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Chapitre 1/ Introduction a la Géostatistigue

1-Introduction a la géostatistique

La géostatistique consiste a étudier les phénomeénes corrélés dans 1’espace, au moyen

D’un outil probabiliste : “ la théorie de variables régionalisées .

La géostatistique est une application de la théorie des fonctions aléatoires a des données localisées dans un
espace géographique

Il existe deux définitions de la notion « géostatistique » :

1- La Géo-statistique = Statistique appliquée aux sciences géologiques et sciences de la terre

2-La géostatistique (Matheron 1971) : La géostatistique est 1’application du formalisme des fonctions
aléatoires a la reconnaissance et a 1’estimation des phénomeénes naturels repartis dans 1’espace (phénoménes
régionalisés) et/ou dans le temps (Minéralisation, pollution, propriété physique de roches,...).

1.1. Méthodes géostatistiques

Les méthodes géostatistiques, ont été initialement proposées en exploration miniere et pétroliere telles que le
krigeage.

La géostatistique est classiquement subdivisée en geostatistique linéaire et multivariable, géostatistique non-
linaire, simulations géostatistiques.

1.2. Modeéles et types de la géostatique

La géostatistique étudie des phénomenes naturelles répartie dans I’espace (phénomenes régionalisés) et/ou
dans le temps (Mineralisation, pollution, propriété physique de roches, pluviométrie.......) La géostatistique
¢tudie des phénomenes naturelles répartie dans I’espace (phénoménes régionalisés) et/ou dans le temps
(Minéralisation, pollution, proprieté physique de roches, pluviométrie.......)

1 - Siau point x;, la variable régionalisée Z(x;) est considérée comme valeur unique (valeur vraie), dans ce
cas, la géostatistique étudiera la corrélation spatiale de la V.R. Z(x) et la structure de cette variable dans
I’espace ( fig.1)

Fig. 1 — Localisation des points de mesures Xi (Répartition des données)



1.2. Rappelles sur les statistiques descriptives
1.2.1. Typologie des variables

On appelle variable le caractére sur lequel porte une étude d’un ensemble d’individus et qui change de 'un a
’autre. Si le changement de ce caractére est imprévisible, la variable est dite variable aléatoire. Si cette
variable aléatoire est répartie dans ’espace, dite variable régionalisée

1- Variable qualitative : La variable est dite qualitative quand les modalités sont des catégories.

2- Variable qualitative nominale : La variable est dite qualitative nominale quand les modalités ne peuvent
pas étre ordonnées.

3- Variable qualitative ordinale : La variable est dite qualitative ordinale quand les modalités peuvent étre
ordonnées. Le fait de pouvoir ou non ordonner les modalités est parfois discutable. Par exemple : dans les
catégories socioprofessionnelles, on admet d’ordonner les modalités : ‘ouvriers’, ‘employés’, ‘cadres’. Si on
ajoute les modalités ‘sans profession’, ‘enseignant’, ‘artisan’, I’ordre devient beaucoup plus discutable.

4- Variable quantitative : Une variable est dite quantitative si toutes ses valeurs possibles sont numériques.
5- Variable quantitative discréte : Une variable est dite discréte, si I’ensemble des valeurs possibles est
dénombrable.

6- Variable quantitative continue : Une variable est dite continue, si I’ensemble des valeurs possibles est
continu.

Exemple : le nombre de piéce d’une maison est une variable discontinue, alors que la teneur d’un élément
chimique dans la croute terrestre est une variable continue
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Figure 1. Schéma montrant la population, I'échantillon et les individus statistiques

1.2.2. Classes et intervalles de classes

Les unités d’une population statistique peuvent étre représentées individuellement ou regroupés par classes
(intervalles) de valeurs ou de critéres qualitatifs. Pour les critéres quantitatifs, chaque classe possede un centre
(valeur centrale) qui est la moyenne des deux bornes de la classe. L’amplitude d’une classe est la différence des
bornes de la classe.

1.2.3. Effectifs et fréquences



* L’effectif ou la fréquence absolue ni est le nombre de fois qu’une valeur ou un critére se répéte dans une
série statistique. La somme des effectifs absolue est ’effectif total N.

