1 Elements of set theory and applications

Definition

A set E is any collection of objects, called elements of set E. If the number of these objects is finite, it is called the cardinal of E and is denoted $\operatorname{card}(E)$; if E has infinitely many elements, it is said to be of infinite cardinal and is denoted $\operatorname{CardE}=\infty$.

If an object x is an element of E, x is said to belong to E and is denoted $x \in E$. If x is not an element of E, we note $x \notin E$.

Example

$\mathbb{N}(\mathbb{R}, \mathbb{Z}$ respectively) is the set of natural numbers (real, integer respectively).
Parts of a set

Definition

A set A is said to be included in a set B, or A is a part of set B, or A is a subset of B if any element of A is an element of B. We note $A \subset B$ and formally have :

$$
A \subset B \Leftrightarrow \forall x(x \in A \Rightarrow x \in B)
$$

Definition

When A is not a part of B, we note $A \nsubseteq B$ and formally have :

$$
A \nsubseteq B \Leftrightarrow \exists x((x \in A) \wedge(x \notin B))
$$

The set of all parts of a set A is denoted $P(A)$.

Example

Let $A=\{a, b, c\}$, then

$$
P(A)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}, A\}
$$

Property:
Let A be a set, then $\varnothing \in P(A)$ and $A \in P(A)$.

Definition

Let A and B two sets, A is said to be equal to B, denoted $A=B$, if they have the same elements.

Formally we have :

$$
\begin{aligned}
A & =B \Leftrightarrow \forall x(x \in A \Leftrightarrow x \in B) \\
& \Leftrightarrow(A \subset B) \wedge(B \subset A) .
\end{aligned}
$$

Operations on sets

Definition

Let A and B be two sets.

- The set of elements of A that also belong to B is called the intersection of A and B. (denoted $A \cap B)$
- The set of elements of A and those of B is called the union of A and B. (denoted $A \cup B$)

Formally, we have :

$$
\begin{aligned}
A \cap B & =\{x ;(x \in A) \wedge(x \in B)\} \\
A \cup B & =\{x ;(x \in A) \vee(x \in B)\}
\end{aligned}
$$

Example

Let $A=\{a, b, c, 1,3\}, B=\{b, c, d, 1,0,8\}$, alors:

$$
\begin{aligned}
A \cap B & =\{b, c, 1\} \\
A \cup B & =\{a, b, c, d, 0,1,3,8\}
\end{aligned}
$$

Proposition

Let A, B and C be three parts of E, we have :

$$
\begin{aligned}
A \cap(B \cup C) & =(A \cap B) \cup(A \cap C) \\
A \cup(B \cap C) & =(A \cup B) \cap(A \cup C)
\end{aligned}
$$

The intersection is said to be distributive with respect to the union and vice versa.

Proof
Let's fix

$$
x \in A \cap(B \cup C)
$$

we have

$$
[x \in A \text { and } x \in B \cup C]
$$

hence

$$
(x \in A \text { and } x \in B)
$$

or

$$
(x \in A \text { and } x \in C)
$$

so

$$
x \in(A \cap B) \cup(A \cap C)
$$

hence the inclusion in one direction.
In the other direction, consider x as an element of the second term, then

$$
x \in A \cap B \text { or } x \in A \cap C
$$

In both cases, we have

$$
x \in A \text { and } x \in B \cup C,
$$

what needs to be demonstrated.
The second equality can be demonstrated in the same way.

Definition

If $A \cap B=\varnothing$ we say that A and B are two disjoint sets, and if moreover $E=A \cup B$, we say that A is the complementary of B in E, or that A and B are two complementary sets in E, and we note :

$$
A=C_{E} B \text { or } B=C_{E} A \text { or } A=E \backslash B
$$

Property:

Let E be a set and A a part of E. The complementary of A in E is the set $C_{E} A$ such that

$$
C_{E} A=\{x \in E ; x \notin A\} .
$$

Example

Let $E=\{1,4, a, d, \alpha, \mu, \lambda\}$ and $A=\{4,, \alpha, \mu\}$, then

$$
C_{E} A=\{1, a, d, \lambda\} .
$$

Proposition

Let E be a set and A and B two parts of E, then :

1. $A \subset B \Leftrightarrow C_{E} B \subset C_{E} A$.
2. $C_{E}\left(C_{E} A\right)=A$.
3. $C_{E}(A \cap B)=C_{E} A \cup C_{E} B$.
4. $C_{E}(A \cup B)=C_{E} A \cap C_{E} B$.

