

TD1 Descriptive Statistics and Probability (Solution)

Exercise 1.

The population Ω is 100 high school students.

The variable X is the number of extracurricular activities by one high school student.

The data are the number of extracurricular activities in which the high school students participate. the data are 2, 5, 7.

Exercise 2.

Number of children in a family : quantitative variable discrete

Color of eyes : qualitative variable nominal

Socio-professional category : qualitative variable nominal (we can use it ordinal)

City of birth : qualitative variable nominal

Level of education : qualitative variable ordinal

Salary : quantitative variable continuous

Weight : quantitative variable continuous

Gender : qualitative variable nominal

Age : quantitative variable continuous

Mother language : qualitative variable nominal

Type of car: qualitative variable nominal

Height, IQ scores : quantitative variable continuous

.

Exercise 3.

(1)

The population Ω : 40 families in a village,

Variable X : the number of children in one family

X is a quantitative discrete variable,

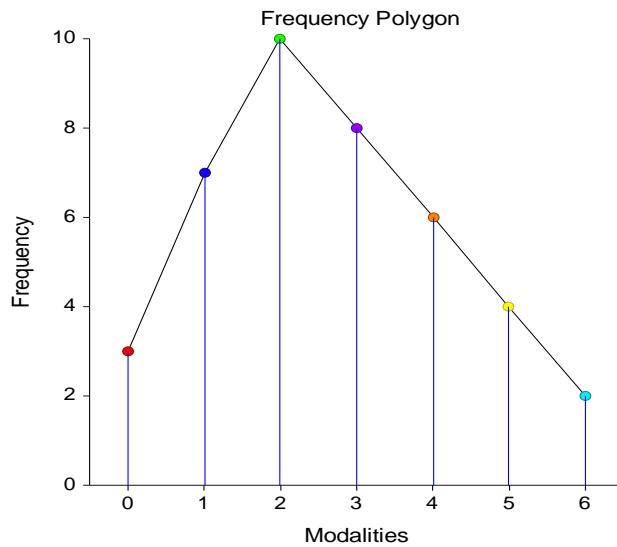
$$X(\Omega) = \{0, 1, 2, 3, 4, 5, 6\}.$$

(2)

Number of childrens (x_i)	n_i	f_i	N_i	F_i	$n_i x_i$	$n_i x_i^2$
0	3	0,075	3	0,075	0	0
1	7	0,175	10	0,25	7	7
2	10	0,25	20	0,5	20	40
3	8	0,2	28	0,7	24	72
4	6	0,15	34	0,85	24	96
5	4	0,1	38	0,95	20	100
6	2	0,05	40	1	12	72
Total	$n = 40$	1			107	387

(3)

Bar-Chart and



$$(5) \quad \bar{X} = \frac{1}{n} \sum_{i=1}^7 n_n x_i = \frac{1}{40} (107) = 2,675$$

$$1. \quad Var(X) = \frac{1}{n} \sum_{i=1}^7 n_n x_i^2 - (\bar{X})^2 = \frac{1}{40} (387) - (2,675)^2 = 2,52$$

$$\sigma_X = \sqrt{VarX} = 1,6.$$

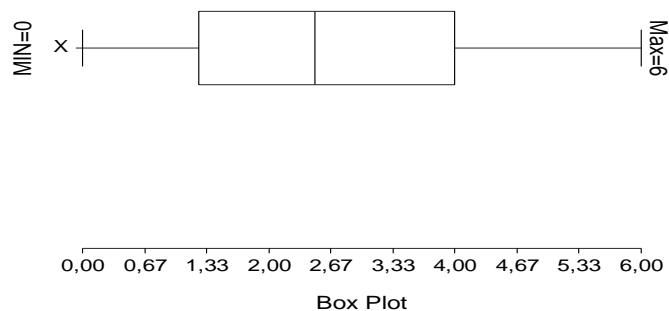
$$\frac{n}{4} = 10 \in N_i \implies Q_1 = \frac{1+2}{2} = 0,5$$

$$\frac{n}{2} = 20 \in N_i \implies M = \frac{2+3}{2} = 2,5$$

$$\frac{3n}{4} = 30 \notin N_i \implies Q_3 = 4$$

Because $M < Mode < \bar{X}$ then the distribution is right skewed

(6)



Exercise 4.

$$(a) \quad \bar{X} = \frac{3 + 5 + 2 + 6 + 5 + 9 + 5 + 2 + 8 + 6}{10} = 5,1.$$

Arranging the data 3, 5, 2, 6, 5, 9, 5, 2, 8, 6 in ascending order we obtain : 2, 2, 3, 5, 5, 5, 6, 6, 8, 9, then $M = \frac{5+5}{2} = 5$.

