
Ministry of Higher Education and Scientific Research University of Larbi Ben M'Hidi, Oum El Bouaghi Faculty of Exact Sciences and Natural and Life Sciences Department of Mathematics and Computer Science

Computer Structure 1

Presented by: Dr. NASRI/A nasri.ahlem1988@gmail.com nasri.ahlem@univ-oeb.dz

2023-2024

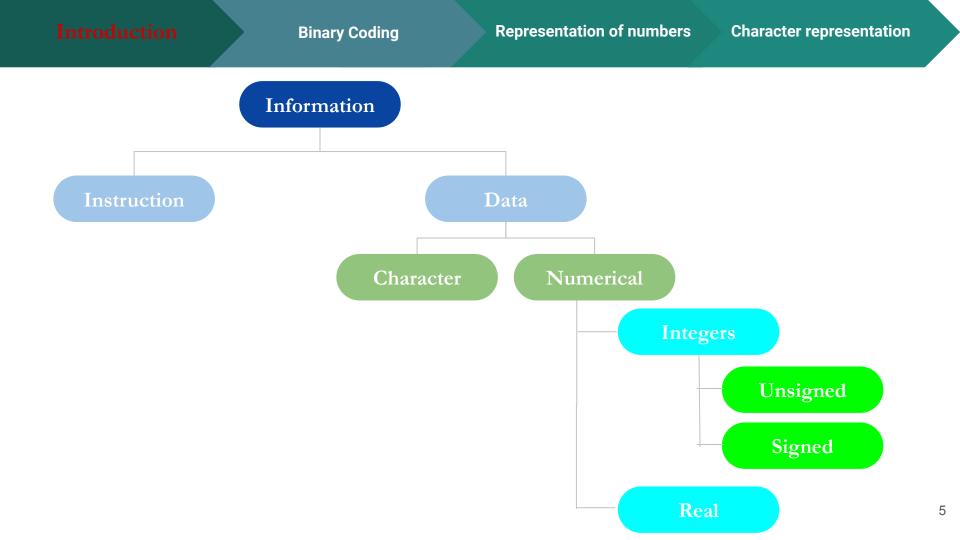
Chapter 2: Internal Data Representation

Binary Coding

Types of information processed by the computer:

Numbers, instructions, images, animated image sequences, sounds, etc, always represented in binary form.

Advantages of binary:


- easy to achieve technically using bistables (systems in two equilibrium states: the existence or not of an electrical voltage +5V=1 and 0V=0).
- fundamental operations that are simple to perform, in the form of logic circuits.

The computer's memory is limited => the bit sequence which represents the information is also limited

Internal Data Representation number of bits on which we must represent this data

1. The reflected binary code (GRAY code)

- **Gray code**, also known as **reflected binary code**, is a binary numeral system with a unique property that distinguishes it from traditional binary representation.
- In Gray code, adjacent numbers differ by **only one bit**, which makes it particularly useful in applications where you want to minimize errors during transitions between values (Karnaugh's tables, input output circuit, optical encoders and analog/digital converters, ...)

1. The reflected binary code (GRAY code)

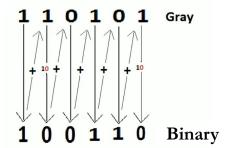
Principle:

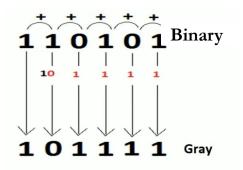
- 1. Start with the leftmost (most significant) bit of the Gray code, which is the same as the leftmost bit in the binary representation.
- 2. Move from left to right through each bit in the Gray code.
- 3. For each bit, calculate the corresponding bit in the binary representation using the following instructions:
 - If the current bit in the Gray code is 0, keep the previous binary bit as it is.
 - If the current bit in the Gray code is 1, flip the previous binary bit.
- 4. Continue this process until you have converted all bits from Gray code to binary code.

1. The reflected binary code (GRAY code)

Example: We want to represent the first 8 numbers using the gray code.