Proof 1.

$$
\begin{aligned}
A & \subset B \\
& \Leftrightarrow \forall x \in E,((x \in A) \Rightarrow(x \in B)) \\
& \Leftrightarrow((x \notin B) \Rightarrow(x \notin A)) \\
& \Leftrightarrow \forall x \in E,\left(\left(x \in C_{E} B\right) \Rightarrow\left(x \in C_{E} A\right)\right) \\
& \Leftrightarrow C_{E} B \subset C_{E} A
\end{aligned}
$$

2. Let $x \in E$, then

$$
\begin{aligned}
x & \in C_{E}\left(C_{E} A\right) \\
& \Leftrightarrow x \notin C_{E} A \\
& \Leftrightarrow x \in A .
\end{aligned}
$$

so,

$$
C_{E}\left(C_{E} A\right)=A
$$

3. Let $x \in E$, then

$$
\begin{aligned}
x & \in C_{E}(A \cap B) \\
& \Leftrightarrow x \notin A \cap B \\
& \Leftrightarrow(x \notin A) \vee(x \notin B) \\
& \Leftrightarrow\left(x \in C_{E} A\right) \vee\left(x \in C_{E} B\right) \\
& \Leftrightarrow x \in\left(C_{E} A \cup C_{E} B\right)
\end{aligned}
$$

so

$$
C_{E}(A \cap B)=C_{E} A \cup C_{E} B
$$

4. Let $x \in E$, then

$$
\begin{aligned}
x & \in C_{E}(A \cup B) \\
& \Leftrightarrow x \notin A \cup B \\
& \Leftrightarrow(x \notin A) \wedge(x \notin B) \\
& \Leftrightarrow\left(x \in C_{E} A\right) \wedge\left(x \in C_{E} B\right) \\
& \Leftrightarrow x \in\left(C_{E} A \cap C_{E} B\right)
\end{aligned}
$$

So

$$
C_{E}(A \cup B)=C_{E} A \cap C_{E} B
$$

Remark

From the first property we deduce that :

$$
C_{E} E=\varnothing
$$

<definition/>
The product of two sets E and F, denoted $E \times F$, is the set of pairs (x, y) such that $x \in E$ and $y \in F$, i.e.

$$
E \times F=\{(x, y) / x \in E \text { et } y \in F\}
$$

We agree that

$$
\forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in A \times B,(x, y)=\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow\left(x=x^{\prime}\right) \wedge\left(y=y^{\prime}\right)
$$

Example

Let $A=\{1,2\}, B=\{3,4\}$, then

$$
A \times B=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Proposition

For $(A, B) \in[P(E)]^{2},(C, D) \in[P(F)]^{2}$, we have the following relations

1. $(A \times C) \cup(B \times C)=(A \cup B) \times C$.
2. $(A \times C) \cup(A \times D)=A \times(C \cup D)$.
3. $(A \times C) \cap(B \times D)=(A \cap B) \times(C \cap D)$.

Proof
Let's show the first equality, the other two are treated in the same way.

$$
\begin{aligned}
(A \times C) \cup(B \times C) & =\{(x, y):(x, y) \in A \times C \text { ou }(x, y) \in B \times C\} \\
& =\{(x, y):(x \in A \text { et } y \in C) \text { ou }(x \in B \text { et } y \in C)\} \\
& =\{(x, y):(x \in A \text { ou } x \in B) \text { et } y \in C)\} \\
& =(A \cup B) \times C .
\end{aligned}
$$

2 Applications and functions

Definition
An application of a set E in a set F is any correspondence f between the elements of E and those of F which to any element $x \in E$ maps a single element $y \in F$ denoted $f(x)$.

- $y=f(x)$ is called the image of x and x is an antecedent of y.
- The application f from E into F is represented by $f: E \rightarrow F$.
- E is called the starting set and F the target set of the application f.