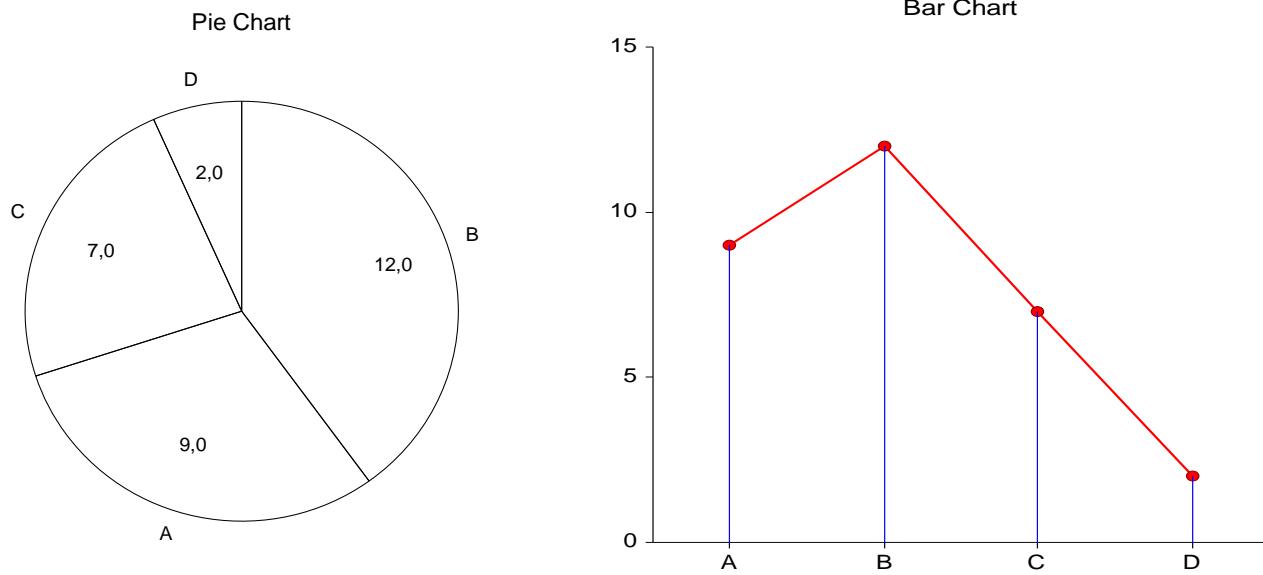
Mode = 5.

$$(b) \bar{X} = \frac{51, 6 + 48, 7 + 50, 3 + 49, 5 + 48, 9}{5} = 49, 72.$$

Arranging the data 51, 6; 48, 7; 50, 3; 49, 5; 48.9 in ascending order we obtain : 48, 7; 48.9; 49, 5; 50, 3; 51, 6, then $M = 49, 5$.

This data has no mode.

Exercise 5.



Exercise 7.

Downtime	Frequencies (n_i)	$Cf N_i$	Class mark (x_i)	$f_i x_i$	$f_i x_i^2$
$[0, 10[$	3	3	5	15	75
$[10, 20[$	13	16	15	195	2925
$[20, 30[$	30	46	25	750	18750
$[30, 40[$	25	71	35	875	30625
$[40, 50[$	14	85	45	630	28350
$[50, 60[$	8	93	55	440	24200
$[60, 70[$	4	97	65	260	16900
$[70, 80[$	2	99	75	150	11250
$[80, 90[$	1	100	85	85	7225
Total	$n = 100$			3400	140300

$$(a) \bar{X} = \frac{1}{n} \sum_{i=1}^9 n_i x_i = \frac{1}{100} (3400) = 34, \quad Var(X) = \frac{1}{n} \sum_{i=1}^9 n_i x_i^2 - \bar{X}^2 = 1403 - 34^2 = 247.$$

$$(b) \quad \sigma_X = \sqrt{Var(X)} = 15, 71.$$

(c) Median : we first identify the class containing the median, then apply the following formula

$$M = L_1 + \frac{\frac{n}{2} - C}{f_m} (L_2 - L_1)$$

where

L_1 is the lower bound class containing the median;

n is the total frequency;

C is the cumulative frequency just before the median class;

n_m is the frequency of the median class;

L_2 is the upper bound class containing the median.

