1 Elements of logic

Notions of Logic

Definition

Any relation P that is either true or false is called a "logical proposition".

* When the proposition is true, it is assigned the value 1.
* When the proposition is false, it is assigned the value 0 .

Example

(1) (Every prime number is even), this proposition is false.
(2) ($\sqrt{2}$ is an irrational number), this statement is true.
(3) (2 is less than 4), this statement is true.

Negation: \bar{P}
Given a logical proposition P , we call the negation of P the logical proposition \bar{P}, which is false when P is true and which is true when P is false, so we can represent it as follows:

P	\bar{P}
1	0
0	1

Example (1) Let $E \neq \varnothing, P:(a \in E)$, then $\bar{P}:(a \notin E)$.
Example 1 (2) P : the function f is positive, then \bar{P} : the function f is not positive.
(3) $P: x+2=0$, then $\bar{P}: x+2 \neq 0$.

1.1 Logical connectors

1) The conjunction (and), (\wedge)

definition

Let P, Q be two propositions, the proposition $(\mathrm{P}$ and Q$)$ or $(P \wedge Q)$ is the conjunction of the two propositions P, Q.
$-(P \wedge Q)$ is true if P and Q are both true.
$-(P \wedge Q)$ is false in all other cases.
This is summarized in the following truth table:

P	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Example (1) 2 is an even number and 3 is a prime number, this proposition is true.

$$
\text { (2) } 3 \leq 2 \text { and } 4 \geq 2 \text {, this proposition is false. }
$$

2) The disjunction (or), (\vee)

Definition

the disjunction between P, Q is denoted by $(P$ or $Q),(P \vee Q)$.
$P \vee Q$ is false if P and Q are both false, if not $P \vee Q$ is true.
This is summarized in the following truth table:

P	Q	$P \vee Q$
1	1	1
1	0	1
0	1	1
0	0	0

Example (1) 2 is an even number or 3 is a prime number. True.
(2) $3 \leq 2$ or $2 \geq 4$. False.
3)The implication (\Rightarrow)

Definition

" $P \Rightarrow Q$ " is the logical proposition that is false if P is true and Q is false. We say P implies Q or if P then Q. So its truth table is as follows:

Definition 2

P	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

Example

(1) $0 \leq x \leq 9 \Rightarrow \sqrt{x} \leq 3$. True.
(2) It's raining, so I'm taking my umbrella. True, it's a consequence.
4) The reciprocal of an implication

Definition

The reciprocal of an implication $(P \Rightarrow Q)$ is an implication $Q \Rightarrow P$.
Example
The reciprocal of: $0 \leq x \leq 9 \Rightarrow \sqrt{x} \leq 3$ is $\sqrt{x} \leq 3 \Rightarrow 0 \leq x \leq 9$.
5) The contrapositive of implication

Definition

Let P, Q be two propositions, the contrapositive of $(P \Rightarrow Q)$ is $(\bar{Q} \Rightarrow \bar{P})$.
Remark
$(P \Rightarrow Q)$ and $(Q \Rightarrow P)$ have the same truth table, i.e., the same truth value.
6) Equivalence (\Leftrightarrow)

Definition
We say that the two logical propositions P and Q are logically equivalent, if they are simultaneously true or simultaneously false, and we note $" P \Leftrightarrow Q$ ", its truth table is

Definition 3

P	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

Example $\quad x+2=0 \Leftrightarrow x=-2$.
Proposition
Let $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ be three logical propositions then,
(1) $\overline{\bar{P}} \Leftrightarrow P$.
(2) $P \wedge P \Leftrightarrow P$.
(3) $P \wedge Q \Leftrightarrow Q \wedge P$. (Commutativity of \wedge).
(4) $P \vee Q \Leftrightarrow Q \vee P$. (Commutativity of \vee).
(5) $(P \wedge Q) \wedge R \Longleftrightarrow P \wedge(Q \wedge R)$. (Associativity of $\wedge)$.
(6) $(P \vee Q) \vee R \Longleftrightarrow P \vee(Q \vee R)$. (Associativity of \vee).
(7) $P \vee P \Leftrightarrow P$.
(8) $P \wedge(P \vee Q) \Longleftrightarrow P$.
(9) $P \vee(P \wedge Q) \Longleftrightarrow P$.
(10) $(P \wedge Q) \vee R \Longleftrightarrow(P \vee R) \wedge(Q \vee R)$. $(\vee$ is distributive over $\wedge)$.
(11) $(P \vee Q) \wedge R \Longleftrightarrow(P \wedge R) \vee(Q \wedge R) .(\wedge$ is distributive over $\vee)$.
(12) $\overline{P \wedge Q} \Leftrightarrow \bar{P} \vee \bar{Q}$. Morgan's laws.
(13) $\overline{P \vee Q} \Leftrightarrow \bar{P} \wedge \bar{Q}$. Morgan's laws.
(14) $\overline{P \Rightarrow Q} \Leftrightarrow P \wedge \bar{Q}$.
(15) $(P \Rightarrow Q) \Leftrightarrow(\bar{P} \vee Q) \Longleftrightarrow \bar{Q} \Rightarrow \bar{P}$.
(16) $[(P \Rightarrow Q) \wedge(Q \Rightarrow P)] \Leftrightarrow(P \Longleftrightarrow Q)$.
(17) $[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)$.

