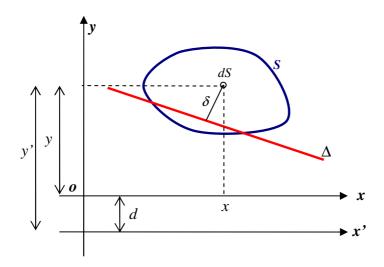
CARACTERISTIQUES DES SECTIONS PLANES

MOMENT STATIQUE D'UNE SECTION PLANE

Soient une aire plane S et une droite Δ . Le moment statique de la section S par rapport à $\Delta m(S)/\Delta$ est défini par l'intégrale :

 $m(S)/\Delta = \iint_S \delta \, dS$ (dorénavant, on note le moment statique par rapport à Δm_Δ).



Les moments statiques par rapport aux axes x et y s'expriment par :

$$m_x = \iint_S y \, dS$$
 et $m_y = \iint_S x \, dS$

Remarques:

- 1. Le moment statique est homogène à un volume. Il s'exprime en mm^3 , cm^3 ...etc.
- 2. Le moment statique d'une section *S* par rapport à un axe quelconque passant par son centre de gravité est nul.
- 3. Le moment statique d'une section par rapport à un axe de symétrie est nul, puisque cet axe passe par son centre de gravité.
- 4. Sur la figure ci-dessus, on peut noter que : y' = y + d. Par conséquent : $m_{x'} = m_x + S \cdot d$ (cette expression est valable uniquement si les droites x et x' sont parallèles). Si l'axe x passe par le centre de gravités de S, le moment statique par rapport à x' est donné par : $m_{x'} = S \cdot d$.

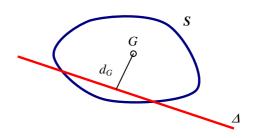
1/25 M.Sellam

CENTRE DE GRAVITE D'UNE SECTION PLANE

La distance d_G du centre de gravité d'une section plane S à une droite Δ est définie par la relation suivante :

$$d_G = \frac{m_\Delta}{S}.$$

Cette relation permet aussi de calculer le moment statique d'une section connaissant la position de son centre de gravité.



MOMENT D'INERTIE, RAYON DE GIRATION D'UNE SECTION PLANE

Le moment d'inertie I_{Δ} de la section S par rapport à Δ est défini par l'intégrale :

$$I_{\Delta} = \iint_{S} \delta^{2} dS.$$

Le rayon de giration de la section S par rapport à Δ est donné par la relation :

$$r = \sqrt{\frac{I_{\Delta}}{S}}$$

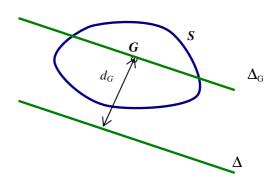
Pour les axes x et y, nous avons :

$$I_x = \iint_S y^2 dS$$
, $I_y = \iint_S x^2 dS$, $r_x = \sqrt{\frac{I_x}{S}}$ et $r_y = \sqrt{\frac{I_y}{S}}$.

<u>Théorème d'Huygens :</u>

Le moment d'inertie I_{Δ} d'une section S par rapport à un axe quelconque Δ , situé dans le plan de cette section, est égal au moment d'inertie $I_{\Delta G}$ par rapport à l'axe Δ_G , parallèle à Δ et passant par le centre de gravité G augmenté du produit de la grandeur de la surface par le carré de distance entre les deux axes Δ et Δ_G :

$$I_{\Delta} = I_{\Delta G} + S \cdot d_G^2$$

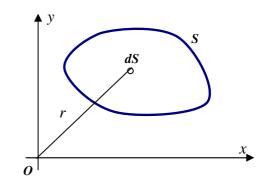


MOMENT POLAIRE D'UNE SECTION PLANE

Le moment d'inertie polaire d'une section S par rapport au point O est donné par l'intégrale :

$$K = \iint_{S} r^{2} dS$$

$$K = \iint_{S} (x^{2} + y^{2}) dS = I_{x} + I_{y}.$$



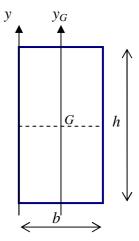
2/25 M.Sellam

APPLICATION:

Énoncé

Soit une section carrée de largeur b et de hauteur h. On demande de calculer le moment statique et le moment d'inertie de cette section par rapport aux deux axes suivants :

- Un axe vertical (y) passant par le côté gauche de la section
- Un axe vertical (y_G) passant par le centre de gravité de la section.