Decimal Representation	Binary Representation	a	b	с	
0	000	0	0	0	
1	001	0	0	1	Mirror level 1
2	010	0	1	1	
3	011	0	1	0	
4	100	1	1	0	Mirror level 2
5	101	1	1	1	
6	110	1	0	1	
7	111	_1	0	0	Gray Representation


1. The reflected binary code (GRAY code) Converting GRAY to Binary


(110101) Gray = ?

 $(110101)_{Gray} = (100110)2$

Converting Binary to GRAY

 $(110101)_2 = ? (110101)_2 = (101111)_{Gray}$

2. The Decimal Coded Binary code(DCB code)

Principle:

This is the most used code. Its principle is based on associating a binary code with each decimal digit on 4 bits.

Example:

 $(512)_{10} = (1000000000)_2 = (0101\ 0001\ 0010)_{\text{DCB}}$

nbr of digit in decimal = 10

nbr of numbers we can represented using 4 bits = $2^4 = 16$

There are 6 unused configurations -

Decimal	DCB	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	
1	1010	
1	1011] b
/	1100	Not used
/	1101	, t
/	1110] ĭ
/	1111	

3. The code exceeds three

Principale:

Exceeds three code is very similar to the DCB code. Its principle is based on associating each decimal digit with its binary equivalent plus 3.

Example:

 $(512)_{10} = (1000000000)_2 = [(0101 + 0011) (0001 + 0011) (0010 + 0011)]_{\text{Exceeds 3}}$ = (1000 0100 0101)_{Exceeds 3}

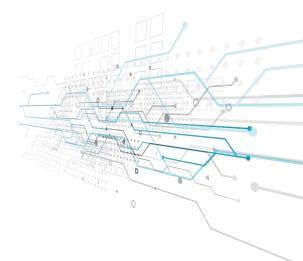
1. Representation of Unsigned Integers:

An unsigned integer is represented by its binary equivalent and the non-significant bits are replaced by zeros.

Example: On 8-bit sequences

8 is represented by 00001000 138 is represented by 10001010 Evaluation:

The evaluation of a number represented in binary is done by converting the representation from the binary system to the decimal system (polynomial expansion). Range of values:


The range of numbers that can be represented in n-bit binary is [0, 2ⁿ-1]

The problem is how to tell the machine that a number is positive or negative???????

An **unsigned integer** is represented by a machine like its **equivalent in binary** (as seen in the previous section).

On the other hand, to represent a signed integer, there are several methods:

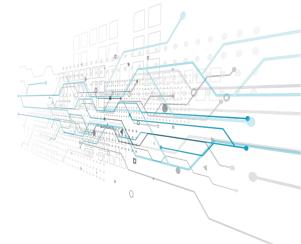
- 1. Signed absolute value
- 2. One's Complement
- 3. Two's Complement
- 4. With Excess

00001

representation of +1 on 4 bits

2. Representation of Signed Integers:

A- Signed absolute value


A Signed integer is represented on n bits by the binary equivalent of its absolute value on (n-1) bits and the nth bit represents the sign of the number. By convention, the positive sign is represented by 0 and the negative sign is represented by 1.

Example: On 4 bits 1 0001 Sign absolute value representation of -1 on 4 bits

2. Representation of Signed Integers: A- Signed absolute value

Evaluation: A $(a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0)$ is the SAV representation of N in decimal. The evaluation of N is done according to the following algorithm:

If a_n=0 then (* the number is positive *) N ← + Decimal Conversion (A) Else (*the number is negative*) a ← 0 N ← - Decimal Conversion (A) End

2. Representation of Signed Integers:
A- Signed absolute value
Range of values:
The range of numbers that can be represented in n-bit binary is [-(2ⁿ⁻¹-1), +2ⁿ⁻¹-1]

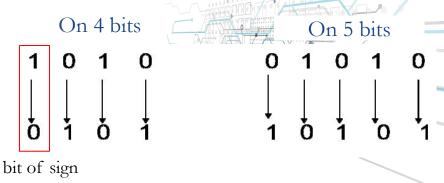
Example: On 3 bits, we have The range of numbers $-3 \le N \le +3$ $-(4-1) \le N \le +(4-1)$ $-(2^2 -1) \le N \le +(2^2 - 1)$ $-(2^{(3-1)} - 1) \le N \le +(2^{(3-1)} - 1)$

NB: we have 2 representation of 0 (-0 and +0)!