Formally, a correspondence f between two non-empty sets is an application if and only if :

$$
\forall x, x^{\prime} \in E:\left(\left(x=x^{\prime}\right) \Rightarrow\left(f(x)=f\left(x^{\prime}\right)\right)\right.
$$

Example

1) f defined by :

$$
\begin{array}{lll}
f & : & \mathbb{R} \rightarrow \mathbb{R} \\
x & \longmapsto & x^{2}+4
\end{array}
$$

is an application.
2) f defined by :

$$
\begin{array}{lll}
f & : & \mathbb{R} \rightarrow \mathbb{R} \\
x & \longmapsto & \frac{x}{x-1}
\end{array}
$$

is not an application because there is an element $x=1$ belonging to the starting set that has no image in the target set.

Definition

1) Two applications f and g are said to be equal if:
i. They have the same starting set E and the same target set F.
ii. $\forall x \in E, f(x)=g(x)$.
2) The graph of an application $f: E \rightarrow F$ is the set

$$
\Gamma_{f}=\{(x, f(x)), x \in E\}
$$

Composition of applications

Definition

Let $f: E \rightarrow F$ and $g: F \rightarrow G$, let $g \circ f$ be the application of E in G defined by :

$$
\forall x \in E, g \circ f(x)=g(f(x))
$$

This application is called the composition of applications f and g.

Example

Given the applications

$$
\begin{array}{lll}
f & : & \mathbb{R} \rightarrow \mathbb{R}_{+},
\end{array} \quad g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}+x^{2} .
$$

So,

$$
\begin{array}{rlrrl}
g \circ f & : & \mathbb{R} \rightarrow \mathbb{R}_{+}, & g: \mathbb{R}_{+} & \rightarrow \mathbb{R}_{+} \\
x & \longmapsto & \left(x^{2}\right)^{3}=x^{6} & x & \longmapsto\left(x^{3}\right)^{2}=x^{6}
\end{array}
$$

It is clear that $f \circ g \neq g \circ f$.
Restriction and extension of an application
Definition
Given an application $f: E \rightarrow F$..

1. We call the restriction of f to a non-empty subset X of E, the application $g: X \rightarrow F$ such that

$$
\forall x \in X, g(x)=f(x)
$$

We note $g=f_{X}$.
Given a set G such that $E \subset G$, we call an extension of the application f to the set G, any application h from G into F such that f is the restriction of h to E.

Example

Given the application

$$
\begin{array}{lll}
f & : & \mathbb{R}_{+} \rightarrow \mathbb{R} \\
x & \longmapsto & \log x
\end{array}
$$

so,

$$
\begin{aligned}
& g \quad: \quad \mathbb{R} \rightarrow \mathbb{R}_{+}, \quad h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \\
& x \rightarrow \log |x| \quad x \rightarrow \log (2|x|-x)
\end{aligned}
$$

are two different extensions of f to \mathbb{R}.
Images and reciprocal images
<definition/>
Let $A \subset E$ and $M \subset F$.

1. We call the image of A by f the set of images of the elements of A denoted :

$$
f(A)=\{f(x), x \in A\} \subset F
$$

2. The reciprocal image of M by f is the set of antecedents of the elements of M, denoted by

$$
f^{-1}(M)=\{x \in E, f(x) \in M\} \subset E
$$

Formally we have :

$$
\begin{aligned}
& \forall y \in F,(y \in f(A) \Leftrightarrow \exists x \in A, y=f(x)) \\
& \forall x \in E,\left(x \in f^{-1}(M) \Leftrightarrow f(x) \in M\right)
\end{aligned}
$$

Proposition

Let $f: E \rightarrow F, A, B \subset E$ and $M, N \subset F$, then

1. $f(A \cup B)=f(A) \cup f(B)$
2. $f(A \cap B) \subset f(A) \cap f(B)$
3. $f^{-1}(M \cup N)=f^{-1}(M) \cup f^{-1}(N)$
4. $f^{-1}(M \cap N)=f^{-1}(M) \cap f^{-1}(N)$
5. $f^{-1}\left(C_{F} M\right)=C_{E} f^{-1}(M)$.

