
SAMPLING
An important characteristic of inferential statistics is the process of going from 
the part to the whole. For example, you might study a randomly selected group 
of 500 students attending a university in order to make generalizations about the 
entire student body of that university.

The small group that is observed is called a sample, and the larger group 
about which the generalization is made is called a population. A population is 
defi ned as all members of any well-defi ned class of people, events, or objects. 
For example, in a study in which students in American high schools constitute 
the population of interest, you could defi ne this population as all boys and girls 
attending high school in the United States. A sample is a portion of a population. 
For example, the students of Washington High School in Indianapolis constitute 
a sample of American high school students.

Statistical inference is a procedure by means of which you estimate  parameters 
(characteristics of populations) from statistics (characteristics of samples). Such 
estimations are based on the laws of probability and are best estimates rather 
than absolute facts. In making any such inferences, a certain degree of error is 
involved. Inferential statistics can be used to test hypotheses about populations 
on the basis of observations of a sample drawn from the population.

RATIONALE OF SAMPLING

Inductive reasoning is an essential part of the scientifi c approach. The  inductive 
method involves making observations and then drawing conclusions from these 
observations. If you can observe all instances of a population, you can, with 
 confi dence, base conclusions about the population on these observations  (perfect 
induction). In Chapter 6, we treated the 18 students in Mr. Li’s physics class 
as a population. Therefore, we could be confi dent that we had the true means, 
 standard deviations, and so forth (the parameters). However, if you observe only 
some instances of a population, then you can do no more than infer that these 
observations will be true of the population as a whole (imperfect induction). This is 

 18 Apply the chi-square test for fi nding the signifi cance of the differences between 
proportions in one-way and two-way classifi cations.

 19 Select the kind of inferential statistical procedures appropriate for use in testing a 
given research hypothesis.

 20 Demonstrate comprehension of the basic technical statistical terms used in 
reporting research results.

The statistics discussed in the previous chapter are used for organizing, summarizing, and 

describing data. In research, however, we often need to go further than describing data. After 

making observations of a sample, researchers employ induction or inference to generalize 

fi  ndings to the entire population from which the sample was drawn. To do this, they need 

 techniques that enable them to make credible inferences from samples to whole populations.
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the concept of sampling, which involves taking a portion of the population,  making 
observations on this smaller group, and then generalizing the fi ndings to the  parent 
population—the larger population from which the sample was drawn.

Sampling is indispensable to the researcher. Usually, the time, money, and effort 
involved do not permit a researcher to study all possible members of a population. 
Furthermore, it is generally not necessary to study all possible cases to understand 
the phenomenon under consideration. Sampling comes to your aid by enabling 
you to study a portion of the population rather than the entire population.

Because the purpose of drawing a sample from a population is to obtain infor-
mation concerning that population, it is extremely important that the  individuals 
included in a sample constitute a representative cross section of individuals in 
the population. Samples must be representative if you are to be able to generalize 
with reasonable confi dence from the sample to the population. For  example, the 
researcher may assume that the students at Washington High School are represen-
tative of American adolescents. However, this sample may not be  representative 
if the individuals who are included have some characteristics that  differ from the 
target population. The location of their school, their socioeconomic backgrounds, 
their family situations, their prior experiences, and many other characteristics of 
this group may make them unrepresentative of American  adolescents. An unrep-
resentative sample is termed a biased sample. The fi ndings on a biased sample 
in a research study cannot legitimately be  generalized to the population from 
which it is taken. For example, if the population of interest is all students in a 
particular urban school district but the researchers sampled only students from 
the district’s two magnet schools, the sample would be biased.

STEPS IN SAMPLING

The fi rst step in sampling is the identifi cation of the target population, the large 
group to which the researcher wishes to generalize the results of the study. If the 
researcher is interested in learning about the teachers in the St. Louis  public school 
system, all those who teach within that system constitute the target population. In 
a study of the attitudes and values of American adolescents, the target population 
would be all American boys and girls in the age range of 12 to 21 years, given that 
adolescence is operationally defi ned as the period between ages 12 and 21 years. 
We make a distinction between the target population and the  accessible  population, 
which is the population of subjects accessible to the researcher for drawing a sample. 
In most research, we deal with accessible populations. It would be expensive and 
time-consuming to sample from the total population of American adolescents, but 
we could draw a sample of adolescents from one state. Of course, we could only gen-
eralize results to adolescents in the chosen state, not to all American adolescents.

Once we have identifi ed the population, the next step is to select the sample. 
Two major types of sampling procedures are available to researchers: probability 
and nonprobability sampling. Probability sampling involves sample selection in 
which the elements are drawn by chance procedures. The main characteristic 
of probability sampling is that every member or element of the population has a 
known probability of being chosen in the sample.

