
1

Recursion

Algorithmic and Data Structure 2

Definition

Recursion consists of replacing a loop with a call to the

sub-algorithm itself.

•We call recursive any function or procedure that calls itself.

2

Illustrative Example 1: Factorial
•The best-known example is that of calculating the factorial
defined by the formula:

N! = 1 * 2 * … * (N-2) * (N-1) * N, With 1! = 1 & 0! = 1

• Iterative solution (using loop instruction)

Fact 1;

For i = 1 a N Do

Fact Fact * i;

Endfor ;

3

Illustrative Example 1: Factorial

• But another way we can say that N! = N * (N-1)!

• That is to say, the factorial of a number is the result of multiplying the number

by the factorial of the previous number.

• If we want to program this calculation we can imagine a Fact function which

performs the multiplication of the number passed as an argument by the factorial

of the previous number, and this factorial of the previous number will of course

itself be calculated by the same Fact function in another call.

4

Illustrative Example 1: Factorial

• Recursive solution: The recursive function of the factorial is written
as follows:

Function Fact (N: Integer): Integer;

Begin

If N = 1 Then

Fact 1;

Else

Fact N * Fact (N-1);

Endif
End;

5

Flow of the Recursive
function

• The execution of the recursive function therefore amounts to making repetitive

calls to the function until the stopping condition is validated.

• Let's take the recursive function of the factorial and run it for N = 5;

• In the diagram on the next slide, the downward arrows represent the calls (from

Fact (5) to Fact (1)) we then arrive at the execution of fact (1) for which the

stopping condition is valid then the return is done backwards (in the opposite

direction) and each call then corresponds to the calculated value.

6

Flow of the recursive
function

7

Stop condition of a recursive
function

• Since a recursive function calls itself, it is imperative that we provide a stopping

condition otherwise the program will never stop!

• We must always test the stopping condition first, and then, if the condition is not

verified, then make a recursive call.

• In the case of the factorial function above the stopping test can also be when N = 0

because by definition 0! is known and equal to 1.

8

How to write a recursive
algorithm/program

To write a recursive algorithm you must analyze

the problem to:

identify the particular case (s) (stopping

condition).

identify the general case that performs the

recursion.
9

Example 2: Fibonacci sequence
• Fibonacci is a sequence of integers in which each term is the sum of the two

terms that precede it:

U 0 = 1, U 1 = 1

U n = U n-1 + U n-2 for n > 1

Function Fibo (N: Integer): Integer;

Begin

If (N = 0) or (N = 1) Then

Fibo 1;

Else

Fibo Fibo (N-1) + Fibo (N-2);

Endif

End;
10

Error handling

• In the two previous functions (factorial and fibonacci) the value of N must

be a positive integer otherwise we fall back on the case of the infinite loop.

• Assuming that we want to calculate the factorial of (-1).

• In the case of the iterative solution (the loop "For i<- 1 a N Do") the loop will

never be triggered because N being less than 1 (the minimum value) but the

execution will give a false result, "1" which the Fact result was initialized.

11

Error handling
• In the case of the recursive function N =-1 not being equal to 0, execution of the

instruction " Fact<- N * Fact (N-1)" call the function Fact (-2) which will

subsequently trigger a call to Fact (-3)…. without ever arriving at the stopping

test and therefore we find ourselves in the case prohibited in any algorithm,

namely INFINITY .

• It is therefore necessary to call Fact only for all N whose value is greater than 1

(otherwise greater than 0 if we modify the function stopping test to "If N = 0

then".

12

Error handling
• A value test before the Fibonacci call is therefore necessary (N must have at

least the value 0) in order to avoid the infinite case in the function.

• Note: It is therefore important to specify that the treatment of error cases

(unaccepted values) must be managed in the calling algorithm (or sub-

algorithm) in order to allow correct execution of the recursive sub-

algorithm.