We proceed similarly with Q_1 and Q_3 , by replacing $\frac{n}{2}$ by $\frac{n}{4}$ and $\frac{3n}{4}$ in the formula.

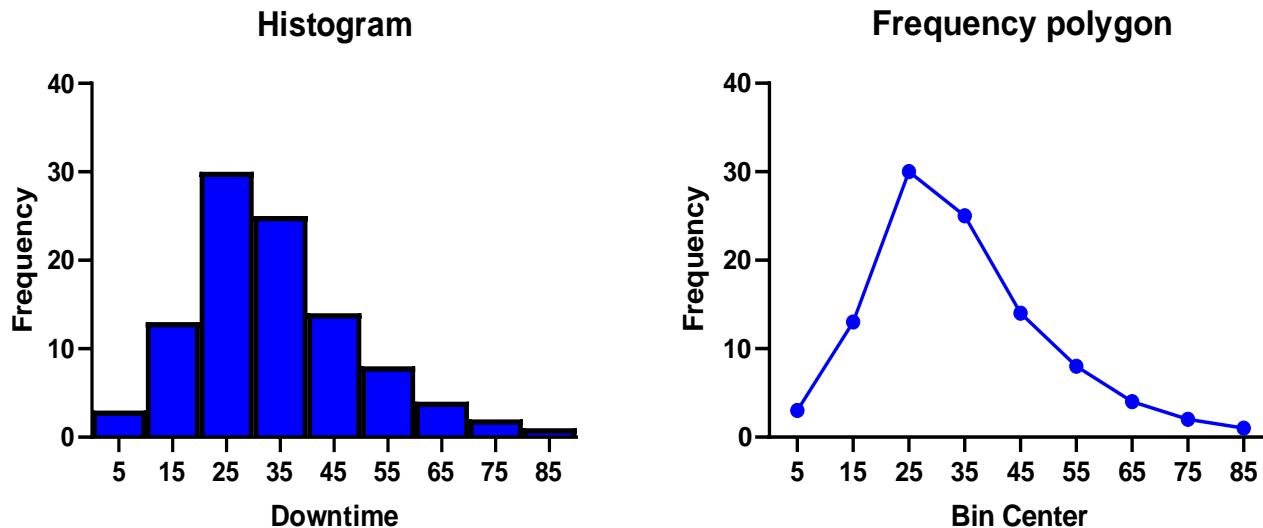
We have $M \in [30, 40[$, $Q_1 \in [20, 30[$ and $Q_3 \in [40, 50[$

$$(c) \quad M = 30 + \frac{50 - 46}{25} \times 10 = 31.6,$$

$$(d) \quad Q_1 = 20 + \frac{25 - 16}{30} \times 10 = 23, \quad Q_3 = 40 + \frac{75 - 71}{14} \times 10 = 42.85$$

(e) The range $= 90 - 0 = 90$, (f) The coefficient of variation $CV = \frac{\sigma_X}{\bar{X}} \times 100\% = 47\%$, (g) The interquartile range $IQ = Q_3 - Q_1 = 42.85 - 23 = 19.85$

The mean is greater than the median, the distribution is right-skewed as is shown in frequency polygon below.



(3) The number of Downtime which are within \bar{X} and $\bar{X} + \sigma_X$ is $N(\bar{X} + \sigma_X) - N(\bar{X})$ where N is the cumulative frequency function in its form defined as follows

$$N(x) = N_{i-1} + \frac{n_i}{l_i} (x - a_{i-1}), \quad x \in [a_{i-1}, a_i[$$

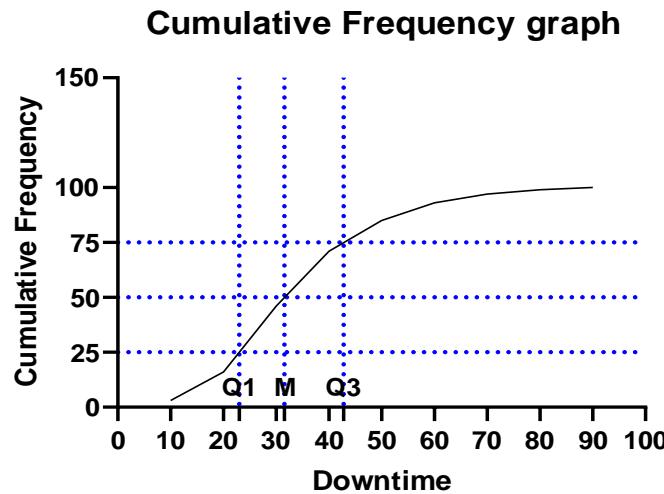
where $[a_{i-1}, a_i[$ is the class such that $x \in [a_{i-1}, a_i[$, N_{i-1} is the cumulative frequency just before $[a_{i-1}, a_i[$, n_i and l_i are the frequency and the width of $[a_{i-1}, a_i[$.