Nonprobability sampling includes methods of selection in which elements 
are not chosen by chance procedures. Its success depends on the knowledge, 
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expertise, and judgment of the researcher. Nonprobability sampling is used when 
the application of probability sampling is not feasible. Its advantages are conve-
nience and economy.

PROBABILITY SAMPLING

Probability sampling is defi ned as the kind of sampling in which every element 
in the population has an equal chance of being selected. The possible inclu-
sion of each population element in this kind of sampling takes place by chance 
and is attained through random selection. When probability sampling is used, 
inferential statistics enable researchers to estimate the extent to which the fi nd-
ings based on the sample are likely to differ from what they would have found 
by studying the whole population. The four types of probability sampling most 
frequently used in educational research are simple random sampling, stratifi ed 
sampling, cluster sampling, and systematic sampling.

Simple Random Sampling
The best known of the probability sampling procedures is simple random 
 sampling. The basic characteristic of simple random sampling is that all members 
of the population have an equal and independent chance of being included in the 
random sample. The steps in simple random sampling comprise the following:

1. Defi ne the population.

2. List all members of the population.

3. Select the sample by employing a procedure where sheer chance deter-
mines which members on the list are drawn for the sample.

The fi rst step in drawing a random sample from a population is to assign each 
member of the population a distinct identifi cation number. Let us illustrate this 
procedure by showing how to obtain a sample of 50 students from the popula-
tion attending Washington High School. First, you need to enumerate all the 
individuals in the population. The principal’s offi ce could supply a list of all stu-
dents enrolled in the school. For identifi cation purposes, you would then assign 
a number to each individual in the population. If there are 800 students in the 
school, you use the numbers 000, 001, 002, 003, . . . , 799 for this purpose. Each 
individual must have an identifi cation value with the same number of digits as 
every other individual. Many schools have already assigned identifi cation num-
bers to all their students. One way to draw a random sample would be to write 
the student numbers on separate slips of paper, place the pieces of paper in a 
container, shake the container, and draw out a slip of paper. Shake the container 
again, draw out another paper, and continue the process until 50 slips of paper 
have been picked. This process would be very tedious. A more systematic way to 
obtain a random sample is to use a table of random numbers, which includes a 
series of numbers, typically four to six digits in length, arranged in columns and 
rows (see Table 7.1 for a small segment of a table). A table of random numbers 
is produced by a computer program that guarantees that all the digits (0–9) have 
an equal chance of occurring each time a digit is printed. Most statistics books 
include a table of random numbers in the appendix. In previous editions of this 
book, we included a fi ve-page table of random numbers. We decided this is no 
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longer needed because there are so many tables available on the Internet, in 
statistics texts, and from other sources.

Let us illustrate how to use a table of random numbers. With our list of the 
800 students in the population, we will use a table to obtain numbers of three 
digits each, using only those numbers that are less than or equal to 799. For 
each number chosen, the corresponding member of the population falls into the 
sample. Continue the process until the desired number for the sample has been 
chosen—in this case, the fi rst 50 numbers that meet the criterion.

We begin by randomly selecting a starting point in the table. You can do this 
by closing your eyes and putting your fi nger on the page, or you can use a pro-
cedure that is an absolutely random way to enter the table. First, roll a die to 
determine which page to use. We roll a 3, so we pull the third page from a table 
of random numbers (Table 7.1). Then we note the last two digits from the serial 
number on a dollar bill. They are 03, so we go to row 3. Then we take the last 
two digits from a second dollar bill, which are 22, taking us to the intersection 
of row 3 and column 22. The intersection of the row and column is the location 
of the fi rst random number. Because our population is 800, we will only look at 
the fi rst three digits of the numbers in the table. If the population were 1500, 
we would look at the fi rst four digits. In our example, we could use either the 
fi rst three digits or the last three; we have chosen to use the fi rst three. The 
fi rst three digits from that intersection are 403, so the individual with number 
403 is in the sample. Because the digits in a table are random, the numbers 
can be used vertically in both directions or horizontally in both directions. You 
should specify the direction you will use prior to entering the table and use it 
consistently. The remaining numbers would be located by moving in the speci-
fi ed direction. If we have decided to move vertically, the next three digits are 
497, 243, 262, 782, and on down the column through 351. The next number is 
995, which is larger than 799 (the size of the sample) so we would skip it and 
move on down, selecting the numbers smaller than 799. We have highlighted 
the numbers in that column that would be selected. You would then move to the 
next column and continue the process until you have 50 random numbers less 
than 799.

You probably will not actually have to do all this. However, we wanted to show 
you a way in which the numbers drawn from a table of random numbers can be 
absolutely without bias. You most likely will have access to web-based random 
number generators such as Research Randomizer (www.randomizer.org). If you 
access this website, you will fi nd information about the Research Randomizer 
and a tutorial on how to use it to generate random numbers quickly. It is part of 
the Social Psychology Network and is free. Or, you may be lucky and conduct your 
research in a school whose record-keeping system allows for drawing a random 
sample using the school’s computer.