SAV Value	Binary Value	Decimal Value
000	+ 00	+ 0
001	+ 01	
010	+ 10	12
011	+ 11	+3
100	- 00	
101	- 01	-1
110	- 10	- 2 °
111	- 11	- 3

2. Representation of Signed Integers:B- One's Complement

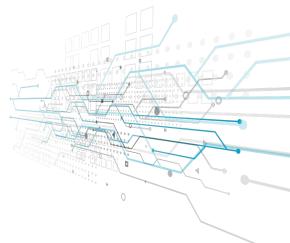
- A positive integer is represented by its binary equivalent on (n-1) bits the nth bit represents the sign of the number which is 0.
- A negative integer is represented by its **one's complement**. We call the one's complement of a number N the number N' such that: $N+N'=2^n-1$ where n is the number of bits of the representation of the number N.


Example:

N=1010. Its One's complement is: N'= $(2^4 - 1)$ -N N'= $(16-1)_{10}$ - $(1010)_2$ = $(15)_{10}$ - $(1010)_2$ = $(1111)_2$ - $(1010)_2$ = $(0101)_2$ = $(5)_{10}$

2. Representation of Signed Integers:B- One's Complement

NB: To find the one's complement of a number, simply
1. First write the absolute value of the number (|N|) on n bits.
2. Then invert all the bits of this number: if the bit is at 1 put 0 in its place and if the bit is at 0 put in its place a 1.


CA1(CA1(N)) = N

2. Representation of Signed Integers:B- One's Complement

Evaluation: A $(a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0)$ is the 1C representation of decimal N. The evaluation of N is done according to the following algorithm:

If a_n=0 then (* the number is positive *) N ← + Decimal Conversion (A) Else (*the number is negative*) A ← 1C(A) N ← - Decimal Conversion (A) End

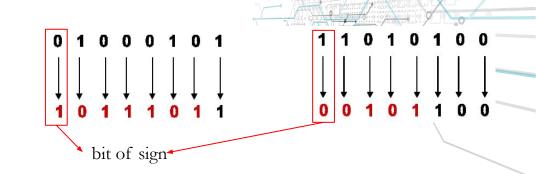
2. Representation of Signed Integers: B- One's Complement Range of values: The range of numbers that can be represented in n-bit binary is [-(2ⁿ⁻¹-1), +2ⁿ⁻¹-1]

Example: On 3 bits, we have The range of numbers [-3,+3] $-3 \le N \le +3$ $-(4-1) \le N \le +(4-1)$ $-(2^2 -1) \le N \le +(2^2 - 1)$ $-(2^{(3-1)} -1) \le N \le +(2^{(3-1)} - 1)$

NB: we have 2 representation of 0 (-0 and +0)!

1C Value	Binary Value	Decimal Value
000	+000	+0
001	+001	+1
010	+010	+2
011	+011	43
100	-011	-3
101	-010	-2
110	-001	-10
111	-000	-0

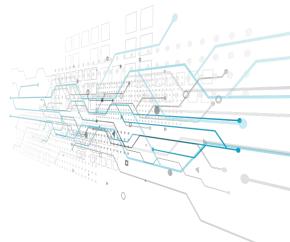
2. Representation of Signed Integers: C- Two's Complement


- A positive integer is represented by its binary equivalent on (n-1) bits the nth bit represents the sign of the number which is 0.
- A negative integer is represented by its tow's complement. We call the one's complement of a number N the number N' such that: N' = 1C(N)+1 where n is the number of bits of the representation of the number N.

N=1010 on 4 bits CA1(N)=0101 CA2(N) = **CA1(N)+1** = 0101 + 1 = 0110

2. Representation of Signed Integers: C- Two's Complement

NB: To find the one's complement of a number, simply
1. First write the absolute value of the number (|N|) on n bits.
2. Next, traverse the bits of this number starting from the lowest weight bit to the first 1 and invert the other bits that come after.