Proof

1. Let $y \in F$, then

$$
\begin{aligned}
y & \in f(A \cup B) \\
& \Leftrightarrow \exists x \in A \cup B ; y=f(x) \\
& \Leftrightarrow \exists x[(x \in A) \vee(x \in B) \wedge(y=f(x))] \\
& \Leftrightarrow[\exists x(x \in A) \wedge(y=f(x))] \wedge[\exists x \quad(x \in B) \vee(y=f(x))] \\
& \Leftrightarrow(y \in f(A)) \vee(y \in f(B)) \\
& \Leftrightarrow y \in f(A) \cup f(B) .
\end{aligned}
$$

which shows that

$$
f(A \cup B)=f(A) \cup f(B)
$$

2. Let $y \in F$, then

$$
\begin{aligned}
y & \in f(A \cap B) \\
& \Leftrightarrow \exists x \in A \cap B ; y=f(x) \\
& \Leftrightarrow \exists x[(x \in A) \wedge(x \in B) \wedge(y=f(x))] \\
& \Leftrightarrow[\exists x(x \in A) \wedge(y=f(x))] \wedge[\exists x \quad(x \in B) \wedge(y=f(x))] \\
& \Leftrightarrow(y \in f(A)) \wedge(y \in f(B)) \\
& \Leftrightarrow y \in f(A) \cap f(B)
\end{aligned}
$$

which shows that

$$
f(A \cap B)=f(A) \cap f(B)
$$

3. Let $x \in E$, then

$$
\begin{aligned}
x & \in f^{-1}(M \cup N) \\
& \Leftrightarrow f(x) \in M \cup N \\
& \Leftrightarrow f(x) \in M \vee f(x) \in N \\
& \Leftrightarrow\left(x \in f^{-1}(M)\right) \vee\left(x \in f^{-1}(N)\right) \\
& \Leftrightarrow x \in f^{-1}(M) \cup f^{-1}(N)
\end{aligned}
$$

which shows that

$$
f^{-1}(M \cup N)=f^{-1}(M) \cup f^{-1}(N)
$$

4. Let $x \in E$, then

$$
\begin{aligned}
x & \in f^{-1}(M \cap N) \\
& \Leftrightarrow f(x) \in M \cap N \\
& \Leftrightarrow f(x) \in M \wedge f(x) \in N \\
& \Longleftrightarrow\left(x \in f^{-1}(M)\right) \wedge\left(x \in f^{-1}(N)\right) \\
& \Longleftrightarrow x \in f^{-1}(M) \cap f^{-1}(N)
\end{aligned}
$$

which shows that

$$
f^{-1}(M \cap N)=f^{-1}(M) \cap f^{-1}(N) .
$$

5. Let $x \in E$, then

$$
\begin{aligned}
x & \in f^{-1}\left(C_{F} M\right) \\
& \Leftrightarrow f(x) \in C_{F} M \\
& \Leftrightarrow(f(x) \in F) \wedge(f(x) \notin M) \\
& \Leftrightarrow(x \in E) \wedge\left(x \notin f^{-1}(M)\right) \\
& \Leftrightarrow x \in C_{E} f^{-1}(M) .
\end{aligned}
$$

which shows that

$$
f^{-1}\left(C_{F} M\right)=C_{E} f^{-1}(M)
$$

Injective, surjective, bijective applications Definition
Let $f: E \rightarrow F$ be an application

1) f is injective if and only if

$$
\forall x, x^{\prime} \in E, f(x)=f\left(x^{\prime}\right) \Rightarrow x=x^{\prime}
$$

2) f is surjective if and only if

$$
\forall y \in F, \exists x \in E, f(x)=y
$$

3) f is bijective $\Leftrightarrow f$ is injective and surjective if and only if

$$
\forall y \in F, \exists!x \in F ; f(x)=y
$$

The reciprocal application

Proposition

An application $f: E \rightarrow F$ is bijective if and only if there exists a unique application $g: F \rightarrow E$ such that

$$
f o g=I d_{F} \text { and } g o f=I d_{E}
$$

We say that f is invertible and g is called the "reciprocal application" or "inverse application" of f. (denoted f^{-1})

Example
Consider the application

$$
\begin{array}{ll}
f & : \quad \mathbb{R}-\{2\} \rightarrow F \\
x & \longmapsto \\
x+5 \\
x-2
\end{array}
$$

with F a subset of \mathbb{R}. Determine F so that the application f is bijective and give the inverse application of f.

To show that f is bijective is to examine the existence of solutions to the equation $y=f(x)$, for all $y \in F$.

