1 Elements of logic

Notions of Logic

Definition

Any relation P that is either true or false is called a "logical proposition".

* When the proposition is true, it is assigned the value 1.

* When the proposition is false, it is assigned the value 0.

Example

(1) (Every prime number is even), this proposition is false.

(2) $(\sqrt{2} \text{ is an irrational number})$, this statement is true.

(3) (2 is less than 4), this statement is true.

Negation: \overline{P}

Given a logical proposition P , we call the negation of P the logical proposition \overline{P} , which is false when P is true and which is true when P is false, so we can represent it as follows:

$$\begin{array}{cc} P & \overline{P} \\ 1 & 0 \\ 0 & 1 \end{array}$$

Example (1) Let $E \neq \emptyset$, $P : (a \in E)$, then $\overline{P}: (a \notin E)$.

Example 1 (2) P: the function f is positive, then \overline{P} : the function f is not positive.

(3) P : x + 2 = 0, then $\overline{P} : x + 2 \neq 0$.

1.1 Logical connectors

1)The conjunction (and), (\wedge)

definition

Let P, Q be two propositions, the proposition (P and Q) or $(P \land Q)$ is the conjunction of the two propositions P, Q.

 $-(P \wedge Q)$ is true if P and Q are both true.

 $-(P \wedge Q)$ is false in all other cases.

This is summarized in the following truth table:

$$\begin{array}{cccccc} P & Q & P \wedge Q \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}$$

Example (1) 2 is an even number and 3 is a prime number, this proposition is true.

(2) $3 \le 2$ and $4 \ge 2$, this proposition is false.

2) The disjunction (or), (\lor)

Definition

the disjunction between P, Q is denoted by $(P \text{ or } Q), (P \lor Q)$.

 $P \lor Q$ is false if P and Q are both false, if not $P \lor Q$ is true. This is summarized in the following truth table:

 $\begin{array}{ccccc} P & Q & P \lor Q \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}$

Example (1) 2 is an even number or 3 is a prime number. True. (2) $3 \le 2$ or $2 \ge 4$. False.

3)The implication (\Rightarrow)

Definition

 $"P \Rightarrow Q"$ is the logical proposition that is false if P is true and Q is false. We say P implies Q or if P then Q. So its truth table is as follows:

Definition 2

$$\begin{array}{cccc} P & Q & P \Rightarrow Q \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}$$

Example

(1) $0 \le x \le 9 \Rightarrow \sqrt{x} \le 3$. True.

(2) It's raining, so I'm taking my umbrella. True, it's a consequence.

4) The reciprocal of an implication

Definition

The reciprocal of an implication $(P \Rightarrow Q)$ is an implication $Q \Rightarrow P$. Example

The reciprocal of: $0 \le x \le 9 \Rightarrow \sqrt{x} \le 3$ is $\sqrt{x} \le 3 \Rightarrow 0 \le x \le 9$.

5) The contrapositive of implication

Definition

Let P,Q be two propositions, the contrapositive of $(P \Rightarrow Q)$ is $(\overline{Q} \Rightarrow \overline{P})$. Remark

 $(P \Rightarrow Q)$ and $(Q \Rightarrow P)$ have the same truth table, i.e., the same truth value. 6) Equivalence (\Leftrightarrow)

Definition

We say that the two logical propositions P and Q are logically equivalent, if they are simultaneously true or simultaneously false, and we note " $P \Leftrightarrow Q$ ", its truth table is

Definition 3

$$\begin{array}{ccccccc} P & Q & P \Leftrightarrow Q \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$$