The generally understood meaning of the word random is “without purpose 
or by accident.” However, random sampling is purposeful and methodical. It 
is apparent that a sample selected randomly is not subject to the biases of the 
researcher. Rather, researchers commit themselves to selecting a sample in such 
a way that their biases are not permitted to operate; chance alone determines 
which elements in the population will be in the sample. They are pledging to 
avoid a deliberate selection of subjects who will confi rm the hypothesis.

4

www.randomizer.org


152  PART THREE STATISTICAL ANALYSIS

You would expect a random sample to be representative of the target popu-
lation sampled. However, a random selection, especially with small samples, 
does not absolutely guarantee a sample that will represent the population well. 
Random selection does guarantee that any differences between the sample 
and the parent population are only a function of chance and not a result of the 
researcher’s bias. The differences between random samples and their parent 
population are not systematic. For example, the mean reading achievement of a 
random sample of sixth-graders may be higher than the mean reading achieve-
ment of the target population, but it is equally likely that the mean for the sample 
will be lower than the mean for the target population. In other words, with 
 random sampling the sampling errors are just as likely to be negative as they 
are to be positive.

Furthermore, statistical theorists have shown, through deductive reason-
ing, how much a researcher can expect the observations derived from random 
samples to differ from what would be observed in the population when the null 

Table 7.1 Page from a Table of Random Numbers

Column Number

00000 00000 11111 11111 22222 22222 33333 33333

Row 01234 56789 01234 56789 01234 56789 01234 56789

3rd Thousand

00 89221 02362 65787 74733 51272 30213 92441 39651
01 04005 99818 63918 29032 94012 42363 01261 10650
02 98546 38066 50856 75045 40645 22841 53254 44125
03 41719 84401 59226 01314 54581 40398 49988 65579
04 28733 72489 00785 25843 24613 49797 85567 84471

05 65213 83927 77762 03086 80742 24395 68476 83792
06 65553 12678 90906 90466 43670 26217 69900 31205
07 05668 69080 73029 85746 58332 78231 45986 92998
08 39202 99718 49757 79519 27387 76373 47262 91612
09 64592 32254 45879 29431 38320 05981 18067 87137
10 07513 48792 47314 83660 68907 05336 82579 91582
11 86593 68501 56638 99800 82839 35148 56541 07232
12 83735 22599 97977 81248 36838 99560 32410 67614
13 08595 21826 54655 08204 87990 17033 56258 05384
14 41273 27149 44293 69458 16828 63962 15864 35431
15 00473 75908 56238 12242 72631 76314 47252 06347
16 86131 53789 81383 07868 89132 96182 07009 86432
17 33849 78359 08402 03586 03176 88663 08018 22546
18 61870 41657 07468 08612 98083 97349 20775 45091
19 43898 65923 25078 86129 78491 97653 91500 80786
20 29939 39123 04548 45985 60952 06641 28726 46473
21 38505 85555 14388 55077 18657 94887 67831 70819
22 31824 38431 67125 25511 72044 11562 53279 82268
23 91430 03767 13561 15597 06750 92552 02391 38753
24 38635 68976 25498 97526 96458 03805 04116 63514
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hypothesis is true. All inferential statistical procedures have this aim in mind. 
When random sampling is used, the researcher can employ inferential statistics 
to estimate how much the population is likely to differ from the sample. The 
inferential statistics in this chapter are all based on random sampling and apply 
directly only to those cases in which the sampling has been random.

Unfortunately, simple random sampling requires enumeration of all individu-
als in a fi nite population before the sample can be drawn—a requirement that 
often presents a serious obstacle to the practical use of this method. Now let us 
look at other probability sampling methods that approximate simple random 
sampling and may be used as alternatives in certain situations.

Stratifi ed Sampling
When the population consists of a number of subgroups, or strata, that may differ 
in the characteristics being studied, it is often desirable to use a form of probabil-
ity sampling called stratifi ed sampling. For example, if you were conducting a 
poll designed to assess opinions on a certain political issue, it might be advisable 
to subdivide the population into subgroups on the basis of age, neighborhood, 
and occupation because you would expect opinions to differ systematically among 
various ages, neighborhoods, and occupational groups. In stratifi ed sampling, you 
fi rst identify the strata of interest and then randomly draw a specifi ed number 
of subjects from each stratum. The basis for stratifi cation may be geographic or 
may involve characteristics of the population such as income, occupation, gender, 
age, year in college, or teaching level. In studying adolescents, for example, you 
might be interested not merely in surveying the attitudes of adolescents toward 
certain phenomena but also in comparing the attitudes of adolescents who reside 
in small towns with those who live in medium-size and large cities. In such a case, 
you would divide the adolescent population into three groups based on the size 
of the towns or cities in which they reside and then randomly select independent 
samples from each stratum.

