
ASD2
1

Linked lists

Definition

 It is a linear structure which does not have a fixed dimension at

its creation.

 Its elements of the same type are scattered in memory and

linked together by pointers .

 Its size can be modified depending on the space available in

memory.

 The list is accessible only by its head of list, that is to say its first

element .

2

Illustrative example of a list

This example shows a linked list of strings.

To access the third element of the list you must always

start reading the list with its first element in the pointer

of which the position of the second element is indicated.

In the pointer of the second element of the list we find

the position of the third element ...

3

Illustrative example of a list

The sequence of a linked lists is implemented by the

pointer carried by each element which indicates the

location of the next element .

The last element of the list points to nothing (Nil).

We access an element of the list by traversing the

elements using their pointers .

4

Types of linked lists

There are different types of linked lists:

 Simple linked list consisting of elements linked together by pointers.

 Ordered linked list where the next element is larger than the previous one.

Element insertion and deletion are done so that the list remains sorted.

 Doubly linked list where each element has two pointers pointing respectively to

the previous element and the next element . This allows the list to be read in

both directions, from the first to the last element or vice versa.

 Circular list where the last element points to the first element in the list. If it is a

doubly linked list then the first element also points to the last.

5

Linked List Vs Array6

Linked lists

An element of a list is a structure formed:

of data or information,

a pointer named Next indicating the position of the next element in

the list.

7

*

Linked lists

The pointer variable P points to the memory space (*P) of

address 3 .

This memory cell contains the value “ Essai” in the Info

field and the special value Nil in the Next field . The Next

field will be used to indicate the position of the next element

which represents a part of a list.

The value Nil indicates that there is no next element.

*P is the object whose address is stored in P.

8

Linked lists

Each element is associated with a memory

address.

Linked lists use the allocation and Free function.

Allocate(P) and Free(P).

9

Simple linked list

Simple linked list is composed:

 of a set of elements having the previous structure.

 of a variable, called Head , containing the address of the first

element of the linked list.

 The last element pointer contains the value Nil .

In the case of an empty list the head pointer contains the value

Nil .

A list is defined by the address of its first element .

10

Example of a list of integers

The 1st element of the list is 12, stored at address 3 (start of
the linked list).

The 2nd element of the list is 14, stored at address 4
(because the pointer to cell at address 3 is equal to 4).

The 3rd element of the list is 10, stored at address 2
(because the pointer to cell at address 4 is equal to 2).

The 4th element of the list is 24, stored at address 1
(because the pointer of cell at address 2 is equal to 1).

11

Example of a list of integers

 If P has the value 3:

 (*P).Info has the value 12.

 (*P).Next has the value 4.

 If P has the value 2:

 (*P).Info has the value 10.

 (*) P.Next has the value 1.

12

List type definition

Type Element = Record

Info: data_type ;

Next: * Element ;

EndRecord

Type List : * Element ;

The type of Info depends on the values contained in the list:

integer , real , character, string , etc.

13

List in C language

typedef struct element

{

int info ;

element * next;

} element ;

typedef struct element * List;

List head, P;

14

Basic List Operations

 The treatments on the lists are as follows:

o Create a list.

o Browse a list.

o Search for a value in a list.

o Add an item.

o Delete an item.

o Edit an item.

15

Basic List Operations

 In everything that follows, we use a linked list of integers, its definition is given by:

Type Element = Record

info: int;

next: * Element ;

EndRecord

Type List : * Element ;

16

Creating a simple linked list

 We distinguish two cases:

a) The number of elements to create is known .

b) The number of elements to create is unknown .

17

Creating a simple linked list

(known number of elements)

Algorithm CreationListNumberKnown ;

Type Element = Record

info : integer;

next : * Element ;

EndRecord

Type List: * Element ;

Variable head, P: List; N, i: int;

Begin

head Nil;

Write ("enter the number of elements in the list"); Read (N);

For i1 to N do

Allocate (P) ; Write (“Enter element value”); Read ((*P).info);

(*P).next head ; head P;

EndFor

END .

18

Creating a simple linked list (unknown number

of elements)

Algorithm CreationListNumberUnknown ;

Type Element = Record

info : int;

next : * Element ;

EndRecord

Type List: * Element ;

Variable head, P: List; Bool : Boolean; char: character;

Begin

head Nil; Bool True;

While (Bool = true) do

Allocate (P) ; Write (“Enter element value”); Read ((*P).info); (*P).next head ; head P;

Write (“ Are there elements: Y/N”); Read (char);

If (char = "N") Then

Bool False; End if

EndWhile

END .

19

Displaying elements of a linked list

 A simple linked list can only be traversed from the first to the last element

Algorithm ShowList ;

Type Element = Record

info: integer ;

next: * Element ;

EndRecord

List: * Element ;

Variable head, P: List ;

Begin

P head ; //point to the first element.

while (P < > Nil) Do // Scan the list from the first element to the last element.

Write ((*P).info); // display element

P (*P).next; // move on to the next element

EndWhile

END .

20

Find a given value in a linked list
Algorithm FindListValue ;

Type Element = Record

info : integer;

next : * Element ;

EndRecord

List: * Element ;

Variable head, P: List; Bool : Boolean; val: integer;

Begin

Write(''Enter the desired value''); Read(val);

If (head <> Nil) Then

P Head ; Bool False;

while (Bool = False) and (P < > Nil) do

If ((*P).info = val) Then

Bool true;

Else

P (*P).next ;

End if

EndWhile

21

Find a given value in a linked list

If (Bool = true) Then

Write (“the value”, val, “is in the list”);

else

Write((“the value”, val, “is not in the list”);

End if

Else

Write (“the list is empty”);

End if

END .

22

Inserting an element into a linked list

 1) Insert at the beginning of the list

Algorithm InsertStartList

Type Element = Record

info : integer;

next : * Element ;

EndRecord

List: * Element ;

Variables head , P: List; val: integer;

Begin

Allocate(P);

Write ("enter the value to insert"); Read (val);

(*P).infoval;

(*P).next head ;

head P;

END .

23

Inserting an element into a linked list

 2) Insert at the end of the list

Algorithm InsertEndList

Type Element = Record

info : integer;

next : * Element ;

EndRecord

List: * Element ;

Variable head, P,k : List;

Begin

k head ;

Allocate(P); Write ("enter the value to insert");

24

Inserting an element into a linked list

 2) Insert at the end of the list

Read ((*P).info); (*P).next Nil;

If (head = Nil) Then

head P;

else

while ((*k).next <> Nil) Do

k (*k).next;

endwhile

(*k).next P;

End if

END

25