CA2(CA2(N)) = N

2. Representation of Signed Integers: C- Two's Complement

Evaluation: A $(a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0)$ is the 2C representation of decimal N. The evaluation of N is done according to the following algorithm:

If a_n=0 then (* the number is positive *) N ← + Decimal Conversion (A) Else (*the number is negative*) A ← 2C(A) N ← - Decimal Conversion (A) End

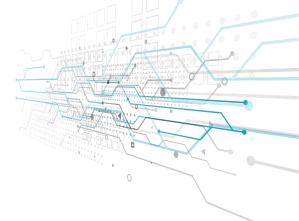
Exercise:

Use these different codings to code the following relative integers on 8 bits (if possible):

Decimal	Binary	Gray	DCB	exceeds 3	SAV	C1	C2	
5								
-5								
32								
-17								$\overline{\mathbf{X}}$
222					 		0	

2. Representation of Signed Integers: D- Representation with excess

- Every number N is represented by the binary equivalent of the characteristic C such that: C = N + Excess.
- The excess **E** is chosen so that the sum C is always positive.
- In general, this representation is used to present the exponents of numbers real (IEEE 754 standard) with Excess = 2^{n-1} -1.


Exemple: On 8 bit sequences: $E=2^{7}-1=127$ **10** is represented by $10+127=(137)_{10}=(10001001)_{2}$ **-10** is represented by $-10+127=(117)_{10}=(01110101)_{2}$

2. Representation of Signed Integers: D- Representation with excess

Evaluation:

The evaluation of a number represented with excess is done using the following relationship:

 $C = N + 2^{n-1} - 1 \leftrightarrow N = 2^{n-1} + 1$

- A real number is made up of two parts: **the integer part** and the **fractional part** (the two parts are separated by a decimal point).
- The problem is how to tell the machine the position of the decimal point.??
- There are two methods for representing real numbers:
 - Fixed point: the position of the point is fixed
 - Floating point: the position of the point changes (dynamic)

.....

.....

....

3. Representation Real numbers:

A- Fixed point:

In this representation, the Integer Part (IP) is represented on **e** bits and the Fractional Part (FP) on **f** bits, in addition one bit is used for the sign.

	Sign 1 bit	Integer Part (IP) e bits	Fractional Part ((FP) f b	its		
Example	e if e=3 and f	=2 we will have the follo	owing values:	Binar	y valu	ies	
				Sign	IP	FP	Decimal values
NB: In th	is representati	on the values are		0	000	00	+ 0,0
	÷	not have a large		0	000	01	+ 0,25
		not nave a large		0	000	10	+ 0,5
prec	ision !!			0	000	11	+ 0,75
				0	001	00	+ 1,0
				5	S		

3. Representation Real numbers: B- Floating point:

Each real number can be written as follows: $(-1)^{S} * (0,M) * B^{E}$

Where S: Sign (positive = 0, negative = 1), M: Mantissa, B: Base, E: Exponent.

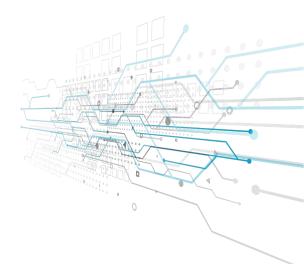
S E M Example: $15.6 = + 0.156 * 10^{+2} = (-1)^0 * 0.156 * 10^{+2}$ $-(110,101)_2 = -(0,110101)_2 * 2^{+3} = (-1)^1 * (0,110101)_2 * 2^{+3}$ $(0,00101)_2 = +(0,101)_2 * 2^{-2} = (-1)^0 * (0,101)_2 * 2^{-2}$

B- Floating point: Standard IEEE 754 (1985)

In this presentation, the real number can be written as follows:

$$(-1)^{S} \times (0, M) \times 2^{E} = (-1)^{S} \times (1, M_{n}) \times 2^{E}$$

S (1 bit) E (e bits) Mn (m bits)


Mn: Mantissa normalized to base 2 with a hidden bit. Indeed, the decimal point is placed after the most significant bit at 1, for example: 11.01 => 1.101 => Mn= 101 - E: Exponent coded with excess 2^{e-1} -1

B- Floating point: Standard IEEE 754 (1985)

	32 Bits	64 Bits
Number of Sign bits (S)	1	1
Number of exponent bits (Eb)	8	11
Number of bits of the mantissa (Mn)	23	52
Exponent coding	with Excess $2^7 - 1 = 127$	with Excess $2^{10} - 1 = 1023$
		0

