1 Elements of set theory and applications

Definition

A set E is any collection of objects, called elements of set E. If the number
of these objects is finite, it is called the cardinal of E and is denoted card(FE); if
F has infinitely many elements, it is said to be of infinite cardinal and is denoted
CardE = .

If an object = is an element of F, x is said to belong to E and is denoted
x € E. If x is not an element of E, we note z ¢ E.

Example

N (R, Z respectively) is the set of natural numbers (real, integer respectively).

Parts of a set

Definition

A set A is said to be included in a set B, or A is a part of set B, or A is
a subset of B if any element of A is an element of B. We note A C B and
formally have :

ACBeVe(re A=z € B).

Definition
When A is not a part of B, we note A ¢ B and formally have :

A¢ B 3z((z e A) A (z ¢ B)).

The set of all parts of a set A is denoted P(A).
Example
Let A ={a,b,c}, then

P(A) = {2, {a} ,{b},{c} {a,; b}, {a,c},{b;c}, A}.

Property:

Let A be a set, then & € P(A) and A € P(A).

Definition

Let A and B two sets, A is said to be equal to B, denoted A = B, if they
have the same elements.

Formally we have :

A = BeVi(reAeszeB)
< (ACB)A(BCA).

Operations on sets

Definition

Let A and B be two sets.

- The set of elements of A that also belong to B is called the intersection of
A and B. (denoted AN B)

- The set of elements of A and those of B is called the union of A and B.
(denoted AU B)



Formally, we have :
ANB = {z;(x € A)A(z € B)}.
AUB = {z;(x€ A)V (z € B)}.

Example
Let A ={a,b,¢,1,3}, B=1{b,¢,d,1,0,8}, alors :

ANB = {bc1}.
AUB = {a,b,¢,d,0,1,3,8}.

Proposition
Let A, B and C be three parts of E, we have :

AN(BUC) = (ANnB)U(ANOQO).
AU(BNC) = (AUuB)N(AUC).

The intersection is said to be distributive with respect to the union and vice
versa.

Proof
Let’s fix
xeAN(BUC)
we have
[x€e Aand x € BUC],
hence

(r€ Aand z € B)

or

(z € Aand z € (),
S0
ze(ANB)U(ANC),

hence the inclusion in one direction.
In the other direction, consider x as an element of the second term, then

re€ANBorze ANC.

In both cases, we have
re€Aandz € BUC,

what needs to be demonstrated.

The second equality can be demonstrated in the same way.

Definition

If AN B = @ we say that A and B are two disjoint sets, and if moreover
E = AU B, we say that A is the complementary of B in E, or that A and B
are two complementary sets in £, and we note :

A=CgBor B=CgAor A= E\B.



Property:
Let E be a set and A a part of E. The complementary of A in F is the set
CgA such that

CpA={z e E;z ¢ A}.

Example
Let E={1,4,a,d,a,u,A\} and A = {4,,a, u}, then

CEA = {l,a,d,)\}.

Proposition
Let E be a set and A and B two parts of F, then :
1. Ac B< CgB c CgA.
2. Cg (CgA) = A.
3. Ce(ANB)=CgAUCEgB.
4. CE(AUB) =CgANCEgB.
Proof 1.

A B

Ve e E,((x € A) = (z € B))

((z & B) = (z ¢ 4))

Vo € E,((x € CgB) = (x € CgA))
CgB C CgA.
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2. Let x € E, then

x € Cg(CgA)
&S e A
S0,
Cg (CgA) = A.
3. Let z € F, then

Ce(ANB)

xr¢ ANB

(g A)V(z¢B)

(x € CRA)V (x € CgB)
z € (CgAUCEB).
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4. Let x € E, then

Cr(AUB)

x¢ AUB

(z ¢ A)A(x ¢ B)

(x € CgA) A (z € CgB)
xz € (CEANCEB).
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SO

Remark
From the first property we deduce that :

CgE = 0.

<definition/>
The product of two sets E and F, denoted F x F, is the set of pairs (z,y)
such that x € F and y € F, i.e.

ExF={(z,y)/recEetyecF}.
We agree that
V(z,y), (@ y) € Ax B, (z,y)=(@"y) e @=2)Ay=1y).

Example
Let A ={1,2}, B ={3,4}, then

Ax B=1{(1,3),(1,4),(2,3),(2,4)}.

Proposition
For (A, B) € [P (E)), (C,D) € [P (F)]* , we have the following relations

L (4x ) u(B Cﬁ(AUB)(l

2. (Ax C)U(Ax D)= Ax (CUD).

3. (Ax C)N (B x D)= mmB)(CmDy
Proof

Let’s show the first equality, the other two are treated in the same way.

AxCHyu(BxC) = {(z,y): (z,y) € AxC ou (z,y) € BxC}
(z,y):(r€AetyeC)ou(zeBetyeC)}
(z,y): (x€AouzeB)etyeC)}

AUB) x C.
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2 Applications and functions

Definition

An application of a set F in a set F' is any correspondence f between the
elements of £ and those of F' which to any element x € E maps a single element
y € F denoted f(x).

