السلسلة رقم (01) في مقياس إحصاء استدلالي

التمرين الأول: الجدول التالي يبين أرقام (مشاهدات) متعلقة بمتغيرين X Y حيث:

X:يمثل ضربات القلب.

Y: يمثل السن وهذا عند مجموعة من المتسابقين.

	1	2	3	4	5	6	7	8	9	10	11	12	13
x	40	36	51	49	47	51	32	55	55	23	49	52	35
Υ	187	195	180	190	185	183	195	185	189	201	189	185	195

المطلوب: 1-مثل هذه النتائج بيانيا؟ ماذا تلاحظ؟

2- احسب معامل الارتباط الخطى؟

3- احسب معامل التحديد ؟

-4 ماذا نستتج من المطلوب 1و 2

التمرين الثاني: عند تقييم مجموعة من الناقدين الرياضيين لعدد 10 من اللاعبين لرفع الأثقال، تبعا لترتيبهم المحقق وفق نتائج التدريب و ترتيبهم بعد المسابقة الفعلية وكان الترتيب كالتالي:

x:ترتيب اللاعبين الخاص بالتدريب

y:ترتيب اللاعبين في المسابقة الفعلية

اللاعب	А	В	С	D	Е	F	G	Н	I	J
Х	5	9	10	2	8	7	4	1	6	3
Y	4	8	10	2	9	6	3	1	7	5

المطلوب: احسب معامل الارتباط الرتبي لسبيرمان لدراسة العلاقة بين المتغيرين.

التمرين الثالث: ليكن المتغيرين الوصفيين Xو لابحيث أن:

x: يمثل نوع الجنس " ذكر،انثى"

y: يمثل تطور مرض من الأمراض " نعم، لا "

الجدول التالي يلخص مجمع القيم الملاحظة على 700شخص

المجموع الخطي Li	ß	نعم	الجنس تطور المرض
400	371.43	28.57	أنثى
300	278.57	21.43	ذكر
N=700	650	50	المجموع العمودي cj

المطلوب: اختبار الفرضيتين المطلوب:

H0: المتغيرينx و لاغير مرتبطين (لا توجد علاقة)

H1: المتغيرين Xو y مرتبطين (توجد علاقة)

ملاحظة: كل الشروط محققة ،%1=1

التمرين الرابع:

ليكن المتغيرين Xو لابحيث أن:

x: يمثل عدد حوادث المرور

y: يمثل الفئة العمرية

3أو 4	1أو 2	0	السن / حوادث المرور
14	23	8	أقل من 20سنة
12	42	21	20–25سنة
19	90	71	أكبر من أو يساوي 25سنة

المطلوب: اختبار الفرضيتين H_0, H_1 عند مستوى معنوية 5%

الإجابة عن التمرين الأول:

اختبار الفرض الآتي:

H0: لا يوجد ارتباط بين المتغيرين X و Y (غير مرتبطان)

H1يوجد ارتباط بين المتغيرين X و Y(مرتبطان)

قبل أن نقوم بالحساب:

1 نقوم بالتحقق من الشروط

المتغيرين كميين

لا توجد قيم مفقودة Nللمتغير X=Y

العلاقة خطية بين المتغيرين (نمثل القيم في شكل سحابة انتشار)

2-بعد التأكد من الشروط نقم بالحساب

X	Y	XY	\mathbf{X}^2	Y^2
40	187	7480	1600	34969
36	195	7020	1296	38025
51	180	9180	2601	32400
49	190	9310	2401	36100
47	185	8695	2209	34225
51	183	9333	2601	33489
32	195	6240	1024	38025
55	185	10175	3025	34225
55	189	10395	3025	35721
23	201	4623	529	40401
49	189	9261	2401	35721
52	185	9620	2704	34225
35	195	6825	1225	38025

 $575 = \sum X$ $2459 = \sum y$ $108157 \sum Xy$ $26641 \sum X2$ $465551 \sum y2$

بعد ذلك نحسب معامل الارتباط وفق العلاقة التالية:

$$\mathsf{r}_{\mathsf{p}} = \frac{N \sum XIYI - \sum XI \sum YI}{\sqrt{N \sum XI2 - (\sum XI)2 . N \sum YI2 - (\sum YI)2}}$$

$$\Gamma = \frac{13(108157) - (575)(2459)}{\sqrt{13\sum 26641 - (330625).13\sum 465551 - (6046681)}}$$

rp=-0.85 ارتباط عكسي قوي بين دقات القلب و السن

 $R=r^2=(-0.85)^2=0.7225$ هعامل التحديد

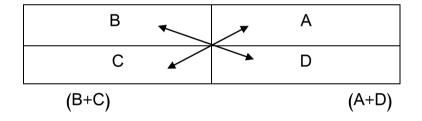
3-معامل الارتباط أعطى لنا نوع و قوة العلاقة بينما معامل التحديد يوضح الأثر ، أي لايفسر التغيرات في y بنسبة 72.25بالمئة و الباقي عوامل أخرى لم تدرج .

حل التمرين الثاني: بما أن المتغيرين هما متغيرين ترتيبيين فنستخدم معامل ارتباط لسبيرمان

اللاعب	Rx	Ry	d=R _X -R _Y	d^2
А	5	4	1	1
В	9	8	1	1
С	10	10	0	0
D	2	2	0	0
E	8	9	1-	1
F	7	6	1	1
G	4	3	1	1
Н	1	1	0	0
I	6	7	1-	1
J	3	5	2-	4

$$r_s = 1 - \frac{6 \sum d2}{n(n2-1)}$$

$$r_s = 1 - \frac{6*10}{10(100-1)}$$


 $r_{s=0.94}$

هذا الارتباط هو ارتباط طردي قوي، أي كلما كانت زادت مرتبة اللاعب في التدريب، كلما حصل على مرتبة متقدمة في المسابقة .

