
1 
 

 

 

 

Algorithmic and Data Structure 1 

 

 
 

Chapter 6 “Custom types”  
 

 

Outline 

 
1. Enumeration (Enumerated type) ......................................................................................... 2 

1.1. Declaration of enumerated type .................................................................................. 2 

1.2. Using an Enumerated Type ......................................................................................... 3 

2. Records (Structures) ........................................................................................................... 4 

2.1. Declaration of a records .................................................................................................. 4 

2.1. Accessing fields in a record ......................................................................................... 5 

2.2. Nested structures ......................................................................................................... 5 

3. Other type definition possibilities: interval type ................................................................ 7 

4. Application exercises .......................................................................................................... 8 

Bibliographic References ........................................................................................................... 9 

 



Chapter 6: Custom Types 

 

2 
 

 

Chapter 6: Custom Types 

 
Why custom types? 

In some problems, we can find data that is strongly related to each other, so treating one 

should directly affect the others. It is therefore appropriate to group this data into an indivisible 

set of information. 

Example: we want to record information about customers to reuse them later. For each 

customer, the information are name, first name and age. Instead of recording each piece of 

information independently, we can group it into a single structure as follows: 

Data structure 

Customer Type 

Name: string  

First name: string  

Age: integer  

EndType 

    

In this course, we are primarily interested in the two custom types: enumeration and records. 

1. Enumeration (Enumerated type) 

Enumerations allow you to define a type by the list of values it can take. 

The enumerated type makes it possible to represent objects, which can take their value in a 

finite and ordered list, in other words, the enumerated type makes it possible to associate with 

a type a set of values ordered according to their order of declaration. 

1.1. Declaration of enumerated type   

To declare an enumerated type, we use a name for object identification (identifier), followed 

by a set of values in parentheses, as follows: 

Syntax: 

Type 

Identifier = (Val 1 , Val 2 , Val 3 , ….., Val N ); 

 Identifier : the name of the enumeration; 



Chapter 6: Custom Types 

 

3 
 

 Val 1 , Val 2 , Val 3 , ….., Val N , are values that Identifier can take . 

 Val 1 , Val 2 , Val 3 , ….., Val N , are ordered, i.e. Val 1 < Val 2 < Val 3 < …..< Val N 

Syntax in C: 

enum identifier {Val 1 , Val 2 , Val 3 , ….., Val N }; 

  

Examples 

 Type Week = (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday); 

 Type Color = (red, green, blue); 

 Type Gender = (male, female); 

 Type Vowel= (A, E, I, O, U); 

1.2. Using an Enumerated Type  

We use the enumerated type to declare variables of this type, this variable can only take one 

of the values given in parentheses. 

Syntax 

Variable   Name _ Var : Name _ Type _ Enumerate; 

Syntax in C 

enum Name_Type_Enumere   Name_Var; 

Example 

 variable W: Week; 

 Variable C: Color; 

 Variable S: Gender; 

 Variable V: Vowel;  

Example in C 

enum week {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 

Saturday}; 

main() 

{ 

enum week day; 

day = Wednesday; 

printf("Day %d",day+1); 

} 

 



Chapter 6: Custom Types 

 

4 
 

       The program will display “ Day 4” 

2. Records (Structures) 

We saw in the previous chapter that the array type allows us to represent (save) several values 

of the same type. Whereas, the record (structure) is a data structure making it possible to group 

together in a single entity a set of data of different types associated with the same and single 

object. 

The record is identified by a name and a set of properties called fields. Each field is identified 

by a name, which allows direct access to it and a type. The type can be simple or structured. 

2.1. Declaration of a records 

To declare a record we can use the following syntax: 

 

Type Record_Name = Record 

Field_name1: Type1 

Field_name2: Type2 

… 

Field_nameN: Type N 

EndRecord 

 

NB: If there are fields of the same type, they can be declared together by separating them with 

commas. 

To declare a record type variable, we can use the following declaration: 

Variable Variable_name: Record_name; 

 

Syntax in C  

typedef struct Record_name 

{Type1 Field1; 

 Type2 Field2; 

   ……. 

 Type N Field N ; 

} Record_Name; 

 

 



Chapter 6: Custom Types 

 

5 
 

Example 

A student's information: last name, first name, age, gender, result_BAC can be grouped into a 

record 

Type Student= Record 

  Name: string; 

  First name: string; 

  Age: integer 

  Gender: character // 'M': Male, 'F': Female 

   Result_Bac: real 

EndRecord 

 

Variables   student1, student2:  Student // Two Student type variables 

                    e1, e2, e3: Student // Three Student type variables 

 

2.1.Accessing fields in a record  

You can manipulate the fields of a record field by field. Access to the fields of a record is 

done by specifying the name of the record type variable followed by the name of the field 

separated by a point (. ) : 

Variable_name . Field_Name ; 

 

Example : to modify the age of student1 using the assignment we must write: 

student1.Age 22; 

The point indicates the access path: We first access the student1 variable then we select the Age 

field. 

2.2.Nested structures 

A record can be nested in an array or record type structure, as it can have fields of any 

structured type (e.g. array). The notation used to select fields remains the same, using the point. 

 Record arrays 

It is possible to declare an array whose elements are of record type. In this case, we first 

define the record type, then we declare an array whose elements are of this record type. As 

following: 

 



Chapter 6: Custom Types 

 

6 
 

Type Record_Name = Record 

Field_name1: Type1 

Field_name2: Type2 

… 

Field_nameN: TypeN 

EndRecord 

Variable array_name: array [1..N] record_name; 

To access a box in the array, we use the brackets [ ], then we access the field using the point. 