1.2.3.1. Effectif cumulé croissant associé a la classe i : c’est le nombre d’individus ayant un caractére
inférieur ou égal a ceux de la classe i :
i

N¢T = Z n;

j=1

1.2.3.2. Effectif cumulé décroissant associé a la classe i : ¢c’est le nombre d’individus ayant un caractere
supérieur ou égal a ceux de la classe i :

cl _ P
Ni" =Ly

* La fréquence relative est egale a la fréquence absolue divisée par la fréquence totale :
fi=ni/N

1.2.3.3. La fréquence cumulée croissante associée a la classe i : est la somme des effectifs des modalités
qui lui sont inférieures ou égales a ceux de laclasse i :

i
:
F{ =Zf;'
i=1

1.2.3.4. La fréquence cumulée décroissante associée a la classe i : est la somme des effectifs des modalités
qui lui sont supérieures ou égales a ceux de la classe i.

L_ypP
F§' =3P f;
1.3. Rappel sur les statistiques linéaires (mono et bivariable)

1.3.1. Parametres de position centrale
Un indicateur de position est un nombre réel permettant de situer les valeurs d'une série statistique d'une
variable quantitative. Les principaux parametres de position centrale sont :

* le mode : le mode d’une série statistique est une valeur du caractére correspondant au plus grand effectif
(ou a la plus grande fréquence) par rapport aux autres caractéres qui les entourent.

Une série statistique peut avoir plusieurs modes. Si la variable est continue, ses modalités sont des classes de
valeurs. Le mode de distribution ne pourra pas étre une modalité représentant une valeur précise de cette
variable mais sera une classe de valeurs. On appelle alors classe modale la classe constituant le mode de la
distribution.

Exemple :
Soit la série statistique suivante : le mode correspond a la valeur qui a I’effectif le plus élevé, qui donc la

valeur 27.



X7 ni (effectif)
12 2

16 13

22 15

mode 27 - 17

32 14

35 10

45 9

La médiane La médiane est la valeur de la variable qui permet de partager la population étudiée en deux telle
que la moitié des individus de la population prenne une valeur qui lui soit inférieure, l'autre moitié des individus
de la population prenant par conséquent une valeur qui lui soit supérieure.

On note généralement la médiane : Mé.

La valeur de la médiane est déterminée par la formule N/2 (N effectif total). Si la variable est continue la médiane
est donc la classe correspond a I’effectif N/2 (ou N/2 fait partie).

* La moyenne d’une série statistique est calculée par la formule :

p
X = Zni*xi}ﬁ

i=1
Donc on peut écrire la moyenne en fonction de fréquence relative :

p

X = Z?tf + xi/N

i=1
1.3. Parameétres de dispersion

* Etendue : C’est la différence des valeurs extrémes de la série (en valeur absolue).
Exemple : soit lasérie S={4; 2; 3;0; 2; 1; 3; -1; 3}. L’étendue vaut 4 - (-1) = 5.

* Pécart-type et la variance : La variance d’une série est la quantité notée var(X) ou S2 calculé par la
formule : var (X)=1 N Z(xi—X)2

L’écart-type est la racine au carré de la variance : S(X) = V(X)

* Quartiles
Soit X une série, on définit les quartiles Q1, Q2 et Q3 de la maniére suivante :
1 Q1 est une valeur du caractére telle que 25% de la population a un caractere inférieur a Q1.

1 Q2 est une valeur du caractére telle que 50% de la population a un caractere inférieur a Q2:

1 Q3 est une valeur du caractére telle que 75% de la population a un caractére inférieur a Q3.



Remarque :
1 On note que Q2 = Me

O L’intervalle [Q1-Q3] s appelle 'intervalle interquartile. Il contient 50% de la population.
* Fonctions de répartition

Soit X une série. On appelle fonction de répartition F, la fonction qui a une valeur du caractére x cumulée
croissante jusqu’a Xi

F : {caractéres} — [0;1] donc : X »fXcT = fxi<X

Avec cette définition, les quartiles sont simplement définis par :

Q1 = F-1(0;25); Q2 = F-1(0;5) et Q3 = F-1(0;75)

* La bofite @ moustaches

Dans les représentations graphiques de données statistiques, la boite & moustaches (aussi appelée diagramme
en boite, boite de Tukey ou box plot) est un moyen rapide de figurer le profil essentiel d’une série statistique
quantitative. Une boite & moustaches nous indique de fagon simple et visuelle quelques traits marquants de la
série observée. Ce graphe permet de comparer plusieurs séries d’un seul coup d’oeil.

ixmin Q1 Me Q3 xmax
\ +25% | =75%
Y ||
+50% +50%

La boite a moustaches

1.4. L’analyse bivariée

L'analyse bivariée est une méthode statistique qui examine la relation entre deux variables. Elle permet de
comprendre comment une variable est associée a une autre et de déterminer la nature et la force de cette
association (Pieretti and Weiland 1996).