An advantage of stratifi ed sampling is that it enables the researcher to also 
study the differences that might exist between various subgroups of a population. 
In this kind of sampling, you may either take equal numbers from each stratum 
or select in proportion to the size of the stratum in the population. The latter pro-
cedure is known as proportional stratifi ed sampling, which is applied when the 
characteristics of the entire population are the main concern in the study. Each 
stratum is represented in the sample in exact proportion to its frequency in the 
total population. For example, if 10 percent of the voting population are college 
students, then 10 percent of a sample of voters to be polled would be taken from 
this stratum. If a superintendent wants to survey the teachers in a school district 
regarding some policy and believes that teachers at different levels may feel dif-
ferently, he or she could stratify on teaching level and then select a number from 
each level in proportion to its size in the total population of teachers. If 43 percent 
of the teachers are high school teachers, then 43 percent of the sample would be 
high school teachers.

In some research studies, however, the main concern is with differences among 
various strata. In these cases, the researcher chooses samples of equal size from 
each stratum. For example, if you are investigating the difference between the 
attitudes of graduate and undergraduate students toward an issue, you include 
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equal numbers in both groups and then study the differences that might exist 
between them. You choose the procedure according to the nature of the research 
question. If your emphasis is on the types of differences among the strata, you 
select equal numbers of cases from each. If the characteristics of the entire popu-
lation are your main concern, proportional sampling is more appropriate. When 
the population to be sampled is not homogeneous but consists of several sub-
groups, stratifi ed sampling may give a more representative sample than simple 
random sampling. In simple random sampling, certain strata may by chance be 
over- or underrepresented in the sample. For example, in the simple random 
sample of high school students it would be theoretically possible (although highly 
unlikely) to obtain female subjects only. This could not happen, however, if males 
and females were listed separately and a random sample were then chosen from 
each group. The major advantage of stratifi ed sampling is that it guarantees rep-
resentation of defi ned groups in the population.

Cluster Sampling
As mentioned previously, it is very diffi cult, if not impossible, to list all the  members 
of a target population and select the sample from among them. The population 
of American high school students, for example, is so large that you cannot list 
all its members for the purpose of drawing a sample. In addition, it would be 
very expensive to study a sample that is scattered throughout the United States. 
In this case, it would be more convenient to study subjects in naturally occur-
ring groups, or clusters. For example, a researcher might choose a number of 
schools randomly from a list of schools and then include all the students in those 
schools in the sample. This kind of probability sampling is referred to as cluster 
sampling because the unit chosen is not an individual but, rather, a group of 
individuals who are naturally together. These individuals constitute a cluster 
insofar as they are alike with respect to characteristics relevant to the variables 
of the study. To illustrate, let us assume a public opinion poll is being conducted 
in Atlanta. The investigator would probably not have access to a list of the entire 
adult population; thus, it would be impossible to draw a simple random sample. 
A more feasible approach would involve the selection of a random sample of, for 
example, 50 blocks from a city map and then the polling of all the adults living on 
those blocks. Each block represents a cluster of subjects, similar in certain char-
acteristics associated with living in proximity. A common application of cluster 
sampling in education is the use of intact classrooms as clusters.

It is essential that the clusters actually included in your study be chosen at 
random from a population of clusters. Another procedural requirement is that 
once a cluster is selected, all the members of the cluster must be included in 
the sample. The sampling error (discussed later) in a cluster sample is much 
greater than in true random sampling. It is also important to remember that if 
the  number of clusters is small, the likelihood of sampling error is great—even if 
the total number of subjects is large.

Systematic Sampling
Still another form of probability sampling is called systematic sampling. This 
procedure involves drawing a sample by taking every Kth case from a list of the 
population.
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First, you decide how many subjects you want in the sample (n). Because you 
know the total number of members in the population (N ), you simply divide N 
by n and determine the sampling interval (K ) to apply to the list. Select the fi rst 
member randomly from the fi rst K members of the list and then select every Kth 
member of the population for the sample. For example, let us assume a total pop-
ulation of 500 subjects and a desired sample size of 50: K = N/n = 500/50 = 10.

Start near the top of the list so that the fi rst case can be randomly selected 
from the fi rst 10 cases, and then select every tenth case thereafter. Suppose the 
third name or number on the list was the fi rst selected. You would then add the 
sampling interval, or 10, to 3—and thus the 13th person falls in the sample, as 
does the 23rd, and so on—and would continue adding the constant sampling 
interval until you reached the end of the list.

