
1 Elements of set theory and applications

De�nition
A set E is any collection of objects, called elements of set E. If the number

of these objects is �nite, it is called the cardinal of E and is denoted card(E); if
E has in�nitely many elements, it is said to be of in�nite cardinal and is denoted
CardE =1.
If an object x is an element of E, x is said to belong to E and is denoted

x 2 E. If x is not an element of E, we note x =2 E.
Example
N (R, Z respectively) is the set of natural numbers (real, integer respectively).
Parts of a set
De�nition
A set A is said to be included in a set B, or A is a part of set B, or A is

a subset of B if any element of A is an element of B. We note A � B and
formally have :

A � B , 8x(x 2 A) x 2 B).

De�nition
When A is not a part of B, we note A * B and formally have :

A * B , 9x((x 2 A) ^ (x =2 B)).

The set of all parts of a set A is denoted P (A):
Example
Let A = fa; b; cg, then

P (A) = f?; fag ; fbg ; fcg ; fa; bg ; fa; cg ; fb; cg ; Ag .

Property:
Let A be a set, then ? 2 P (A) and A 2 P (A).
De�nition
Let A and B two sets, A is said to be equal to B, denoted A = B, if they

have the same elements.
Formally we have :

A = B , 8x(x 2 A, x 2 B)
, (A � B) ^ (B � A).

Operations on sets
De�nition
Let A and B be two sets.
- The set of elements of A that also belong to B is called the intersection of

A and B. (denoted A \B)
- The set of elements of A and those of B is called the union of A and B.

(denoted A [B)
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Formally, we have :

A \B = fx; (x 2 A) ^ (x 2 B)g.
A [B = fx; (x 2 A) _ (x 2 B)g.

Example
Let A = fa; b; c; 1; 3g, B = fb; c; d; 1; 0; 8g, alors :

A \B = fb; c; 1g.
A [B = fa; b; c; d; 0; 1; 3; 8g .

Proposition
Let A, B and C be three parts of E, we have :

A \ (B [ C) = (A \B) [ (A \ C).
A [ (B \ C) = (A [B) \ (A [ C).

The intersection is said to be distributive with respect to the union and vice
versa.
Proof
Let�s �x

x 2 A \ (B [ C)
we have

[x 2 A and x 2 B [ C],
hence

(x 2 A and x 2 B)
or

(x 2 A and x 2 C),
so

x 2 (A \B) [ (A \ C),
hence the inclusion in one direction.
In the other direction, consider x as an element of the second term, then

x 2 A \B or x 2 A \ C.

In both cases, we have
x 2 A and x 2 B [ C,

what needs to be demonstrated.
The second equality can be demonstrated in the same way.
De�nition
If A \ B = ? we say that A and B are two disjoint sets, and if moreover

E = A [ B, we say that A is the complementary of B in E, or that A and B
are two complementary sets in E, and we note :

A = CEB or B = CEA or A = EnB.
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Property:
Let E be a set and A a part of E. The complementary of A in E is the set

CEA such that

CEA = fx 2 E;x =2 Ag .

Example
Let E = f1; 4; a; d; �; �; �g and A = f4; ; �; �g, then

CEA = f1; a; d; �g :

Proposition
Let E be a set and A and B two parts of E, then :
1. A � B , CEB � CEA.
2. CE (CEA) = A.
3. CE(A \B) = CEA [ CEB:
4. CE(A [B) = CEA \ CEB:
Proof 1.

A � B

, 8x 2 E; ((x 2 A)) (x 2 B))
, ((x =2 B)) (x =2 A))
, 8x 2 E; ((x 2 CEB)) (x 2 CEA))
, CEB � CEA:

2. Let x 2 E, then

x 2 CE (CEA)

, x =2 CEA
, x 2 A:

so,
CE (CEA) = A:

3. Let x 2 E, then

x 2 CE(A \B)
, x =2 A \B
, (x =2 A) _ (x =2 B)
, (x 2 CEA) _ (x 2 CEB)
, x 2 (CEA [ CEB).

so
CE(A \B) = CEA [ CEB.
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4. Let x 2 E, then

x 2 CE(A [B)
, x =2 A [B
, (x =2 A) ^ (x =2 B)
, (x 2 CEA) ^ (x 2 CEB)
, x 2 (CEA \ CEB).

so
CE(A [B) = CEA \ CEB.