Example $x + 2 = 0 \Leftrightarrow x = -2.$ Proposition Let P, Q, R be three logical propositions then, (1) $\overline{P} \Leftrightarrow P$. (2) $P \wedge P \Leftrightarrow P$. (3) $P \land Q \Leftrightarrow Q \land P$. (Commutativity of \land). (4) $P \lor Q \Leftrightarrow Q \lor P$. (Commutativity of \lor). (5) $(P \land Q) \land R \iff P \land (Q \land R)$. (Associativity of \land). (6) $(P \lor Q) \lor R \iff P \lor (Q \lor R)$. (Associativity of \lor). (7) $P \lor P \Leftrightarrow P$. (8) $P \land (P \lor Q) \iff P$. (9) $P \lor (P \land Q) \iff P$. (10) $(P \land Q) \lor R \iff (P \lor R) \land (Q \lor R)$. (\lor is distributive over \land). (11) $(P \lor Q) \land R \iff (P \land R) \lor (Q \land R)$. (\land is distributive over \lor). (12) $\overline{P \wedge Q} \Leftrightarrow \overline{P} \vee \overline{Q}$. Morgan's laws. (13) $\overline{P \lor Q} \Leftrightarrow \overline{P} \land \overline{Q}$. Morgan's laws. (14) $\overline{P \Rightarrow Q} \Leftrightarrow P \land \overline{Q}$. (15) $(P \Rightarrow Q) \Leftrightarrow (\overline{P} \lor Q) \Longleftrightarrow \overline{Q} \Rightarrow \overline{P}.$ (16) $[(P \Rightarrow Q) \land (Q \Rightarrow P)] \Leftrightarrow (P \iff Q).$ (17) $[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R).$ Proof (11) $(P \lor Q) \land R \iff (P \land R) \lor (Q \land R)$. $(P \lor Q) \quad (P \lor Q) \land R \quad (P \land R) \quad (Q \land R) \quad (P \land R) \lor (Q \land R)$ PQR(12) $\overline{P \wedge Q} \Leftrightarrow \overline{P} \vee \overline{Q}$. \overline{P} $P \wedge Q \quad \overline{P \wedge Q}$ $\overline{P} \vee \overline{Q}$ P \overline{Q} Q

(14) $\overline{P \Rightarrow Q} \Leftrightarrow P \land \overline{Q}$. $P \quad Q \quad P \Rightarrow Q \quad \overline{P \Rightarrow Q} \quad \overline{Q} \quad P \wedge \overline{Q}$ 0 0 1 0 $1 \ 0 \ 0$ 1 1 $1 \quad 1$ (15) $(P \Rightarrow Q) \Leftrightarrow (\overline{P} \lor Q) \iff \overline{Q} \Rightarrow \overline{P}.$ $P \quad Q \quad \overline{P} \quad \overline{Q} \quad \overline{P} \lor Q \quad P \Rightarrow Q \quad \overline{Q} \Rightarrow \overline{P}$ $1 \ 0 \ 0 \ 1$ $0 \ 0 \ 1 \ 0$ $0 \ 1 \ 1 \ 0 \ 1$ $0 \ 0 \ 1 \ 1 \ 1$ (16) $[(P \Rightarrow Q) \land (Q \Rightarrow P)] \Leftrightarrow (P \iff Q).$ $\begin{array}{cccc} P & Q & P \Rightarrow Q & Q \Rightarrow P & \left[(P \Rightarrow Q) \land (Q \Rightarrow P) \right] & P \Longleftrightarrow Q \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \end{array}$ $0 \quad 1$ $1 \ 0 \ 0$ 0 1 1 (17) $[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R).$ P $Q \quad R \quad P \Rightarrow Q \quad Q \Rightarrow R \quad [(P \Rightarrow Q) \land (Q \Rightarrow R)] \quad P \Rightarrow R \quad [(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$ 1 0

1.1.1 Negation rules

Let P(x) be a proposition,

(1) the negation of ∀x ∈ E, P(x)
is: ∃x ∈ E, P(x).
(2) the negation of

- $\exists x \in E, P(x)$
- is:

 $\forall x \in E, \overline{P}(x).$

Example

the negation of $\forall \varepsilon > 0$, $\exists x \in \mathbb{Z}$ such that: $0 < x < \varepsilon$ is : $\exists \varepsilon > 0$, $\forall x \in \mathbb{Z}$ such that : $x \leq 0$ ou $x \geq \varepsilon$.

2 Reasoning methods

2.1 Direct reasoning

To show that $(P \Rightarrow Q)$ is true, we assume that P is true and demonstrate that Q is also true.