Systematic sampling differs from simple random sampling in that the vari-
ous choices are not independent. Once the fi rst case is chosen, all subsequent 
cases to be included in the sample are automatically determined. If the original 
population list is in random order, systematic sampling would yield a sample that 
could be statistically considered a reasonable substitute for a random sample. 
However, if the list is not random, it is possible that every Kth member of the 
population might have some unique characteristic that would affect the depen-
dent variable of the study and thus yield a biased sample. Systematic sampling 
from an alphabetical list, for example, would probably not give a representative 
sample of various national groups because certain national groups tend to cluster 
under certain letters, and the sampling interval could omit them entirely or at 
least not include them to an adequate extent.

Note that the various types of probability sampling that have been discussed 
are not mutually exclusive. Various combinations may be used. For example, you 
could use cluster sampling if you were studying a very large and widely dispersed 
population. At the same time, you might be interested in stratifying the sample 
to answer questions regarding its different strata. In this case, you would stratify 
the population according to the predetermined criteria and then randomly select 
the cluster of subjects from among each stratum.

NONPROBABILITY SAMPLING

In many research situations, the enumeration of the population elements—a 
basic requirement in probability sampling—is diffi cult, if not impossible. Or a 
school principal might not permit a researcher to draw a random sample of 
students for a study but would permit use of certain classes. In these instances, 
the researcher would use nonprobability sampling, which involves nonrandom 
procedures for selecting the members of the sample. In nonprobability sampling, 
there is no assurance that every element in the population has a chance of being 
included. Its main advantages are convenience and economy. The major forms 
of nonprobability sampling are convenience sampling, purposive sampling, and 
quota sampling.

Convenience Sampling
Convenience sampling, which is regarded as the weakest of all sampling proce-
dures, involves using available cases for a study. Interviewing the fi rst individuals 
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you encounter on campus, using a large undergraduate class, using the students 
in your own classroom as a sample, or taking volunteers to be interviewed in 
survey research are various examples of convenience sampling. There is no way 
(except by repeating the study using probability sampling) of estimating the error 
introduced by the convenience sampling procedures. Probability sampling is the 
ideal, but in practice, convenience sampling may be all that is available to a 
researcher. In this case, a convenience sample is perhaps better than nothing at 
all. If you do use convenience sampling, be extremely cautious in interpreting the 
fi ndings and know that you cannot generalize the fi ndings.

Purposive Sampling
In purposive sampling—also referred to as judgment sampling—sample ele-
ments judged to be typical, or representative, are chosen from the population. 
The assumption is that errors of judgment in the selection will counterbalance 
one another. Researchers often use purposive sampling for forecasting national 
elections. In each state, they choose a number of small districts whose returns 
in previous elections have been typical of the entire state. They interview all the 
eligible voters in these districts and use the results to predict the voting patterns 
of the state. Using similar procedures in all states, the pollsters forecast the 
national results.

The critical question in purposive sampling is the extent to which judgment 
can be relied on to arrive at a typical sample. There is no reason to assume that 
the units judged to be typical of the population will continue to be typical over a 
period of time. Consequently, the results of a study using purposive sampling may 
be misleading. Because of its low cost and convenience, purposive sampling has 
been useful in attitude and opinion surveys. Be aware of the limitations, however, 
and use the method with extreme caution.

Quota Sampling
Quota sampling involves selecting typical cases from diverse strata of a popula-
tion. The quotas are based on known characteristics of the population to which 
you wish to generalize. Elements are drawn so that the resulting sample is a 
miniature approximation of the population with respect to the selected charac-
teristics. For example, if census results show that 25 percent of the population of 
an urban area lives in the suburbs, then 25 percent of the sample should come 
from the suburbs.

Here are the steps in quota sampling:

1. Determine a number of variables, strongly related to the question under 
investigation, to be used as bases for stratifi cation. Variables such as gen-
der, age, education, and social class are frequently used.

2. Using census or other available data, determine the size of each segment of 
the population.

3. Compute quotas for each segment of the population that are proportional to 
the size of each segment.

4. Select typical cases from each segment, or stratum, of the population to fi ll 
the quotas.

9
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The major weakness of quota sampling lies in step 4, the selection of individu-
als from each stratum. You simply do not know whether the individuals chosen 
are representative of the given stratum. The selection of elements is likely to be 
based on accessibility and convenience. If you are selecting 25 percent of the 
households in the inner city for a survey, you are more likely to go to houses that 
are attractive rather than dilapidated, to those that are more accessible, to those 
where people are at home during the day, and so on. Such procedures automati-
cally result in a systematic bias in the sample because certain elements are going 
to be misrepresented. Furthermore, there is no basis for calculating the error 
involved in quota sampling.

Despite these shortcomings, researchers have used quota sampling in many 
projects that might otherwise not have been possible. Many believe that speed of 
data collection outweighs the disadvantages. Moreover, years of experience with 
quota samples have made it possible to identify some of the pitfalls and to take 
steps to avoid them.