1.4.1. Méthodes d'analyse bivariée

1.4.1.1.Diagramme de dispersion (Scatter Plot) : Un graphique montrant les points de données pour deux
variables quantitatives, permettant d'observer visuellement la relation.

Exemple :
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Figure .2 Digramme de dispersion de deux variables : SiO2 et CaO dans une roche

A. Coefficient de Corrélation de Pearson : Mesure de la force et de la direction de la relation linéaire entre
deux variables quantitatives.

cov(X.v)
OX. Oy

r(x,y) =

Jrvariede-1al.
(1 r >0 indique une relation positive.
(1 r <0 indique une relation négative.

(1 r =0 n’indique aucune relation linéaire.

Remarque : Pour pouvoir parler de forte liaison entre x et y il faut que la valeur absolue de r atteigne au moins 0.87

Régression Linéaire : Modélisation de la relation entre une variable indépendante X et une variable
dépendante Y pour prédire Y en fonction de X.



yi=axi+b

1 aest I'ordonnée a l'origine (intercept).
[1 b est la pente (slope).

qQ cov(X,Y)
V (X)

bzy—ax

Pour la régression linéaire simple, les coefficients a (I'ordonnée a l'origine) et b (la pente) sont calculés en
utilisant la méthode des moindres carrés. Cette méthode minimise la somme des carrés des différences entre
les valeurs observées et les valeurs prédites par le modele.

La méthode des moindres carrés minimise la somme des carrés des erreurs (SCE : résidus) :

SCE = Y1 ,(¥; — ¥3)?

ou Yi est la valeur observeée et Y1 est la valeur prédite par le modéle.
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Figure 3. Principe de la méthode des moindres carrés

Les formules pour les coefficients sont :




Chapitre 2: Les Probabilités

Probabilité
Une probabilité correspond a une fonction permettant de « mesurer » la chance de réalisation
d’'un évenement de P(Q) (ou plus généralement d’une tribu A).

Définition : Soit (2, A) un espace probabilisable. Une probabilité sur (2,A) est une
application P—[0,1] satisfaisant les 3 conditions suivantes (Mountassir 2014):

0<(4)<1
P(Q) =1
P(UAi) = ZP(Ai)

Dés lors que P est définie, (2, A, P) s’appelle un espace de probabilité.

Opérations sur les probabilités

* (¢_)=0
* (A=1-(4)
*0<5(A)<1

I1.4. Espérance mathématique

L’espérance mathématique ou moyenne théorique, noté E(x), est égale a la somme des produits des
probabilités successives par leur valeur.

(x)= Zxix(X= xi) ki=1

Si P(X= xi) est remplacé par ni/N (qui est fi), I’espérance mathématique peut alors s’écrire :
(x)= Zxixfiki=1
On obtient ainsi une identité entre les notions de moyenne arithmétique et I’espérance mathématique.

* Propriété de I’espérance mathématique :
soit a et b des constantes :

* E(ax) =ax E(X)
*E(ax+b)=axE(X) +b

*E(x +y) = E(x) + E(y)

E[XY ] =E[X].E[Y ]+ Cov(X; Y)

Cov(X; Y ): c’est la covariance des deux variables X et Y.
On définit la covariance par la quantité :

Cov(X; Y) = E[(X - E[X])(Y - E[Y ])]
| Moment d’ordre n (Saporta 2006):



- Définition : Si X est une variable aléatoire, on appelle moment d'ordre £, s'il existe, le nombre
E(xx). Donc I'espérance mathématique est le moment d’ordre 1.
S1 X est une variable aléatoire discrete, son moment d'ordre k se calcule par la formule :

q
mg = meP(I = ;).
=1

S1 X est une variable aléatoire continue, alors ce méme moment se calcule de la facon suivante :
my = f z* f(x)dz.

R
I1 existe encore différents types de moments :

0 le moment centré d'ordre k :
pr = E [(X — E(X))*].

La variance d'une variable aléatoire est donc le moment centré d'ordre 2.

