1ère Master Energétique

Durée 1h30 min

Examen de Combustion

Les	s trois parties a), b) et c) sont indépendantes.
a)	Le biogaz est un combustible gazeux qui se compose d'un mélange de méthane et de dioxyde de carbone, on choisit la composition suivante : 0.8 CH ₄ + 0.2 CO ₂ . 1. Ecrire la réaction stœchiométrique complète du biogaz avec l'air. 2. Calculer la masse molaire du biogaz. 3. Calculer le pouvoir calorifique inférieur de ce biogaz.
b)	On alimente un moteur à combustion interne par le mélange pauvre biogaz-air de richesse $\phi = 0.8$. 1. Réécrire la réaction pour la richesse donnée. (\(\sigma\) \(\sigma\) \(\sigma\) 2. Calculer le nombre de moles des réactifs N_R et des produits N_P . (\(\sigma\) \(\sigma\) 3. Calculer la température adiabatique de la flamme dans le moteur si le pouvoir calorifique du biogaz est $P_{ci}=29720$ kj/kg-biogaz, on injecte les réactifs. à la température de référence et on évalue les chaleurs spécifiques des produits à 1800K. 4. Trouver la pression en fin de combustion si celle d'injection est 1 atm. (2)
c)	Une quantité de 1.6 moles de la vapeur d'eau H_2O produite dans le moteur se dissocie en H_2 et O_2 et se trouve en équilibre sous la température $T=2200$ K et pression $P=7.5$ atm suivant la réaction :
	 H₂O ⇔ H₂ + 1 O₂. Calculer la constante d'équilibre Kp. Calculer Kp en fonction des fractions molaires de H₂O, H₂ et O₂. Trouver l'équation qui donne les fractions molaires en fonction de la fraction dissociée x à l'équilibre. X d'a X d'a

Shutrai EMD / présont et mi de Combon Ann 2022 : La Copre Solution EMI) Mineste un (husten fon le bringer ; air.
1) 0.8CHy+0.2Co2+2+Co2+3.76N2)-30Co2+ \$H20+6Ne Poilars atomisque C; 0.8+0.2=x=1. H:0.8x4=2B -> B=1.6 O; 0.2x2 +2as6=2x+ B=3,6=) ast=1.6 Inc 0.8 CHyt 0.2 Co2 + 1. Goz+3. 76N2) -> Co2+1.6H20+6,016N2. 3) Calcul du Pai du brogat DHX=Hp-Hp à 2981x Hp = hgcost 1.6 light of Heother to 2 light 1 How The to 2 light 1 How The to 2 light 1 How The to 2 light 1 hgcha 1 h Des 1280 / hgran = -393546 Stle = 0.8 (-393546) +1.6(-241845) - (0.8 (-74831)) = -641924 Mucel = \(\int \int \text{melane du trogat} \)

Mucel = \(\int \int \text{Mi'} = 0.3 \text{16+0.2 \text{ x44}} = \(21.6 \)

Mucel = \(\int \int \text{Mi'} = 0.3 \text{ x16+0.2 \text{ x44}} = \(\int \text{ x44} \) The Par = MAR = 641924 = 297187 toghal. ~ S= Gps

b) \$ =0.8, They = They = 1800K. 1) Réécoure la Jeachon par la justière donnée 0.80Ht+05 pt2(02t3.4ens)->102+119150+007+5x3.4ens 0; 2x0,2+2x2=2+1/6+ 8x = x=0.4 0,8CH4+0,262+2(02+3,75N2)-02+16H20+0,402+76LN2 2) NR=0.8+0.2+2×4.76=10.52 kmles V Np=1+1.6+0.4+7.52=10.52 kmles V 3) Calcul de la femperature adiabatisque de la Contantina Si le Pci=29+20 to /kg broget on NR=Np at Tinj=Trief V Tad=Trief + Pai Nguel ZNi CRi-Runp ZNI Fr = Mar Prost MAROPAT Morrost Nor CPNZ and Broker = 1 (19,738) + 1.6 (49.70x) + 0.4 (37.296) + 7.52 (35.595) = 421,86 to Dh Tad= 298+ 29720x21,6 = 2218K. 4) Prussim en fin de Embrésimi Ping V = MRRu Tuj et Pen V= Np Pu Tad VV -> Pain= Pinj Tood = Natur x 298 = 7.44 atm V 2 = 805

43

Hzo = Hz+1202. T=2200K et P=7.5 atm.

Oalm de tp

Kp= exp(-Not ance Not=9+0.59-90

Not=+124030

The top=exp (-124030

8,314x2200) = 1,135.163 2) Calcul de Ky en fructimo des Xn.

On a $Cp = \frac{(P_{Hz}/p_0)(Poz/p_0)^{1/2}}{(P_{Hzo}/p_0)}$ et $P_n = x_n P_0$ $P_n = \frac{(P_{Hz}/p_0)(Poz/p_0)^{1/2}}{(P_{Hzo}/p_0)}$ 3) Towns Clequation qui denne de aci en fuetos

Hzo Hz 02/

+=0 1.6 0 0

teg 1.6-x 12 2 1.6+2

This 1.6+2 1.6+2

This 1.6+2 1.6+2

This hadie. On John 2(1.6-X) 2X X 3,2+X 3,2+X 3,2+X $=) \ \ \, \mathcal{L}_{p} = \frac{8 \times /(3.24 \times) \cdot \left[\times /(3.24 \times) \right]^{1/2}}{8 \times (1.6 - \times)} \left(\frac{9}{90} \right)^{1/2} / \frac{1}{3.24 \times}$ $t_{p} = \frac{x(\frac{x}{3.2+x})^{1/2}}{(1.6-x)^{1/2}} (\frac{x}{90}) = 315/3, t_{0}(1.6-x) - x(\frac{x}{3.2+x}) = 0$