Proof
(11) $(P \vee Q) \wedge R \Longleftrightarrow(P \wedge R) \vee(Q \wedge R)$.

P	Q	R	$(P \vee Q)$	$(P \vee Q) \wedge R$	$(P \wedge R)$	$(Q \wedge R)$	$(P \wedge R) \vee(Q \wedge R)$
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0
1	0	1	1	1	1	0	1
0	1	1	0	1	0	1	1
1	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	0	0	0	0	0

(12) $\overline{P \wedge Q} \Leftrightarrow \bar{P} \vee \bar{Q}$.

P	Q	\bar{P}	\bar{Q}	$P \wedge Q$	$\overline{P \wedge Q}$	$\bar{P} \vee \bar{Q}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

(14) $\overline{P \Rightarrow Q} \Leftrightarrow P \wedge \bar{Q}$.

P	Q	$P \Rightarrow Q$	$\overline{P \Rightarrow Q}$	\bar{Q}	$P \wedge \bar{Q}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

(15) $(P \Rightarrow Q) \Leftrightarrow(\bar{P} \vee Q) \Longleftrightarrow \bar{Q} \Rightarrow \bar{P}$.

P	Q	\bar{P}	\bar{Q}	$\bar{P} \vee Q$	$P \Rightarrow Q$	$\bar{Q} \Rightarrow \bar{P}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

(16) $[(P \Rightarrow Q) \wedge(Q \Rightarrow P)] \Leftrightarrow(P \Longleftrightarrow Q)$.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$[(P \Rightarrow Q) \wedge(Q \Rightarrow P)]$	$P \Longleftrightarrow Q$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

(17) $[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)$.

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$[(P \Rightarrow Q) \wedge(Q \Rightarrow R)]$	$P \Rightarrow R$	$[(P \Rightarrow Q) \wedge(Q \Rightarrow R)] \Rightarrow(P \Rightarrow R)$
$\mathbf{1}$							
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$						
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

1.1.1 Negation rules

Let $P(x)$ be a proposition,
(1) the negation of

$$
\forall x \in E, P(x)
$$

is :

$$
\exists x \in E, \bar{P}(x)
$$

(2) the negation of

$$
\exists x \in E, P(x)
$$

is :

$$
\forall x \in E, \bar{P}(x)
$$

Example

the negation of $\forall \varepsilon>0, \exists x \in \mathbb{Z}$ such that: $0<x<\varepsilon$ is : $\exists \varepsilon>0, \forall x \in \mathbb{Z}$ such that : $x \leq 0$ ou $x \geq \varepsilon$.

2 Reasoning methods

2.1 Direct reasoning

To show that $(P \Rightarrow Q)$ is true, we assume that P is true and demonstrate that Q is also true.

Example
Show that

$$
\forall x, y \in \mathbb{R}^{+}, x \leq y \Rightarrow x \leq \frac{x+y}{2} \leq y
$$

Proof.

$$
\begin{align*}
x \leq y & \Rightarrow x+x \leq x+y \\
& \Rightarrow 2 x \leq x+y \\
& \Rightarrow x \leq \frac{x+y}{2} \tag{1}\\
x \leq y & \Rightarrow x+y \leq y+y \\
& \Rightarrow x+y \leq 2 y \\
& \Rightarrow \frac{x+y}{2} \leq y \tag{2}
\end{align*}
$$

from (1) and (2) we have:

$$
x \leq \frac{x+y}{2} \leq y
$$

Case by case
In ordrer to prove that a certain proposition $P(x)$ is true for all x in a set E, we show that $P(x)$ is true for $x \in A \subset E$, then for $\mathbf{x} \notin \mathbf{A}$.