Example : to select the third field of the second element of the array we use the syntax: 

                              Array_name[ 2 ] . Field_name3 

Example 

We want to declare an array of records to manipulate the information of 50 students. 

Type Student = Record 

Name: string; 

First name: string; 

Age: integer; 

Gender: character 

Result_Bac: real 

EndRecord 

Variable Tab: array [1..50] Student; 

To modify the fields of student number 10, you can write: 

Tab[10] . Name “Xxxxx” 

Tab[10] . First name “Yyyyy” 

Tab[10] . Age 17 

Tab[10] . Gender 'M' 

Tab[10] . Result_Bac 12.05 

 

NB (treatment of records) : Any operation on the records must be carried out separately: 

Reading, writing, comparison cannot be done globally, each field must be read, written or 

compared individually. 

 

 



Chapter 6: Custom Types 

 

7 
 

Example in C 

typedef struct date { 

int day; 

int month; 

int year ; 

} date; 

Initialization 

Date D={0,0,0}; 

Use 

{ D.day = 20; 

D.month = 2; 

D.year =2020; 

} 

 

3. Other type definition possibilities: interval type  

The interval type is a set of ordered values defined from simple types and characterized by 

its minimum value (lower end) and its maximum value (upper end). 

Declaration syntax 

Type Name_Type_Interval = [Val_Min .. Val_Max]; 

Variable Var_Name: Interval_Type_Name; 

Examples 

 Type Digits = [0 . . 9] ; 

 Type Letters = ['C' . . 'K']; 

 Type Note = [0..20]; 

 Type Month = [1..12]; 

 We can use the interval type to declare one or more variables. 

Variables Note_Analysis, Note_ASD: Note; 

The Note_Analyse and Note_ASD variables can take any value from 0 to 20 only. 

 The interval type is a subset of the set of values of an ordinal type. So, all operations 

possible on the base type are possible on the interval type. 



Chapter 6: Custom Types 

 

8 
 

4. Application exercises   
 

Exercise n°1: 

Create hour, minute and second interval types, and then a “Time” record that includes these 

intervals. 

Solution 

Type Hour = [0..23]; 

Type Minute = [0..59]; 

Type Second = [0..59]; 

Type Time = Record 

   H: Hour; 

   M: Minute; 

   S: second; 

EndRecord 

 

Exercise n°2: 

Create an array that contains 100 students. Each student is identified by name, first name, result, 

marks for 9 modules as well as the mention: “admitted”, “adjourned”. 

Solution 

Type Mention = (admitted, postponed) ; /* enumerated type*/ 

Type Student = Record   

Last name, first name: string; 

Marks: array [1 ..9] real; 

Result: real; 

mention: Mention 

EndRecord 

Variable T_PV: array [1..100] Student; 

 



Bibliographic References 

 

9 
 

 

Bibliographic References  
 

[1]. AMAD, M. (2016). Algorithmics and Data Structures, Courses and Tutorials. 

Abderrahmane Mira University of Bejaia. 

[2]. BELOUADHA, FZ Algorithms and language C. Mohammed V University – Agdal 

Mohammadia School of Engineers. IT department 

[3]. Berthet, D., & Labatut, V. (2014). Algorithmics & programming in C language vol.2: 

Practical work topics. Istanbul, Türkiye. Galatasaray University, pp.258. 

[4]. Berthet, D., & Labatut, V. (2014). Algorithmics & programming in C-vol language. 1. 

Istanbul, Türkiye. Galatasaray University, pp.232. 

[5]. Berthet, D., & Labatut, V. (2014). Algorithmics & programming in C language vol.3: 

Answers to practical work. Istanbul, Türkiye. Galatasaray University, pp.217. 

[6]. BESSAA, B. (2017). Algorithmic, Exercises with Solutions. 

https://www.coursehero.com/file/52170520/mi1an-algo-exercises-corriges-1pdf/  

[7]. Cormen, TH, Leiserson, CE, Rivest, RL, & Stein, C. (2010). Algorithmics: course with 

957 exercises and 158 problems. Dunod. 

[8]. Delannoy, C. (1990). Learn to program in Turbo C. 

[9]. Delest, M. (2007). Introduction to Algorithmics. Course notes. Bordeaux 1 University. 

[10]. Helaoui, M. (2011). Tutorials: Algorithmics and Data Structure. 10.13140/2.1.3800.9601. 

[11]. Helaoui, M. (2019). SIDA 2019 2020 v6.pdf. 

https://www.researchgate.net/publication/337873900_ASDI_2019_2020_v6pdf  

[12]. LANGLOIS, Ph. (2013). Programming in C – Exercises. University of Perpignan Via 

Domitia 

[13]. Mohamed, E.M. (2013). Algorithmic. Mohammed V-Agdal University, Faculty of 

Sciences – Rabat. 

[14]. N’Diaye, L., Algo, C., & Sabbar, A. (2007). Algorithmics and data structures. 

[15]. Parreaux, J. Lesson 927: Examples of proofs of algorithms: correction and termination. 

https://www.coursehero.com/file/52170520/mi1an-algo-exercices-corriges-1pdf/
https://www.researchgate.net/publication/337873900_ASDI_2019_2020_v6pdf