We have $\bar{X} = 34 \in [30, 40[$, $N_{i-1} = 46$, $n_i = 25$, $l_i = 10$ and $\bar{X} + \sigma_X = 49.71 \in [40, 50[$, $N_{i-1} = 71$, $n_i = 14$, $l_i = 10$, then

$$N(\bar{X}) = 46 + 2.5(34 - 30) = 56 \text{ and } N(\bar{X} + \sigma_X) = 71 + 1.4(49.71 - 40) = 84, 59$$

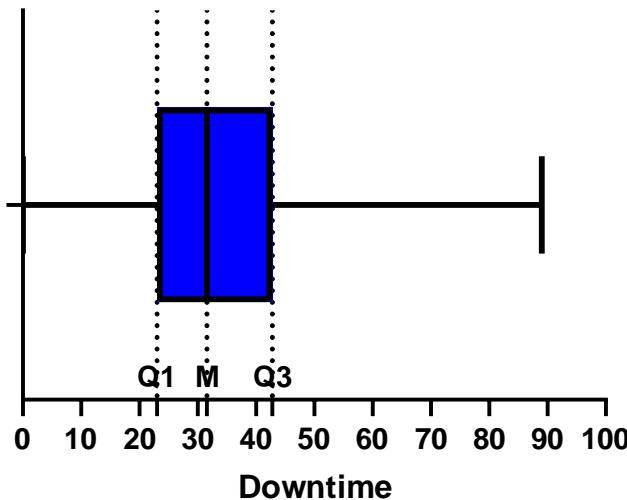
Finally $N(\bar{X} + \sigma_X) - N(\bar{X}) = 29$ Downtimes.

(4)



(5)

Box-and-whisker plot



Exercise 8.

Weight (grams)	Frequencies (n_i)	N_i	Class mark (x_i)	$n_i x_i$	$n_i x_i^2$
[5, 00; 5, 01[4	4	5.005	20.02	100.200
[5, 01, 5, 02[18	22	5.015	90.27	452.704
[5, 02; 5, 03[25	47	5.025	125.625	631.265
[5, 03; 5, 04[36	83	5.035	181.26	912.644
[5, 04; 5, 05[30	113	5.045	151.35	763.560
[5, 05; 5, 06[22	135	5.055	111.21	562.166
[5, 06; 5, 07[11	146	5.065	55.715	282.196
[5, 07; 5, 08[3	149	5.075	15.225	77.267
[5, 08; 5, 09[1	150	5.085	5.085	25.857
Total	$n = 150$			755.76	3807.859

(a)

$$\bar{X} = \frac{\sum_{i=1}^9 n_i x_i}{n} = \frac{755.76}{150} = 5,038, \quad \sigma_X^2 = \frac{\sum_{i=1}^9 n_i x_i^2}{n} - \bar{X}^2 = 0,004 \quad \sigma_X = \sqrt{0.004} = 0,063$$

(b) the number of bolts which are within one standard deviation of the mean : $N(\bar{X} + \sigma_X) - N(\bar{X}) = N(5,101) - N(5,038) = 150 - N(5,038) = 150 - \left(25 + \frac{36}{0,01} \times 0,008 \right) = 96$.

(c) Let Y present the nut, we have $\bar{Y} = 2.043$ and we know that $\bar{X} = 5.038$, then $\bar{X} + \bar{Y} = \bar{X} + \bar{Y} = 7.081$.

$$Var(X + Y) = VarX + VarY = VarX + \sigma_Y^2 = 0,004 + (0,008)^2 = 0,004064.$$

$$\sigma_{X+Y} = \sqrt{Var(X + Y)} = 0,063.$$

Exercise 9.

We have $\bar{X} = 25,000$ and $\sigma_X = 2000$, all salaries are increased by \$2500, then $Y = X + 2500$ has $\bar{Y} = \bar{X} + 2500 = 27500$ and $\sigma_Y = |1| \times \sigma_X = 2000$.