-y = f(x) is called the image of z and z is an antecedent of y.

- The application f from FE into F' is represented by f: E — F.

- FE is called the starting set and F' the target set of the application f.

Formally, a correspondence f between two non-empty sets is an application
if and only if :

Ve, o' € E: ((z=12")= (f(z) = f(z')).

Example
1) f defined by :

is an application.

2) f defined by :

is not an application because there is an element x = 1 belonging to the
starting set that has no image in the target set.

Definition

1) Two applications f and g are said to be equal if:

i. They have the same starting set £ and the same target set F'.

ii. Ve € E, f(z) = g(z).

2) The graph of an application f : F — F' is the set

Composition of applications
Definition
Let f: E— Fandg: F — G, let go f be the application of E in G defined
by :
Vo € E, gof(x) = g(f(x)).

This application is called the composition of applications f and g.
Example
Given the applications

for R—=Ry , g:Ri >Ry

s — X r+—— T



So,

gof : RoR, g: Ry SR,

T — (x2)32x6 T — (m3)2:x6

It is clear that fog # go f.

Restriction and extension of an application

Definition

Given an application f: F — F..

1. We call the restriction of f to a non-empty subset X of F, the application
g : X — F such that

Vo€ X, g(a) = f()

We note g = fx.

Given a set G such that F C G, we call an extension of the application f to
the set G, any application h from G into F' such that f is the restriction of h
to F.

Example

Given the application

f+ Ry—-R

r +— logz
S0,

g  R—=R; , h:Ry - Ry

x — log|x| x — log (2 x| — )
are two different extensions of f to R.
Images and reciprocal images
<definition/>

Let AC EFand M C F.
1. We call the image of A by f the set of images of the elements of A denoted

f(A) ={f(z),zc A} CF

2. The reciprocal image of M by f is the set of antecedents of the elements of
M, denoted by
fFAM)={z€E, fz)e M}CE

Formally we have :

Yy € F, (yef(A)edwedy=[f(z))
Vo € E, (z€f (M) flz)eM).
Proposition

Let f: FE— F, A, BC Eand M, N C F, then
L f(AUB) = f(A)U f(B)



y € f(AUB)
& drxe AUB;y= f(x)
& Jr[(xeA)V(zeB)A(y=f(x))
& [z (zeA)A(y=f@)]A[Fzx (x€B)V(y
< (e flA)Vvyef(B)
< ye f(A)Uf(B).
which shows that
f(AUB) = f(A)U f(B).
2. Let y € F, then
(AN B)
dre ANB;y = f(x)
Jz[(z € A)A(z € B)A(y = f(x))]
3o (z€ A)A(y = f@)] ABe (€ B)A(y
(ye f(A)A(y € f(B))
y e f(A)N £(B).
which shows that

Y
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f(ANB) = f(A)N f(B).
3. Let x € E, then
T fTYMUN)
flx) e MUN
fx)e MV f(z) e N
(ze M)V (ze fH(N)
z € f- 1( )U fTHN).

s

which shows that
STHMUN) = f=H(M) U fHN).
4. Let x € E, then

ef 1 )/\(a:ef 1(]\7))

-
!
flz) € MA f(x) €
(2
xefl(>mfﬂN)



which shows that

FTHMAN) = f7H (M) 0 fHN).
5. Let x € F, then

[ (CrM)
f(m)GCFM

(flz) e F)N(f(z) & M)
(r e E)A (z ¢ [~ (M)
€ Cpf H(M).

teso e

which shows that
fHCrM) =Crf~t (M).

Injective, surjective, bijective applications
Definition

Let f: E — F be an application

1) f is injective if and only if

Vz,2' € E, f(z) = f(2') = z =2
2) f is surjective if and only if
Yy e F,3xz € E, f(x) =y.
3) f is bijective < f is injective and surjective if and only if
Vye F,3lz € F; f(z) = y.

The reciprocal application

Proposition

An application f : F — F' is bijective if and only if there exists a unique
application g : F — FE such that

fog = 1dr and gof = Idg.

We say that f is invertible and g is called the "reciprocal application" or
"inverse application" of f. (denoted f~1)

Example

Consider the application

f : R-{2} = F
xr— 2

with F a subset of R. Determine F' so that the application f is bijective and
give the inverse application of f.



To show that f is bijective is to examine the existence of solutions to the
equation y = f(x), for all y € F.
Let y € F, then

y = [flx)

T +5

x—2
ylx—2)=z+5
yr —x =542y
z(y—1)=5+2y

5+2
T = +ysiy7£1
y—1

y:

t 00 0

which shows that :

5+ 2y
y—17

Yy € R—{1},3lx = y = f(x).

to show that f is bijective, it remains to be seen whether

542
p=2t Y e R-{2)7
We have :
5+2
T a5ty =2y- 1)
y—1
< 5 = —2 what is impossible
542
which shows that + ly € R—{2}, then
y—

5+ 2y

Vy € R—{1},3lz =
y € R—{1}, 3z 1

eR-{2};y = f(2),
so, is bijective if F' = R—{1} and the inverse of f is :

7t R-{1} - R-{2}
5+ 2y
y—1-
Functions
Definition
A function from F into F'is any application f from a subset Dy C E into
F. Dy¢is called the "Definition set of f".