Remark
From the �rst property we deduce that :

CEE = ?:

<de�nition/>
The product of two sets E and F , denoted E � F , is the set of pairs (x; y)

such that x 2 E and y 2 F , i.e.

E � F = f(x; y)=x 2 E et y 2 Fg.

We agree that

8(x; y), (x0; y0) 2 A� B, (x; y) = (x0; y0), (x = x0) ^ (y = y0).

Example
Let A = f1; 2g, B = f3; 4g, then

A� B = f(1; 3) ; (1; 4) ; (2; 3) ; (2; 4)g .

Proposition
For (A;B) 2 [P (E)]2, (C;D) 2 [P (F )]2 , we have the following relations
1. (A� C) [ (B � C) = (A [B)� C.
2. (A� C) [ (A�D) = A� (C [D).
3. (A� C) \ (B �D) = (A \B)� (C \D).
Proof
Let�s show the �rst equality, the other two are treated in the same way.

(A� C) [ (B � C) = f(x; y) : (x; y) 2 A� C ou (x; y) 2 B � Cg
= f(x; y) : (x 2 A et y 2 C) ou (x 2 B et y 2 C)g
= f(x; y) : (x 2 A ou x 2 B) et y 2 C)g
= (A [B)� C.
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2 Applications and functions

De�nition
An application of a set E in a set F is any correspondence f between the

elements of E and those of F which to any element x 2 E maps a single element
y 2 F denoted f(x):
- y = f(x) is called the image of x and x is an antecedent of y:
- The application f from E into F is represented by f : E ! F .
- E is called the starting set and F the target set of the application f:
Formally, a correspondence f between two non-empty sets is an application

if and only if :
8x; x0 2 E : ((x = x0)) (f(x) = f(x0)) .

Example
1) f de�ned by :

f : R! R
x 7�! x2 + 4

is an application.
2) f de�ned by :

f : R! R

x 7�! x

x� 1

is not an application because there is an element x = 1 belonging to the
starting set that has no image in the target set.
De�nition
1) Two applications f and g are said to be equal if:
i. They have the same starting set E and the same target set F .
ii. 8x 2 E, f(x) = g(x).
2) The graph of an application f : E ! F is the set

�f = f(x; f(x)); x 2 Eg .

Composition of applications
De�nition
Let f : E ! F and g : F ! G, let g � f be the application of E in G de�ned

by :
8x 2 E, gof(x) = g(f(x)):

This application is called the composition of applications f and g.
Example
Given the applications

f : R! R+ , g : R+ ! R+
x 7�! x2 x 7�! x3
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So,

g � f : R! R+ , g : R+ ! R+
x 7�!

�
x2
�3
= x6 x 7�!

�
x3
�2
= x6

It is clear that f � g 6= g � f .
Restriction and extension of an application
De�nition
Given an application f : E ! F ..
1. We call the restriction of f to a non-empty subset X of E, the application

g : X ! F such that
8x 2 X, g(x) = f(x)

We note g = fX .
Given a set G such that E � G, we call an extension of the application f to

the set G, any application h from G into F such that f is the restriction of h
to E:
Example
Given the application

f : R+ ! R
x 7�! log x

so,

g : R! R+ , h : R+ ! R+
x ! log jxj x! log (2 jxj � x)

are two di¤erent extensions of f to R.
Images and reciprocal images
<de�nition/>
Let A � E and M � F .
1. We call the image of A by f the set of images of the elements of A denoted

:
f(A) = ff(x); x 2 Ag � F

2. The reciprocal image of M by f is the set of antecedents of the elements of
M , denoted by

f�1(M) = fx 2 E; f(x) 2Mg � E

Formally we have :

8y 2 F , (y 2 f(A), 9x 2 A; y = f(x))
8x 2 E,

�
x 2 f�1(M), f(x) 2M

�
.

Proposition
Let f : E ! F , A, B � E and M , N � F , then
1. f(A [B) = f(A) [ f(B)
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2. f(A \B) � f(A) \ f(B)
3. f�1(M [N) = f�1(M) [ f�1(N)
4. f�1(M \N) = f�1(M) \ f�1(N)
5. f�1 (CFM) = CEf�1(M).
Proof
1. Let y 2 F , then

y 2 f(A [B)
, 9x 2 A [B; y = f(x)
, 9x [(x 2 A) _ (x 2 B) ^ (y = f(x))]
, [9x (x 2 A) ^ (y = f(x))] ^ [9x (x 2 B) _ (y = f(x))]
, (y 2 f(A)) _ (y 2 f(B))
, y 2 f(A) [ f(B).

which shows that
f(A [B) = f(A) [ f(B).