Solution

Calcul de m_y et I_y :

$$m_{y} = \iint_{S} x dS = \int_{0}^{b} \left(\int_{0}^{h} x dy \right) dx = \int_{0}^{b} (xy)_{y=0}^{y=h} dx$$

$$m_{y} = \int_{0}^{b} x h dx = \left(h \frac{x^{2}}{2} \right)_{x=0}^{x=b} = \frac{hb^{2}}{2}$$

De même :
$$m_x = \frac{bh^2}{2}$$
.

Remarque:

Le choix de la position de l'axe x n'influe pas sur la valeur du moment statique.

$$I_{y} = \iint_{S} x^{2} dS = \int_{0}^{b} \left(\int_{0}^{h} x^{2} dy \right) dx = \int_{0}^{b} \left(x^{2} y \right)_{y=0}^{y=h} dx$$

$$I_{y} = \int_{0}^{b} x^{2} h dx = \left(h \frac{x^{3}}{3} \right)_{x=0}^{x=b} = \frac{hb^{3}}{3}$$

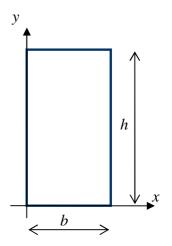
De même :
$$I_x = \frac{bh^3}{3}$$
.

Trouvons la position du centre de gravité par rapport à l'axe y :

$$d_y = \frac{m_y}{S} = \frac{hb^2/2}{bh} = \frac{b}{2}.$$

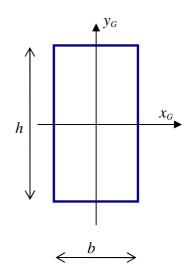
Et par rapport à l'axe x:

$$d_x = \frac{m_x}{S} = \frac{bh^2/2}{bh} = \frac{h}{2}$$
.



3/25

Calcul de m_{y_G} et I_{y_G} : $m_{y_G} = \iint_S x dS = \int_{-b/2}^{b/2} \left(\int_{-h/2}^{h/2} x dy \right) dx = \int_{-b/2}^{b/2} (xy)_{y=-h/2}^{y=h/2} dx$ $m_{y_G} = \int_{-b/2}^{b/2} x h dx = \left(h \frac{x^2}{2} \right)_{x=-b/2}^{x=b/2} = \frac{h}{2} \left(\frac{b^2}{4} - \frac{b^2}{4} \right) = 0$ $I_{y_G} = \iint_S x^2 dS = \int_{-b/2}^{b/2} \left(\int_{-h/2}^{h/2} x^2 dy \right) dx = \int_{-b/2}^{b/2} (x^2 y)_{y=-h/2}^{y=h/2} dx$ $I_{y_G} = \int_{-b/2}^{b/2} x^2 h dx = \left(h \frac{x^3}{3} \right)_{x=-b/2}^{x=b/2} = \frac{h}{3} \left(\frac{b^3}{8} + \frac{b^3}{8} \right) = \frac{hb^3}{12}.$



De même:

$$I_{x_G} = \iint_S y^2 dS = \int_{-h/2}^{h/2} \left(\int_{-b/2}^{b/2} y^2 dx \right) dy = \int_{-h/2}^{h/2} \left(y^2 x \right)_{x=-b/2}^{x=b/2} dy$$

$$I_{x_G} = \int_{-h/2}^{h/2} y^2 b dy = \left(b \frac{y^3}{3} \right)_{y=-h/2}^{y=h/2} = \frac{b}{3} \left(\frac{h^3}{8} + \frac{h^3}{8} \right) = \frac{bh^3}{12}.$$

DEVOIR

Exercice 1

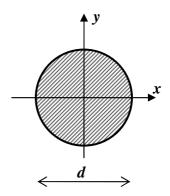
Calculer le moment statique et le moment d'inertie d'une section circulaire de diamètre d, par rapport aux deux axes vertical (y) et horizontal (x) passant par son centre de gravité.

Indication:

Utiliser les coordonnées polaires :

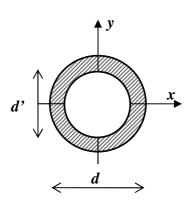
$$\begin{cases} x = r \cdot \cos \theta \\ y = r \cdot \sin \theta \end{cases} \quad \theta \in \begin{bmatrix} 0 & 2\Pi \end{bmatrix} \text{ et } r \in \begin{bmatrix} 0 & \frac{d}{2} \end{bmatrix}$$

Avec : $dS = r \cdot dr \cdot d\theta$.



Exercice 2

Mêmes questions pour une section circulaire creuse (voir figure ci-contre).



4/25 M.Sellam