 $\mathbf{Example}$

Show that

$$\forall x, y \in \mathbb{R}^+, x \le y \Rightarrow x \le \frac{x+y}{2} \le y$$

Proof.

$$x \le y \Rightarrow x + x \le x + y$$

$$\Rightarrow 2x \le x + y$$

$$\Rightarrow x \le \frac{x + y}{2}$$
 (1)

$$x \le y \Rightarrow x + y \le y + y$$

$$\Rightarrow \quad x + y \le 2y$$

$$\Rightarrow \quad \frac{x + y}{2} \le y$$
 (2)

from (1) and (2) we have:

$$x \le \frac{x+y}{2} \le y$$

Case by case

In order to prove that a certain proposition P(x) is true for all x in a set E, we show that P(x) is true for $x \in A \subset E$, then for $x \notin A$.

Example

Show that

$$\forall x \in \mathbb{R}, |x-1| \le x^2 - x + 1$$

Proof.

If $x \ge 1$ we have |x-1| = x-1, then $x^2 - x + 1 - |x-1| = x^2 - x + 1 - (x-1) = (x-1)^2 + 1 \ge 0$. So

$$|x-1| \le x^2 - x + 1$$

If $x \le 1$ we have |x-1| = -x+1, then $x^2 - x + 1 - |x-1| = x^2 - x + 1 - (-x+1) = x^2 \ge 0$.

$$|x-1| < x^2 - x + 1$$

Conclusion: we have

$$\forall x \in \mathbb{R}, |x-1| \le x^2 - x + 1$$

Contrapositive reasoning

Contrapositive reasoning is based on the following equivalence: $(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$, So if we want to show the assertion " $P \Rightarrow Q$ " it is sufficient to show that $\overline{Q} \Rightarrow \overline{P}$ is true.

Example

Show that: n^2 is uneven then n is uneven too. proof

By contrapositive, it is sufficient to show that if n is even $\Rightarrow n^2$ is even,

$$n \text{ is even} \Rightarrow$$

$$\exists k \in \mathbb{N}, n = 2k$$
$$\Rightarrow n.n = 2(2k^2) \Rightarrow n^2 = 2k' \text{ with } k' = 2k^2 \in \mathbb{N}$$

so,

$$\exists k' \in \mathbb{N}, \ n^2 = 2k'$$

then n^2 is even. hence the result.

$\mathbf{2.2}$ Reasoning by the absurd

To show that $P \Rightarrow Q$ we assume both that P is true and that Q is false, and look for a contradiction.

Thus, if P is true then Q must be true and so $P \Rightarrow Q$ is true. Example

Show that:

$$\forall x, y \in \mathbb{R}^+,$$
if $\frac{x}{1+y} = \frac{y}{1+x}$ then $x = y$.

We assume that $\frac{x}{1+y} = \frac{y}{1+x}$ and $x \neq y$. we have 21

$$\frac{x}{1+y} = \frac{y}{1+x}$$
$$\Rightarrow x (1+x) = y (1+y)$$
$$\Rightarrow x + x^2 = y + y^2.$$

$$\Rightarrow x^2 - y^2 = -x + y$$

6

 \mathbf{So}

$$\Rightarrow (x-y)(x+y) = -(x-y)$$

As $x \neq y$, then

Example 4

$$x - y \neq 0$$

and dividing by x - y gives :

$$x + y = -1$$

this is a contradiction (the sum of two positive numbers is positive) and therefore

if
$$\frac{x}{1+y} = \frac{y}{1+x}$$
 then $\mathbf{x} = \mathbf{y}$.

2.3 Reasoning by recurrence

To show that $\forall n \in IN, n \ge n_0, P(n)$ is true we follow the following steps:

(a) We show that $P(n_0)$ is true, (initial value).

(b) Assume that P(n) is true and show that P(n+1) is true. Then P is true for all $n \ge n_0$. Example Show that:

$$\forall n \in IN^* : 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

(a) For n = 1 we have P(1) is true : $1 = \frac{1(2)}{2}$.

(b) We assume that

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

is true, we have :

$$1 + 2 + \dots + n + 1 = (1 + 2 + \dots + n) + n + 1$$

= $\frac{n(n+1)}{2} + n + 1$
= $\frac{(n+1)(n+2)}{2}$.

Then,

$$\forall n \in IN^* : 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$