Let $y \in F$, then

$$
\begin{aligned}
y & =f(x) \\
& \Leftrightarrow y=\frac{x+5}{x-2} \\
& \Leftrightarrow y(x-2)=x+5 \\
& \Leftrightarrow y x-x=5+2 y \\
& \Leftrightarrow x(y-1)=5+2 y \\
& \Leftrightarrow x=\frac{5+2 y}{y-1} \operatorname{si} y \neq 1
\end{aligned}
$$

which shows that:

$$
\forall y \in \mathbb{R}-\{1\}, \exists!x=\frac{5+2 y}{y-1} ; y=f(x)
$$

to show that f is bijective, it remains to be seen whether

$$
x=\frac{5+2 y}{y-1} \in \mathbb{R}-\{2\} ?
$$

We have :

$$
\begin{aligned}
\frac{5+2 y}{y-1} & =2 \Leftrightarrow 5+2 y=2(y-1) \\
& \Leftrightarrow 5=-2 \text { what is impossible }
\end{aligned}
$$

which shows that $\frac{5+2 y}{y-1} \in \mathbb{R}-\{2\}$, then

$$
\forall y \in \mathbb{R}-\{1\}, \exists!x=\frac{5+2 y}{y-1} \in \mathbb{R}-\{2\} ; y=f(x)
$$

so, is bijective if $F=\mathbb{R}-\{1\}$ and the inverse of f is:

$$
\begin{aligned}
f^{-1} & : \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{2\} \\
y & \rightarrow \frac{5+2 y}{y-1}
\end{aligned}
$$

Functions

Definition
A function from E into F is any application f from a subset $D_{f} \subset E$ into F. D_{f} is called the "Definition set of f ".

Remark
All the notions given for applications can be adapted for functions.

3 Binary relationships

Definition

A binary relationship is any assertion between two objects, which may or may not be verified. We note $x R y$ and read " x is in relation to y ".

Definition
Given a binary relation R between the elements of a non-empty set E, we say that:

1. R is Reflexive if and only if

$$
\forall x \in E:(x R x)
$$

2. R is Transitive if and only if

$$
\forall x, y, z \in E:(x R y) \wedge(y R z) \Rightarrow(x R z)
$$

3. R is symmetric if and only if

$$
\forall x, y \in E:(x R y) \Rightarrow(y R x)
$$

4. R is Antisymmetric if and only if

$$
\forall x, y \in E:(x R y) \wedge(y R x) \Rightarrow x=y
$$

Equivalence relations

Definition

A binary relation R on a set E is said to be an equivalence relation if is Reflexive, Symmetric and Transitive.

Definition

Let R be an equivalence relation on a set E.

- Two elements x and $y \in E$ are said to be equivalent if $x R y$.
- The equivalence class of an element $x \in E$ is the set :

$$
\dot{x}=\bar{x}=\{y \in E ; x R y\} .
$$

- The set of equivalence classes of all elements of E is called the quotient set of E by the equivalence relation R. This set is denoted E / R.

Example

1) Given E a non-empty set, then

$$
\text { Equality is an equivalence relation in } E
$$

2) In \mathbb{R} we define the relation R by :

$$
\forall x, y \in \mathbb{R}: x R y \Leftrightarrow x^{2}-1=y^{2}-1 .
$$

Show that R is an equivalence relation and give the quotient set \mathbb{R} / R.

1. R is an equivalence relation.
i) R is a Reflexive relation, because we have :

$$
\forall x \in \mathbb{R}, x^{2}-1=x^{2}-1
$$

so,

$$
\forall x \in \mathbb{R}, x R x
$$

which shows that R is a Reflexive relationship.
ii) R is a Symmetric relation, because we have :

$$
\begin{aligned}
\forall x, y & \in \mathbb{R}, x R y \\
& \Leftrightarrow x^{2}-1=y^{2}-1 \\
& \Leftrightarrow y^{2}-1=x^{2}-1 \\
& \Leftrightarrow y R x .
\end{aligned}
$$

which shows that R is a Symmetrical relation.
iii) R is a Transitive relation, because we have :

$$
\begin{aligned}
\forall x, y, z & \in \mathbb{R}:(x R y) \wedge(y R z) \\
& \Leftrightarrow\left(x^{2}-1=y^{2}-1\right) \wedge\left(y^{2}-1=z^{2}-1\right) \\
& \Leftrightarrow x^{2}-1=z^{2}-1 \\
& \Leftrightarrow x R z
\end{aligned}
$$

which shows that R is a Transitive relation.
From i), ii) and iii), we deduce that R is an equivalence relation. 2. Determine the quotient set \mathbb{R} / R.