2. Let y 2 F , then

y 2 f(A \B)
, 9x 2 A \B; y = f(x)
, 9x [(x 2 A) ^ (x 2 B) ^ (y = f(x))]
, [9x (x 2 A) ^ (y = f(x))] ^ [9x (x 2 B) ^ (y = f(x))]
, (y 2 f(A)) ^ (y 2 f(B))
, y 2 f(A) \ f(B).

which shows that
f(A \B) = f(A) \ f(B).

3. Let x 2 E, then

x 2 f�1(M [N)
, f(x) 2M [N
, f(x) 2M _ f(x) 2 N
,

�
x 2 f�1(M)

�
_
�
x 2 f�1(N)

�
, x 2 f�1(M) [ f�1(N).

which shows that
f�1(M [N) = f�1(M) [ f�1(N).

4. Let x 2 E, then

x 2 f�1(M \N)
, f(x) 2M \N
, f(x) 2M ^ f(x) 2 N
()

�
x 2 f�1(M)

�
^
�
x 2 f�1(N)

�
() x 2 f�1(M) \ f�1(N).
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which shows that

f�1(M \N) = f�1(M) \ f�1(N).

5. Let x 2 E, then

x 2 f�1 (CFM)

, f(x) 2 CFM
, (f(x) 2 F ) ^ (f(x) =2M)
, (x 2 E) ^

�
x =2 f�1 (M)

�
, x 2 CEf�1 (M) .

which shows that
f�1 (CFM) = CEf

�1 (M) .

Injective, surjective, bijective applications
De�nition
Let f : E ! F be an application
1) f is injective if and only if

8x; x0 2 E; f(x) = f(x0)) x = x0:

2) f is surjective if and only if

8y 2 F;9x 2 E; f(x) = y:

3) f is bijective , f is injective and surjective if and only if

8y 2 F;9!x 2 F ; f(x) = y:

The reciprocal application
Proposition
An application f : E ! F is bijective if and only if there exists a unique

application g : F ! E such that

fog = IdF and gof = IdE .

We say that f is invertible and g is called the "reciprocal application" or
"inverse application" of f . (denoted f�1)
Example
Consider the application

f : R� f2g ! F

x 7�! x+ 5

x� 2

with F a subset of R. Determine F so that the application f is bijective and
give the inverse application of f .
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To show that f is bijective is to examine the existence of solutions to the
equation y = f(x), for all y 2 F .
Let y 2 F , then

y = f(x)

, y =
x+ 5

x� 2
, y(x� 2) = x+ 5
, yx� x = 5 + 2y
, x(y � 1) = 5 + 2y

, x =
5 + 2y

y � 1 si y 6= 1

which shows that :

8y 2 R�f1g;9!x = 5 + 2y

y � 1 ; y = f(x).

to show that f is bijective, it remains to be seen whether

x =
5 + 2y

y � 1 2 R�f2g?

We have :

5 + 2y

y � 1 = 2, 5 + 2y = 2(y � 1)

, 5 = �2 what is impossible

which shows that
5 + 2y

y � 1 2 R�f2g, then

8y 2 R�f1g;9!x = 5 + 2y

y � 1 2 R�f2g; y = f(x),

so, is bijective if F = R�f1g and the inverse of f is :

f�1 : R� f1g ! R�f2g

y ! 5 + 2y

y � 1 .

Functions
De�nition
A function from E into F is any application f from a subset Df � E into

F . Df is called the "De�nition set of f".
Remark
All the notions given for applications can be adapted for functions.
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3 Binary relationships

De�nition
A binary relationship is any assertion between two objects, which may or

may not be veri�ed. We note xRy and read "x is in relation to y".
De�nition
Given a binary relation R between the elements of a non-empty set E, we

say that :
1. R is Re�exive if and only if

8x 2 E : (xRx)

2. R is Transitive if and only if

8x; y; z 2 E : (xRy) ^ (yRz)) (xRz):

3. R is symmetric if and only if

8x; y 2 E : (xRy)) (yRx):

4. R is Antisymmetric if and only if

8x; y 2 E : (xRy) ^ (yRx)) x = y:

Equivalence relations
De�nition
A binary relation R on a set E is said to be an equivalence relation if it is

Re�exive, Symmetric and Transitive.
De�nition
Let R be an equivalence relation on a set E.
- Two elements x and y 2 E are said to be equivalent if xRy.
- The equivalence class of an element x 2 E is the set :

:
x = x = fy 2 E;xRyg:

- The set of equivalence classes of all elements of E is called the quotient set
of E by the equivalence relation R. This set is denoted E=R.
Example
1) Given E a non-empty set, then

Equality is an equivalence relation in E

2) In R we de�ne the relation R by :

8x; y 2 R : xRy , x2 � 1 = y2 � 1.