Remark
All the notions given for applications can be adapted for functions.



3 Binary relationships

Definition

A binary relationship is any assertion between two objects, which may or
may not be verified. We note zRy and read "z is in relation to y".

Definition

Given a binary relation R between the elements of a non-empty set E, we
say that :

1. R is Reflexive if and only if

Vz € E: (zRx)
2. R is Transitive if and only if
Vz,y,z € E: (xRy) A (yRz) = (zRz2).
3. R is symmetric if and only if
Va,y € E: (zRy) = (yRzx).
4. R is Antisymmetric if and only if
Yo,y € E: (zRy) A (yRz) =z =y.

Equivalence relations

Definition

A binary relation R on a set E is said to be an equivalence relation if it is
Reflexive, Symmetric and Transitive.

Definition

Let R be an equivalence relation on a set F.

- Two elements z and y € F are said to be equivalent if xRy.

- The equivalence class of an element xz € E is the set :

z =17 ={y € E;zRy}.

- The set of equivalence classes of all elements of F is called the quotient set
of E by the equivalence relation R. This set is denoted FE/R.

Example

1) Given F a non-empty set, then

Equality is an equivalence relation in F
2) In R we define the relation R by :
Ve, yeR:zRy 22 —1=9y>—1.

Show that R is an equivalence relation and give the quotient set R/R.
1. R is an equivalence relation.

10



i) R is a Reflexive relation, because we have :
VeeR 2?2 —1=a2-1,

S0,

Vo € R, zRx

which shows that R is a Reflexive relationship.
ii) R is a Symmetric relation, because we have :

Ve,y € R, zRy
s 22-1=¢y*-1
s yP-1=22-1
& yRox.

which shows that R is a Symmetrical relation.
ili) R is a Transitive relation, because we have :

€ R:(zRy) A (yRz)
& (x2—1:y2—1)/\(y2—1:z2—1)
& P-1=2-1

< zRz.

Vx,y,z

which shows that R is a Transitive relation.

From i) , ii) and iii), we deduce that R is an equivalence relation.
2. Determine the quotient set R/R.

Let z € R, then :

Vy € RzRyez?-1=3y>-1
s 2—9y*=0
& (z—y)(@+y) =0
& (=2)V(y=-x)

so:
z = {x,—x},
as a result
R/R = {{z,—=z},z € R}.
Proposition

Let R be an equivalence relation on a non-empty set E, then
Ve,y € E, (yNz =)V (y = z).

Proof
Let z,y € F, assume that
ynNz # o

11



S0,

Jdzeyna,
thus
zRy et zRx.
Let us then show that
y=x.

Let u € z, then
((uRx) A (zRx)) A (2Ry)

as R is symmetric and transitive, we deduce that
(uRz) A (zRy)

and from the transitivity of R we deduce that

uRy,
as a result

u € vy,
which shows that

x Cy.
In the same way, we show that

yCx,

which completes the proof of the property.
Remark
From this property we deduce that :

E/R est une partition de ’ensemble E.

Order relations

Definition

A binary relation R on F is said to be an order relation if it is Reflexive,
Transitive and Anti-Symmetric.

Definition

Let R be an order relation on a set F.

1. Two elements z and y of E are said to be comparable if :

xRy ou yRx.

2. We say that R is a relation of total order, if all the elements of E are
comparable in pairs. If not, we say that the relation R is a partial order relation.

Example

Let F be a set and E = P(F).

Consider, on E = P(F), the binary relation "C", then :
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I) "C" is an order relation on E.
1. "C" is Reflexive, because for any set A € P(A), we have

AcCA.
2. “C” is Transitive, because for all A, B,C € P(A),

(A B)A(BcC ()
Ve (z€A)= (zeB)A((z€B)= (ze))
Ve ((x € A)= (z € (C))

AcCC.

4N

4

3. “C” is anti-symmetric, because for all A, B € P(A),
(ACB)A(BCA) & A=B.

From 1), 2) and 3) we deduce that "C" is an order relation on FE.
IT) Is the order total?
i) If F =@, then F = {@} and we have : VA,B€ E, A= B =@, s0

VA, BeEFE, ACB

which shows that the order is Total.
ii) If F = {a}, then E = {@&,{a}}, so for all A and B in E we have

(A=2)v(A={a)) N(B=2)V(B={a}))

” VA,Be E, (ACB)V(BCA)

which shows that the order is Total.
iii) If F' contains at least two distinct elements a and b, then

JA={a}, B={bl € B;(AZ B)A (B¢ A)

so A and B are not comparable, hence "C" is a partial order relation in F.
Remark
In the literature, order relations are often noted as <.
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