RANDOM ASSIGNMENT

We distinguish random sampling from random assignment. Random assignment 
is a procedure used after we have a sample of participants and before we expose 
them to a treatment. For example, if we wish to compare the effects of two treat-
ments on the same dependent variable, we use random assignment to put our 
available participants into groups. Random assignment requires a chance pro-
cedure such as a table of random numbers to divide the available subjects into 
groups. Then a chance procedure such as tossing a coin is used to decide which 
group gets which treatment.

As with random sampling, any bias the researcher has will not infl uence who 
gets what treatment, and the groups will be statistically equivalent before treat-
ment. Group 1 may have more highly motivated subjects than group 2, but it is 
just as likely that group 2 will have more highly motivated subjects than group 1. 
The same is true of all possible known or unknown variables that might infl uence 
the dependent variable. Therefore, the same lawful nature of sampling errors 
that are true of random sampling are true of random assignment.

THE SIZE OF THE SAMPLE (FUNDAMENTALS)

Laypeople are often inclined to criticize research (especially research whose 
results they do not like) by saying the sample was too small to justify the research-
ers’ conclusions. How large should a sample be? Other things being equal, a 
larger sample is more likely to be a good representative of the population than 
a smaller sample. However, the most important characteristic of a sample is its 
representativeness, not its size. A random sample of 200 is better than a random 
sample of 100, but a random sample of 100 is better than a biased sample of 
2.5 million.

Size alone will not guarantee accuracy. A sample may be large and still contain 
a bias. The latter situation is well illustrated by the Literary Digest magazine 
poll of 1936, which predicted the defeat of President Roosevelt. Although the 
sample included approximately 2.5 million respondents, it was not represen-
tative of the voters; thus, the pollsters reached an erroneous conclusion. The 
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bias resulted from selecting respondents for the poll from automobile registra-
tions, telephone directories, and the magazine’s subscription lists. These subjects 
would certainly not represent the total voting population in 1936, when many 
people could not afford automobiles, telephones, or magazines. Also, because 
the poll was conducted by mail, the results were biased by differences between 
those who responded and those who did not. We have since learned that with 
mailed questionnaires, those who are against the party in power are more likely 
to return their questionnaires than those who favor the party in power. The 
researcher must recognize that sample size will not compensate for any bias that 
faulty sampling techniques may introduce. Representativeness must remain the 
prime goal in sample selection.

Later in this chapter, we introduce a procedure for determining appropriate 
sample size, on the basis of how large an effect size is considered meaningful and 
on statistical considerations. Such procedures, known as power calculations, are 
the best way to determine needed sample sizes.

THE CONCEPT OF SAMPLING ERROR

When an inference is made from a sample to a population, a certain amount of 
error is involved because even random samples can be expected to vary from one 
to another. The mean intelligence score of one random sample of fourth-graders 
will probably differ from the mean intelligence score of another random sample 
of fourth-graders from the same population. Such differences, called sampling 
errors, result from the fact that the researcher has observed only a sample and 
not the entire population.

Sampling error is “the difference between a population parameter and a sample 
statistic.” For example, if you know the mean of the entire population ( symbolized μ) 
and also the mean of a random sample (symbolized  

__
 X   ) from that population, the dif-

ference between these two (  
__

 X   − μ) represents sampling error (symbolized e). Thus, 
e =  

__
 X   − μ. For example, if you know that the mean intelligence score for a popula-

tion of 10,000 fourth-graders is μ = 100 and a particular random sample of 200 has 
a mean of   

__
 X    = 99, then the sampling error is   

__
 X    − μ = 99 − 100 = −1. Because we 

usually depend on sample statistics to estimate population parameters, the notion 
of how samples are expected to vary from populations is a basic element in infer-
ential statistics. However, instead of trying to determine the discrepancy between 
a sample statistic and the population parameter (which is not often known), the 
approach in inferential statistics is to estimate the variability that could be expected 
in the statistics from a number of different random samples drawn from the same 
population. Because each of the sample statistics is considered to be an estimate 
of the same population parameter, any variation among sample statistics must 
be attributed to sampling error.

The Lawful Nature of Sampling Errors
Given that random samples drawn from the same population will vary from one 
another, is using a sample to make inferences about a population really any 
better than just guessing? Yes, it is because sampling errors behave in a lawful 
and predictable manner. The laws concerning sampling error have been derived 
through deductive logic and have been confi rmed through experience.
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Although researchers cannot predict the nature and extent of the error in a sin-
gle sample, they can predict the nature and extent of sampling errors in general. 
Let us illustrate with reference to sampling errors connected with the mean.

Sampling Errors of the Mean
Some sampling error can always be expected when a sample mean is used to 
estimate a population mean μ. Although, in practice, such an estimate is based 
on a single sample mean, assume that you drew several random samples from 
the same population and computed a mean for each sample. You would fi nd that 
these sample means would differ from one another and would also differ from the 
population mean (if it were known). Statisticians have carefully studied sampling 
errors of the mean and found that they follow known laws.