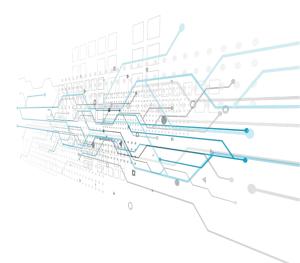
B- Floating point: Standard IEEE 754 (1985)

Example: Code the number $N = (35.5)_{10}$ according to IEEE 754-32:

B- Floating point: Standard IEEE 754 (1985)

Example: Code the number $N = (35.5)_{10}$ according to IEEE 754-32:

- Converting N to binary: N = 100011.1
- Exponential form of N: N = 1.000111×2^5
- Sign bit S = 0


 - Exponent coding: $C = E + 127 = 5 + 127 = 132 = (10000100)_2$
- Overall representation: (0 10000100 0001110000000000000000)

3. Representation of Characters:

The characters include : upper and lower case alphabetical letters (A..Z, a..z), numbers (0..9), punctuation (?,!, ..), special characters(%, @,..) and other symbols (>, ;, ..). A- ASCII Code : (American Standard Code for Information Interchange)

ASCII code of 'A' is $(100\ 0001)2 = (41)16 = (65)10$

-	0	0	4	4
CHART	CODE	ITROL	CON	ASCII

-		160	161	162	163	164	165	166	167	170	111	172	173	174	175	176
-	LOWER CASE	112 P	1 d		a s	116 t	117 U 275	118 V 76	119 W	120 X	121 Y	122 Z TA	123 41	134	123 12	1 12
0	VER	1 140	11 141 141	1 142 7	1 143 7	144 7	145 7	146 7	147 7	1 150 7	1 151	1 152 7	153 7	154 7	1 155 7	1 156 7
	LON	-	3	9	U	P	e	÷.	60	2			×		E	-
		96	97	98 122 62	99 123 63	10	101		101	10 130 68	101	106 132 6A	107 133 6B	108 134 6C	109 135 6D	111 116 08
0	SE	٩.	Ø	~	S	⊢	>	>	\geq	×	>	N		_		<
0	UPPER CASE	8 8	12 12	8 8	8 8	2 2	8 8	8 8	te to	8 8	8 8	9 YE	91 31 31 31 31 31 31 31 31 31 31 31 31 31	35 1 20	8 9	19 15 19
	IPPE	001	A	B 102	C	D 104	E E	e E	0	H	Ш	1	K	114	M	N
	-	40	65 1 41	42	10	1		100000		F 7	£ 5	2 3	12 B	10		78 4R
-	í	60	19	62	13	64	55	66	67	10	F	1	12	7	12	16
-	SYMBOLS NUMBERS	0		5	3	2 H	2	9	5 J	00	6	* 5		s %	11 B	л а 9
0	SYMBOLS NUMBERS	40 30	41 31	42 32	51 43 33	52 44 34	45 35	46 36	55 47 37	50 35 35	57 57	55 52 3A	53 33	54 P	23 31	62 56 3E
	NI	SP		=	#	\$	%	Š	- - -	_		*	+	712-	1	12
		32 20 20	33	34	5 F	36	11 12 13 13	8 8 8	339	40 28 30 28	41 41 31 29	42 32 2A	43 33 2B	44 34 2C	45 35 2D	46 36 2E
0	_	DLE	DCI	DC2	DC	DC4	NAK	SYN	ETB	CAN	E	SUB	ESC	R	S	SS
	CONTROL	16	11	2 I			R N S	16 23	а н	24	12 23	26 1.A	12 E	E B	R 9	11 (N
	CON	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	ŝ	F	а Ц		2	я с	O H
-		° N	SC	S		, Li ,	E .		BI	BS	HT	LF A	UT VT	H o	^D CR	E SO
13	bl	0	1	0		0	1	0	1	0		0	1	0		0
b6	BITS b3 b2	0	0		-1-	0	0			0	0		1	0	0	-
	P1 P3	0 0	0 0	0 0	0 0	0 1	0 1	0 1	0 1	1 0	1 0	1 0	1 0	1 1	1	1 1
	۵.															