Example
Show that

$$
\forall x \in \mathbb{R},|x-1| \leq x^{2}-x+1
$$

Proof.
If $x \geq 1$ we have $|x-1|=x-1$, then $x^{2}-x+1-|x-1|=x^{2}-x+1-$ $(x-1)=(x-1)^{2}+1 \geq 0$.

So

$$
|x-1| \leq x^{2}-x+1
$$

If $x \leq 1$ we have $|x-1|=-x+1$, then $x^{2}-x+1-|x-1|=x^{2}-x+$ $1-(-x+1)=x^{2} \geq 0$.

So

$$
|x-1| \leq x^{2}-x+1
$$

Conclusion: we have

$$
\forall x \in \mathbb{R},|x-1| \leq x^{2}-x+1
$$

Contrapositive reasoning
Contrapositive reasoning is based on the following equivalence: $(P \Rightarrow Q) \Leftrightarrow(\bar{Q} \Rightarrow \bar{P})$, So if we want to show the assertion " $P \Rightarrow Q^{\prime}$ " it is sufficient to show that $\bar{Q} \Rightarrow \bar{P}$ is true.

Example
Show that: n^{2} is uneven then n is uneven too.
proof
By contrapositive, it is sufficient to show that if n is even $\Rightarrow n^{2}$ is even,

$$
\begin{gathered}
n \text { is even } \Rightarrow \\
\exists k \in \mathbb{N}, n=2 k \\
\Rightarrow n . n=2\left(2 k^{2}\right) \Rightarrow n^{2}=2 k^{\prime} \text { with } k^{\prime}=2 k^{2} \in \mathbb{N}
\end{gathered}
$$

so,

$$
\exists k^{\prime} \in \mathbb{N}, n^{2}=2 k^{\prime}
$$

then n^{2} is even. hence the result.

2.2 Reasoning by the absurd

To show that $P \Rightarrow Q$ we assume both that P is true and that Q is false, and look for a contradiction.

Thus, if P is true then Q must be true and so $P \Rightarrow Q$ is true.
Example
Show that:

$$
\forall x, y \in \mathbb{R}^{+}, \text {if } \frac{x}{1+y}=\frac{y}{1+x} \text { then } x=y
$$

We assume that $\frac{x}{1+y}=\frac{y}{1+x}$ and $x \neq y$.
we have

$$
\begin{gathered}
\frac{x}{1+y}=\frac{y}{1+x} \\
\Rightarrow x(1+x)=y(1+y) \\
\Rightarrow x+x^{2}=y+y^{2} . \\
\Rightarrow x^{2}-y^{2}=-x+y
\end{gathered}
$$

$$
\Rightarrow(x-y)(x+y)=-(x-y)
$$

As $x \neq y$, then
Example 4

$$
x-y \neq 0
$$

and dividing by $x-y$ gives :

$$
x+y=-1
$$

this is a contradiction (the sum of two positive numbers is positive) and therefore

$$
\text { if } \frac{x}{1+y}=\frac{y}{1+x} \text { then } \mathbf{x}=\mathbf{y}
$$

2.3 Reasoning by recurrence

To show that $\forall n \in I N, n \geq n_{0}, P(n)$ is true we follow the following steps:
(a) We show that $P\left(n_{0}\right)$ is true, (initial value).
(b) Assume that $P(n)$ is true and show that $P(n+1)$ is true.

Then P is true for all $n \geq n_{0}$.
Example
Show that:

$$
\forall n \in I N^{*}: 1+2+\ldots+n=\frac{n(n+1)}{2}
$$

(a) For $n=1$ we have $P(1)$ is true : $1=\frac{1(2)}{2}$.
(b) We assume that

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

is true, we have :

$$
\begin{aligned}
1+2+\ldots+n+1 & =(1+2+\ldots+n)+n+1 \\
& =\frac{n(n+1)}{2}+n+1 \\
& =\frac{(n+1)(n+2)}{2} .
\end{aligned}
$$

Then,

$$
\forall n \in I N^{*}: 1+2+\ldots+n=\frac{n(n+1)}{2}
$$