1. The expected mean of sampling errors is zero. Given an infi nite number of 
random samples drawn from a single population, the positive errors can be 
expected to balance the negative errors so that the mean of the sampling 
errors will be zero. For example, if the mean height of a population of college 
freshmen is 5 feet 9 inches and several random samples are drawn from that 
population, you would expect some samples to have mean heights greater 
than 5 feet 9 inches and some to have mean heights less than 5 feet 9 inches. 
In the long run, however, the positive and negative sampling errors will bal-
ance. If you had an infi nite number of random samples of the same size, 
calculated the mean of each of these samples, and then computed the mean 
of all these means, this mean would be equal to the population mean.

  Because positive errors equal negative errors, a single sample mean is as 
likely to underestimate a population mean as to overestimate it. Therefore, 
we can justify stating that a sample mean is an unbiased estimate of the 
population mean and is a reasonable estimate of the population mean.

2. Sampling error is an inverse function of sample size. As the size of a random 
sample increases, there is less fl uctuation from one sample to another in 
the value of the mean. In other words, as the size of a sample increases, the 
expected sampling error decreases. Small samples produce more sampling 
error than large ones. You would expect the means based on samples of 10 
to fl uctuate a great deal more than the means based on samples of 100. 
In the height example, it is much more likely that a random sample of 4 
will include 3 above-average freshmen and 1 below-average freshman than 
that a random sample of 40 would include 30 above-average and 10 below-
 average freshman. As sample size increases, the likelihood that the mean of 
the sample is near the population mean also increases. There is a mathemat-
ical relationship between sample size and sampling error. This relationship 
has been incorporated into inferential formulas, which we discuss later.

3. Sampling error is a direct function of the standard deviation of the popula-
tion. The more spread, or variation, there is among members of a popu-
lation, the more spread there will be in sample means. For example, the 
mean weights of random samples of 25, each selected from a population 
of professional jockeys, would show relatively less sampling error than the 
mean weights of samples of 25 selected from a population of schoolteachers. 
The weights of professional jockeys fall within a narrow range; the weights 
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of schoolteachers do not. Therefore, for a given sample size, the expected 
sampling error for teachers’ weights would be greater than the expected 
sampling error for jockeys’ weights.

4. Sampling errors are distributed in a normal or near-normal manner around 
the expected mean of zero. Sample means near the population mean will 
occur more frequently than sample means far from the population mean. As 
you move farther and farther from the population mean, you fi nd fewer and 
fewer sample means occurring. Both theory and experience have shown 
that the means of random samples are distributed in a normal or near-
normal manner around the population mean. Because a sampling error in 
this case is the difference between a sample mean and the population mean, 
the distribution of sampling errors is also normal or near normal in shape.

The distribution of sample means will resemble a normal curve even when 
the population from which the samples are drawn is not normally distributed. 
For example, in a typical elementary school you will fi nd approximately equal 
numbers of children of various ages included, so a polygon of the children’s ages 
would be basically rectangular. If you took random samples of 40 each from a 
school with equal numbers of children aged 6 through 11 years, you would fi nd 
many samples with a mean age near the population mean of 8.5 years, sample 
means of approximately 8 or 9 would be less common, and sample means as low 
as 7 or as high as 10 would be rare. Note that the word error in this context does 
not mean “mistake”—it refers to what is unaccounted for.

Standard Error of the Mean
Because the extent and the distribution of sampling errors can be predicted, 
researchers can use sample means with predictable confi dence to make inferences 
concerning population means. However, you need an estimate of the magnitude of 
the sampling error associated with the sample mean when using it as an estimate 
of the population mean. An important tool for this purpose is the standard error 
of the mean. Sampling error manifests itself in the variability of sample means. 
Thus, if you calculate the standard deviation of a collection of means of random 
samples from a single population, you would have an estimate of the amount of 
sampling error. It is possible, however, to obtain this estimate on the basis of only 
one sample. We have noted that two things affect the size of sampling error: the 
size of the sample and the standard deviation in the population. When both of 
these are known, you can predict the standard deviation of sampling errors. This 
expected standard deviation of sampling errors of the mean is called the standard 
error of the mean and is represented by the symbol σ  __ X  . Deductive logic shows that 
the standard error of the mean is equal to the standard deviation of the population 
(σ ) divided by the square root of the number in each sample ( √ 

__
 n   ). As a formula,

σ  __ X   =   
σ 

 ___  √ 
__

 n     (7.1)

where
σ  _ X  = standard error of the mean

σ = standard deviation of the population
n = number in each sample

13
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In Chapter 6, we noted that standard deviation (σ) is an index of the degree of 
spread among individuals in a population. In the same way, standard error of 
the mean (σ  __ X  ) is an index of the spread expected among the means of samples 
drawn randomly from a population. As you will see, the interpretation of σ and 
σ  __ X   is very similar.