Let $x \in \mathbb{R}$, then :

$$
\begin{aligned}
\forall y & \in \mathbb{R}, x R y \Leftrightarrow x^{2}-1=y^{2}-1 \\
& \Leftrightarrow x^{2}-y^{2}=0 \\
& \Leftrightarrow(x-y)(x+y)=0 \\
& \Leftrightarrow(y=x) \vee(y=-x)
\end{aligned}
$$

so:

$$
\dot{x}=\{x,-x\}
$$

as a result

$$
\mathbb{R} / R=\{\{x,-x\}, x \in \mathbb{R}\}
$$

Proposition

Let R be an equivalence relation on a non-empty set E, then

$$
\forall x, y \in E,(\dot{y} \cap \dot{x}=\varnothing) \vee(\dot{y}=\dot{x})
$$

Proof

Let $x, y \in E$, assume that

$$
\dot{y} \cap \dot{x} \neq \varnothing
$$

so,

$$
\exists z \in \dot{y} \cap \dot{x},
$$

thus

$$
z R y \text { et } z R x \text {. }
$$

Let us then show that

$$
\dot{y}=\dot{x} .
$$

Let $u \in \dot{x}$, then

$$
((u R x) \wedge(z R x)) \wedge(z R y)
$$

as R is symmetric and transitive, we deduce that

$$
(u R z) \wedge(z R y)
$$

and from the transitivity of R we deduce that

$$
u R y,
$$

as a result

$$
u \in \dot{y},
$$

which shows that

$$
\dot{x} \subset \dot{y} .
$$

In the same way, we show that

$$
\dot{y} \subset \dot{x}
$$

which completes the proof of the property.

Remark

From this property we deduce that :

$$
E / R \text { est une partition de l'ensemble } E \text {. }
$$

Order relations

Definition

A binary relation R on E is said to be an order relation if it is Reflexive, Transitive and Anti-Symmetric.

Definition

Let R be an order relation on a set E.

1. Two elements x and y of E are said to be comparable if :

$$
x R y \text { ou } y R x \text {. }
$$

2. We say that R is a relation of total order, if all the elements of E are comparable in pairs. If not, we say that the relation R is a partial order relation.

Example

Let F be a set and $E=P(F)$.
Consider, on $E=P(F)$, the binary relation " \subset ", then :
I) " \subset " is an order relation on E.

1. " \subset " is Reflexive, because for any set $A \in P(A)$, we have

$$
A \subset A
$$

2. " \subset " is Transitive, because for all $A, B, C \in P(A)$,

$$
\begin{aligned}
(A & \subset B) \wedge(B \subset C) \\
& \Rightarrow \forall x \quad((x \in A) \Rightarrow(x \in B)) \wedge((x \in B) \Rightarrow(x \in C)) \\
& \Rightarrow \forall x((x \in A) \Rightarrow(x \in C)) \\
& \Rightarrow A \subset C
\end{aligned}
$$

3. " \subset " is anti-symmetric, because for all $A, B \in P(A)$,

$$
(A \subset B) \wedge(B \subset A) \Leftrightarrow A=B
$$

From 1), 2) and 3) we deduce that " \subset " is an order relation on E.
II) Is the order total?
i) If $F=\varnothing$, then $E=\{\varnothing\}$ and we have : $\forall A, B \in E, A=B=\varnothing$, so

$$
\forall A, B \in E, A \subset B
$$

which shows that the order is Total.
ii) If $F=\{a\}$, then $E=\{\varnothing,\{a\}\}$, so for all A and B in E we have

$$
((A=\varnothing) \vee(A=\{a\})) \wedge((B=\varnothing) \vee(B=\{a\}))
$$

so

$$
\forall A, B \in E,((A \subset B) \vee(B \subset A))
$$

which shows that the order is Total.
iii) If F contains at least two distinct elements a and b, then

$$
\exists A=\{a\}, B=\{b\} \in E ;(A \nsubseteq B) \wedge(B \nsubseteq A)
$$

so A and B are not comparable, hence " \subset " is a partial order relation in E.

Remark

In the literature, order relations are often noted as \preceq.