13

Example 3: Sum of the first N
positive natural numbers

• The mathematical formula for this calculation is 𝑆 = 𝑛
1 𝑖 in other words

S = 1+2+3+…. +N or again:

U1 = 1

U n = U n-1 + N with N ≥ 1

• Sequential function (iterative solution)

Function Suite (N: integer): integer;

Variables i, S: Integer;

Begin

S <- 0;

For i <- 1 to N do

S <- S + i;

EndFor

Suite <- S;

End;

14

Example 3: Sum of the first N positive
natural numbers

• Writing the same function recursive gives the following code:

function Suite-R (N: Integer): integer;

Begin

If N = 1 Then

Suite-R 1 ;

else

Suite-R Suite-R (N-1) + N ;

Endif

End;

15

Example 4: Number divisible by
another

• This Boolean function returns a value true if a number "b" is a divisor of a

number "a" or false otherwise.

Function Divisible (a, b: integer): boolean ;

Begin

If (a =b) then

divisible true;

else if (a<b) then

divisible false;

else

divisible divisible (a –b, b);

Endif

End;

16

bool divisible (int a, int b){

if (a==b){

return true; }/*true*/

else if (a<b){

return false;}

else{

return (divisible(a-b,b));}

}

Example 4: Number divisible by
another

17

Example of recursion in C

/*This program calls the power recursive function to calculate x y (x integer and y positive integer*/

#include < stdio.h >

int power (int , unsigned); /*Declaration (prototype) of the power function*/

main() {

int x;

unsigned y; /*y positive integer*/

scanf ("%d%u",&x,&y); / *reads the values of x and y*/

printf ("%d",power(x,y)); /*displays the result of x pow y */ }

int power (int x, unsigned y) /*definition of the power function*/

{

if (y==0)

return(1); /*returns 1 if y=0*/

else /*returns x*xy-1 (calls power again for x and y-1)*/

return (x * power (x,y-1));

}
18

Types of recursion

•We distinguish four types of recursion:

• Nested Recursion,

• Cross Recursion,

• Terminal Recursion,

• Non-terminal Recursion.

19

Nested recursion

• Principle : This type of recursion consists of making a recursive call inside

another recursive call.

• The most used example to present this type of recursion is that of the Ackerman

sequence defined by :

A (m,n) = n+1 if m = 0,

A (m,n) = A(m-1,1) if n=0 and m > 0

A (m,n) = A(m-1, A(m,n-1)) otherwise

20

Nested recursion
• A recursive function to calculate a term A (m, n) looks like this:

Function Ackerman (m, n: Integer): integer;

Begin

If m = 0 then

Ackerman n +1

else

If (n = 0) and (m > 0) then

Ackerman Ackerman (m-1, 1)

else

Ackerman Ackerman (m-1, Ackerman (m, n-1))

Endif

Endif

End ; 21

Cross recursion

• Principle : consists of writing functions that call each other. In this case, the

order of the two functions is not important, however it is necessary to:

1- Write the header of the second function (the first function can call it);

2- Write the first function in full;

3- Write the second function in full;

22

Cross recursion
• Consider the following calculation:

A(x) = 1 if x ≤ 1

A(x) = B (x+2) if x > 1

With: B(x) = A(x-3) +4

• Function B (x: integer): Integer; {header of function B}

• Function A (x: integer): Integer;

Begin

If x ≤ 1 then

A 1

else

A B (x+2)

Endif

End;

Function B (x: integer): Integer;

Begin

B A (x-3) +4;

End;
23

Cross recursion

• Execution for A (3)

24

Terminal and non-terminal
recursion

• Terminal recursive : A sub-algorithm is said to be terminal if no processing is

carried out on the return of a recursive call except the return of a value (See the

example of a number divisible by another).

• Non-terminal recursion : where the result of the recursive call is used to carry

out processing; in addition to the return of a value, the calculations are done on

the return (see the Factorial function)

25

Conclusion

• Recursive algorithms are simple (it's just another way of

thinking).

• Recursive algorithms are used to solve complex problems.

26