Because the means of random samples have approximately normal distribu-
tions, you can also use the normal curve model to make inferences concerning 
population means. Given that the expected mean of sample means is equal to the 
population mean, that the standard deviation of these means is equal to the stan-
dard error of the mean, and that the means of random samples are distributed 
normally, you can compute a z score for a sample mean and refer that z to the 
normal curve table to approximate the probability of a sample mean occurring 
through chance that far or farther from the population mean. The z is derived by 
subtracting the population mean from the sample mean and then dividing this 
difference by the standard error of the mean:

 z =    
 
__

 X   − μ _____ σ   _ x    (7.2)

To illustrate, consider a college admissions offi cer who wonders if her popula-
tion of applicants is above average on the verbal subtest of the College Board 
examination. The national mean for College Board verbal scores is 500, and the 
standard deviation is 100. She pulls a random sample of 64 from her population 
and fi nds the mean of the sample to be 530. She asks the question, How probable 
is it that a random sample of 64 with a mean of 530 would be drawn from a popu-
lation with a mean of 500? Using Formula 7.1, the admissions offi cer calculates 
the standard error of the mean as 12.5:

σ  _ x  =   
σ 
 ____  √ 

__
 n     

  =   
100

 ____ 
 √ 

___
 64  
  

  = 12.5

Calculating the z score for her sample mean with Formula 7.2, she obtains the 
following result:

 z =   
 
__

 X   − μ
 _____  σ   __

 X  
   

 =   
530 − 500

 __________ 
12.5

  

 = 2.4

Thus, the sample mean deviates from the population mean by 2.4 standard 
error units. What is the probability of having a sample mean that deviates by 
this amount (2.4 σ  __ X  )  

__
 X   or more from the population mean? It is only neces-

sary to refer to the normal curve table in order to express this deviation (z) 
in terms of probability. Referring to the normal curve table, the admissions 
offi cer fi nds that the probability of a z = 2.4 or higher is .0082. This means 
that a z score that great or greater would occur by chance only approximately 
8 times in 1000. Because the probability of getting a sample mean that far 
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from the population mean is remote, she concludes that the sample mean 
probably did not come from a population with a mean of 500, and there-
fore the mean of her population—applicants to her college—is very probably 
greater than 500.

THE STRATEGY OF INFERENTIAL STATISTICS
Inferential statistics is the science of making reasonable decisions with limited 
information. Researchers use what they observe in samples and what is known 
about sampling error to reach fallible but reasonable decisions about popula-
tions. The statistical procedures performed before these decisions are made 
are called tests of signifi cance. A basic tool of these statistical tests is the null 
hypothesis.

THE NULL HYPOTHESIS

Suppose you have 100 fourth-graders available to participate in an experiment 
concerning the teaching of certain number concepts. Furthermore, suppose that 
your research hypothesis is that method B of teaching results in a greater mas-
tery of these concepts than method A. You randomly assign 50 students to be 
taught these concepts by method A and the other 50 to be taught by method 
B. You arrange their environment in such a way that the treatment of the two 
groups differs only in method of instruction. At the end of the experiment, you 
administer a measure that is considered to be a suitable operational defi nition of 
mastery of the number concepts of interest. You fi nd that the mean for the stu-
dents taught by method B is higher than the mean for those taught by method A. 
How do you interpret this difference?

Assuming you have been careful to make the learning conditions of the two 
groups equivalent, except for the method of teaching, you could account for the 
difference by deciding that (1) the method of teaching caused the difference or 
(2) the difference occurred by chance. Although the subjects were randomly 
assigned to the treatments, it is possible that through chance the method B group 
had students who were more intelligent, more highly motivated, or for some 
other reason were more likely to learn the number concepts than the students in 
the method A group, no matter how they were taught.

The difference between the groups therefore could be a result of (1) a rela-
tionship between the variables, method of teaching, and mastery of the concepts 
or (2) chance alone (sampling error). How are you to know which explanation 
is correct? In the ultimate sense, you cannot positively prove that the method 
of teaching caused the difference. However, you can estimate the likelihood of 
chance alone being responsible for the observed difference and then determine 
which explanation to accept as a result of this estimate.

The chance explanation is known as the null hypothesis, which, as you recall 
from Chapter 5, is a statement that there is no actual relationship between the 
variables and that any observed relationship is only a function of chance. In the 
example, the null hypothesis would state that there is no relationship between 
teaching method and mastery of the number concepts.

Another way of stating the null hypothesis in the example is to declare that 
the mean for all fourth-graders taught by method A is equal to the mean for 
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