On peut donc écrire :
02=X%[(xi—E(x))2.P(X=xi)|ki=1
En remplacant P(X= x:) par fiet E(x) par X on obtient donc : S2= g2=X[(xi—X)2.fiki=1

IL.5. Loi d’une variable aléatoire
Une variable aléatoire est totalement définie par sa loi de probabilité. Cette derniere est
caractérisée par (Mountassir 2016):

1. I'ensemble des valeurs qu'elle peut prendre (son domaine de définition Dx);
2. les probabilités attribuées a chacune de ses valeurs :

P(X=xi):0<(X=xi)<1

2. Eléments du calcul des probabilités
2.1.Vocabulaire probabiliste

2.1.1.Expérience aléatoire
Une expérience est dite aléatoire si :
a- On ne peut prédire avec certitude son résultat
b- On peut décrire I'ensemble de tous les résultats possibles.

Exemple : jet d'un dé ; lancer d'une piéce de monnaie, comportement d’achat d’une personne.

2.1.2. Ensemble fondamental

(Appelé également univers des possibles, espace échantillonnal ou référentiel) représente I'ensemble des
résultats possibles d'une expérience aléatoire ; il est notéQ.

Exemple : Si on lance un dé une seule fois, ’ensemble des résultats possibles sont

Q={1,2 3,4, 5,6}



2.2.3.Evénement

C’est un élément ou sous ensemble deQ2. On distingue I'événement élémentaire : obtenir 2 de I'événement
composeé, obtenir un nombre impair.

2.2.Définition classique d’une probabilité

Soit Q un ensemble fondamental et A un événement quelconque de Q :
Nombre de cas favorables Card A
P(A) = =
Nombre de cas possibles Card Q

@ 2.2.1. Définition fréquentielle

Soit @ un ensemble fondamental et A un
événement quelconque de Q.
P(A)=lim f (A)

avec
n : nombre de fois que I'expérience se répéte
et

fn(A):@ : fréquence de la réalisation de

I'événement A au cours des n répétitions.

Exemple :
Un professeur de statistique a enseigné a 12848 personnes, parmi celles-ci 542 ont échoué
La probabilité d’échouer est 542/12848=0.0422
2.2.2. Les regles de calcul des probabilités
@ La probabilité de réalisation d’un événement impossible est égale a 0.
@ La probabilité de réalisation d’un événement certain est égale a 1.

# Si A et B sont deux événements incompatibles, alors la probabilité de la réalisation simultanée des
deux événements est la somme des probabilités : P (A UB) = P(A) + P(B).

@ La probabilité de I’événement contraire de A est 1-P(A)
Remarque :
Si A et b ne sont pas deux événements compatibles, alors :
P(A UB) = P(A) +P(B)-P (A N B)

Exemple :



On jette un dé une seule fois, soient les deux événements suivants :
A : obtenir un chiffre pair

B : obtenir un chiffre inférieur a 3

Calculer p (A/B) ?

Solution :

P(A) = 3/6

P(B) = 3/6

P(A-B) = 1/6

P( A/B) = (1/6) / (3/6) = 1/3 Si A est
dépendant de B, cela signifie que si B s'est produit, la probabilité que A se produise n'est pas la méme que si B
ne I'est pas.

En retenant les données de 1’exemple précédent, on peut dire que A et B sont deux événements
dépendants car : p(A) = p(A/B)

2.3.Notion de variable aléatoire

Une variable aléatoire est une grandeur numérique attaché au résultat d’une expérience aléatoire.
Chacune de ses valeurs est associé¢ a une probabilité d’apparition.

Exemple 1 : On jette une pic¢ce de monnaie deux fois et on s’intéresse au nombre de fois que pile
apparait au cours des deux jets.

On a quatre résultats possibles : PP, PF, FP, FF
Le nombre de fois que Pile peut apparaitre est 0, 1 ou 2.

La variable aléatoire retenue peut donc prendre ces trois valeurs, son ensemble de définition est
donc: {0, 1, 2}

Une VA peut étre discrete ou continue :

Une VA est dite discréte si I'ensemble des valeurs qu'elle est susceptible de prendre est fini ou infini
dénombrable.

Une VA est dite continue si elle peut prendre toute valeur a I'intérieur d'un intervalle donné.
2.3.1.Les caractéristiques d’une variable aléatoires discretes
a-Loi de probabilité :

On appelle loi de probabilité de X I'ensemble des couples (xi, pi).

b-Fonction de répartition :
On, appelle fonction de répartition, la fonction F définie par :
F: IR -->[0,1]

c-Espérance mathématique:



On appelle espérance mathématique de X et on note E(X) la moyenne des valeurs possibles
pondérées par leurs probabilités :

E(X) = 2 xi.pi.