حل التمرين الثالث:

وهي الطريقة المختصرة تستخدم فقط في حالة وجود مستويين و يحسب كما يلي

$$\chi^2 = \frac{n(ac-db)2}{(b+a)(c+d)(a+d)(b+c)}$$

و بالعودة للتمرين نطبق عدديا نجد:

$$=\frac{700(28.57.278.57-21.43.371.43)2}{(400)(300)(50)(650)}$$

$$=\frac{700(7958.7449-7959.7449)2}{3900000000}$$

$$=\frac{700(-1)2}{3900000000}$$

=0.000000179

و انطلاقا من قيم مربع كاي الجدولية عند مستوى معنوية 0.01 و درجة حرية 1 نلاحظ أن قيمة مربع كاي الجدولية =6.63 أي أن قيمة مربع كاي المحسوبة أقل من القيمة الجدولية ، فهي تقع ضمن منطقة قبول ho لذلك نقبل الفرضية الصفرية ونرفض الفرضية البديلة أي لا يوجد ارتباط بين المتغيرين .

حل التمرين الرابع:

اختبار مربع کای Chi-Square test

حل التمرين الأول (نموذجا):

إذا كان المطلوب اختبار الفرض الآتي:

H0: المتغيرين X و Y غير مرتبطان

H1: المتغيرين X و المرتبطان

أو هل هناك علاقة بين المتغيرين Xو Y

للاجابة عن هذا السؤال هناك مراحل:

أولا :التأكد من تحقق الشروط

نلاحظ أن المتغيرين (الجنس، تطور المرض) هما متغيرين نوعيين (اسميين، كيفيين، غير كميي)،فغن الاختبار المناسب لمعرفة اذا كان علاقة بينهما هو اختبار اختبار مربيع كاي

فقبل حسابه يجب التأكد من تحقيق شروط الاختبار:

1-المتغيرين من طبيعة كيفية (الشرط محقق)

2-عشوائية العينة وتعرف من خلال صياغة التجربة (الشرط محقق)

n=700 و نلاحظ في التمرين n=700 (الشرط محقق)

-4يجب أن تكون التكرارات الهامشية على السطر مساوي لمجموع التكرارات الهامشية على العمود أي

$$\sum_{I=1}^{C}$$
 N IJ = $\sum_{I=1}^{L}$ N IJ

5-التكرارات النظرية أكبر من الصفر، و هذا الشرط يمكن العدول عنه باعتبار أنه لا يمكن التحقق منه في بداية التمرين. (يعني هذا الشرط يمكن التغاضي عنه)

 χ^2 ثانیا: حساب

 χ^2 بعد التأكد من تحقق الشروط تأتي المرحلة الثانية وهي حساب قيمة

هناك طريقتين لذلك:

الطريقة الأولى: نحسبه بالعلاقة التالية:

$$\chi^2$$
 (DDL $\cdot \alpha$)= $\frac{\sum (OIJ-TJ)2}{TIJ}$

حيث أن:

التكرارات النظرية TIJ

(هي قيم الجدول المعطاة في التمرين) التكرارات الملاحظة (هي قيم الجدول المعطاة في التمرين)

بقى أن نحسب التكرارات النظرية وذلك بالقانون:

TIJ=LI.CJ/N

L1:المجموع الهامشي السطري

CJ: المجموع الهامشي العمودي

نقوم بحساب التكرارات النظرية TIJ

 $TIJ1=(100\times45)/300=15$

TIJ2=(100×75)/300=25

TIJ3=(100×180)/300=60

TIJ4=(155×45)/300=23.25

TIJ5=(155×75)/300=38.75

TIJ6=(155×180)/300=93

TIJ7=(45×45)/300=6.75

TIJ8=(45×75)/300=11.25

TIJ9=(45×180)/300=27

				2
08	15	-7	49	3.26666667
21	25	-4	16	0.64
71	60	11	121	2.0166666667
23	23.25	-0.25	0.0625	0.002688172
42	38.75	3.25	10.5625	0.2725806452
90	93	-3	9	0.0967741936
14	6.75	7.25	52.5625	7.787037037
12	11.25	0.75	0.5625	0.05
19	27	-8	64	2.3703703704
			المجموع	16.50278375

 $\chi^2 = 16.50278375$ إذن نجد قيمة -3)(1-3) = (1-3)(1-3) عن درجة الحرية -3 (عدد الأسطر -1)(عدد الأعمدة -3) +3 الحرية -3 (1 عدد الأعمدة -3) +3 (2 عدد الأعمدة -3) +3 (1 عدد الأعمدة -3) -3 (1 عدد الأعمدة

و انطلاقا من قيم مربع كاي الجدولية عند مستوى معنوية 0.05 و درجة حرية 4 نلاحظ أن 9.49

أي أن قيمة مربع كاي المحسوبة أكبر من القيمة الجدولية ، فهي تقع ضمن منطقة رفض ho لذلك نرفض الفرضية الصفرية ونقبل الفرضية البديلة أي توجد المتغيرين مرتبطين .