}_{\mathrm{F}}=\$ 4
$$

$$
P_{M}=\$ 1
$$

$\boldsymbol{P}_{\mathrm{F}}$ falls to $\$ 2$
budget constraint rotates outward, Ahmed buys more fish and fewer mangos.

The Income and Substitution Effects

A fall in the price of fish hastwo effects on Ahmed's optimal consumption of both goods.

- Income effect

A fall in $\mathbf{P}_{\mathbf{F}}$ boosts the purchasing power of Ahmed's inc ome, allows him to buy more mangos and more fish.

- Substitution effect

A fall in $\mathbf{P}_{\mathbf{F}}$ makes mangos more expensive relative to fish, causes Ahmed to buy fewer mangos \& more fish.
Notice: The net effect on mangos is ambiguous.

The Income and Substitution Effects

Initial Quantity optimum at A. of Mangos
\mathbf{P}_{F} falls.
Substitution effect from \mathbf{A} to \mathbf{B}, buy more fish and fewermangos.

Income effect from B to C, buy more of both goods.

Do you think the substitution effect would be bigger for substitutes or complements?

- Draw an indifference curve for Coke a nd Pepsi, and, on a separate graph, one for hot dogs and hot dog buns.
- On each graph, show the effects of a relative price change (keeping the consumer on the initial indifference curve).

But the substitution effect is bigger for substitutes than complements.

Deriving Ahmed's Demand Curve for Fish

A: When $\boldsymbol{P}_{\mathbf{F}}=\$ Z_{\text {, }}$ Ahmed demands 350 fisth.

Application 1: Giffen Goods

- Do all goodsobey the Law of Demand?
- Suppose the goodsare potatoes and meat, and potatoes are an inferiorgood.
- If price of potatoes rises,
- substitution effect: buy less potatoes
- income effect: buy more potatoes
- If income effect >substitution effect, then potatoesare a Giffen good, a good for which an increase in price raises the quantity demanded.

Application 1:

CONCLUSION:
 Do People Really Think This Way?

- People do not make spending decisions by writing down their budget constra ints a nd indifference curves.
- Yet, they try to make the choicesthat maximize their satisfa ction given their limited resources.
- The theory in this chapter is only intended as a metaphorfor how consumers make decisions.
- It expla ins consumer behaviorfa inly well in many situations and provides the basis for more advanced economic a nalysis.

CHAPTER SUMMARY

- A consumer's budget constra int shows the possible combinations of different goods she can buy given her income and the prices of the goods. The slope of the budget constraint equals the relative price of the goods.
- An inc rease in income shifts the budget constraint outward. A change in the price of one of the goods pivots the budget constra int.
- A consumer's indifference curves represent her preferences. An indifference curve shows all the bundles that give the consumer a certa in level of happiness. The consumer prefers points on higher indifference curves to points on lowerones.
- The slope of an indifference curve at a ny point is the marginal rate of substitution - the rate at which the consumer is willing to trade one good for the other.

CHAPTER SUMMARY

- The consumer optimizes by choosing the point on her budget constra int that lies on the highest indifference curve. At this point, the marginal rate of substitution equals the relative price of the two goods.
- When the price of a good falls, the impact on the consumer'schoicescan be broken down into two effects, an income effect and a substitution effect.

CHAPTER SUMMARY

- The income effect is the change in consumption that anises because a lower price makesthe consumer better off. It is represented by a movement from a lower indifference curve to a higher one.
- The substitution effect is the change that a rises beca use a price change encourages greater consumption of the good that has become relatively cheaper. It is represented by a movement along an indifference curve.
- THE THEO RY OF Ordinal Utility can be applied in many situations. It can explain why demand curves can potentially slope upward, why higher wages could either increase or decrease labor supply, and why higher interest rates could either increase ordecrease saving.

More Quick Review

- What is the purpose, use, and sha pe of indifference curves?
- How doesone indifference curve differ from another?
- How do you find the consumer equilibrium using indifference curves and a budget constra int?