Show that R is an equivalence relation and give the quotient set R=R.
1. R is an equivalence relation.
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i) R is a Re�exive relation, because we have :

8x 2 R; x2 � 1 = x2 � 1;

so,
8x 2 R, xRx

which shows that R is a Re�exive relationship.
ii) R is a Symmetric relation, because we have :

8x; y 2 R, xRy
, x2 � 1 = y2 � 1
, y2 � 1 = x2 � 1
, yRx:

which shows that R is a Symmetrical relation.
iii) R is a Transitive relation, because we have :

8x; y; z 2 R : (xRy) ^ (yRz)
,

�
x2 � 1 = y2 � 1

�
^ (y2 � 1 = z2 � 1)

, x2 � 1 = z2 � 1
, xRz:

which shows that R is a Transitive relation.
From i) , ii) and iii), we deduce that R is an equivalence relation.
2. Determine the quotient set R=R.
Let x 2 R, then :

8y 2 R, xRy , x2 � 1 = y2 � 1
, x2 � y2 = 0
, (x� y) (x+ y) = 0
, (y = x) _ (y = �x)

so:
:
x = fx;�xg,

as a result
R=R = ffx;�xg; x 2 Rg .

Proposition
Let R be an equivalence relation on a non-empty set E, then

8x; y 2 E, ( :y \ :
x = ?) _ ( :y = :

x).

Proof
Let x; y 2 E, assume that

:
y \ :

x 6= ?
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so,
9z 2 :

y \ :
x,

thus
zRy et zRx.

Let us then show that
:
y =

:
x.

Let u 2 :
x, then

((uRx) ^ (zRx)) ^ (zRy)

as R is symmetric and transitive, we deduce that

(uRz) ^ (zRy)

and from the transitivity of R we deduce that

uRy,

as a result
u 2 :

y,

which shows that
:
x � :

y.

In the same way, we show that

:
y � :

x,

which completes the proof of the property.
Remark
From this property we deduce that :

E=R est une partition de l�ensemble E:

Order relations
De�nition
A binary relation R on E is said to be an order relation if it is Re�exive,

Transitive and Anti-Symmetric.
De�nition
Let R be an order relation on a set E.
1. Two elements x and y of E are said to be comparable if :

xRy ou yRx:

2. We say that R is a relation of total order, if all the elements of E are
comparable in pairs. If not, we say that the relation R is a partial order relation.
Example
Let F be a set and E = P (F ).
Consider, on E = P (F ), the binary relation "�", then :
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I) "�" is an order relation on E.
1. "�" is Re�exive, because for any set A 2 P (A), we have

A � A:

2. ���is Transitive, because for all A;B;C 2 P (A),

(A � B) ^ (B � C)
) 8x ((x 2 A)) (x 2 B)) ^ ((x 2 B)) (x 2 C))
) 8x ((x 2 A)) (x 2 C))
) A � C.

3. ���is anti-symmetric, because for all A, B 2 P (A),

(A � B) ^ (B � A), A = B:

From 1), 2) and 3) we deduce that "�" is an order relation on E.
II) Is the order total?
i) If F = ?, then E = f?g and we have : 8A;B 2 E, A = B = ?, so

8A;B 2 E, A � B

which shows that the order is Total.
ii) If F = fag, then E = f?; fagg, so for all A and B in E we have

((A = ?) _ (A = fag)) ^ ((B = ?) _ (B = fag))

so
8A;B 2 E, ((A � B) _ (B � A))

which shows that the order is Total.
iii) If F contains at least two distinct elements a and b, then

9A = fag, B = fbg 2 E; (A * B) ^ (B * A)

so A and B are not comparable, hence "�" is a partial order relation in E.
Remark
In the literature, order relations are often noted as �.
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