Pour une variable discréte : (x)= (X<xi)= Z(X=i)ni=1
(x) est une fonction en escalier, continue a droite.

F(x) est une fonction en escalier, continue a droite.

.F{:I) &

H

1

J_T

Graphe de fonction de répartition d'une v.a. discréte

v

* Pour une variable continue :

La probabilité ponctuelle P(X = x) = f(x) est appelée la fonction de densité.
La fonction de répartition est : (x)= (X<xi)= [ (x)dxxi—«

(x) est une fonction continue

Fix) &

1 S

A

Graphe de fonction de répartition d'une v.a. continue

2.4. Variance et écart type

On appelle variance de la VA X le nombre réel défini par :

V(X) = E[X - E(X)]? = E(X?)-E(X)? on
appelle écart type, la racine carrée de la variance

2.4.1.Les caractéristiques d’une variable aléatoires continue

Fonction de densité de probabilité : On appelle fonction de densité de probabilité toute fonction
satisfaisant aux 2 conditions suivantes :

vxelR, f(X)>0
" f(x)dx=L



La densité de probabilité d'une variable aléatoire continue est la dérivée premiere par rapport a x
de la fonction de répartition. Cette dérivée prend le nom de fonction de densité.

La loi de d'une variable aléatoire X est définie par sa fonction de densité f(x) de R dans R. sa fonction
de densité f(x) de R dans R. Cette fonction est caractérisé par :

= (x)=0
J(x)=1+«

Fonction de répartition : Soit X une VA continue et f sa densité de probabilité. La fonction de
répartition de X est la fonction F telle que :

E(X)= f:xf(x)dx
V)= (x—E)Hx)dx=[ " xef(x)ox—([ " xf(x)ax)2

Rappelant que la fonction de répartition est une intégrale de la fonction de densite. Il est également
possible d'utiliser cette derniére pour representer graphiquement la fonction de répartition qui
correspond donc a une surface dans ce cas (Figure)

/N
flx)
Fi(x)

r

0 X

La fonction de densité

2.5. Probabilité d'un intervalle
Graphiquement, elle correspond a la surface comprise entre a et b sur le graphe de la fonction de

densité (Hurlin and Mignon 2022).

f(x)




Probabilité d'un intervalle [a,b]

Analytiquement, il s'agit de :

P(a<X<b)=[f(x)dxba
Donc:
(a<X<b)=(X<b)-P(X<a)=[f(x)dxb—«—[ f(x)dxa—x= F(b) - F(a)

2.6. Loi de Laplace-Gauss ou loi normale

On parle de loi normale ou de loi de LAPLACE — GAUSS, lorsque I’on a affaire a une variable aléatoire
continue dépendant d’un grand nombre de causes indépendantes, dont les effets s’additionnent et dont
aucune n’est prépondérante.

f(x)%

i

m-G m m+o
*Définition :
Une V.A continue X est dite distribuée selon une loi normale si sa densité de probabilité est :

X—IMh2
f(X)=—= e><|O[——( — 7l
o 27z
La loi normale dépend de deux paramétres m et o. On note : X—, N(m; o).

2.6.1.Fonction de répartition
La fonction de répartition d'une variable normale est donnée par I'expression :

_ 1 17 1 X—M,
T1(X)=p(X Sx)—:[o f(x)dx_m_[o exp[—z(%) ]dx

Caractéristiques :
E(X) =
V(X) =
*Propriétés
# Le graphique de la fonction de densité de probabilité de la Loi normale est une courbe en cloche
symétrique par rapport au point d'abscisse x=m.
# La droite verticale x=m divise l'aire comprise entre la courbe et I'axe des abscisses en deux parties
égales P(X<m) = 0,5 et P(X>m) = 0,5
# La grande partie des observations se situe dans l'intervalle [m-3c ; m+3c]



*
*
*

f(x)

m-G m mmrc

m-3G| 95% mt3c

2.6.2.Intervalles remarquables
P[m-2/3 6 <X <m-2/3c]=50% ;
PIm-oc<X<m+oc]z 68%
P[m-2c <X <m+ 2c] =95%;
P[m-3c<X<m+ 3c]x=99,74%
2.6.3. Calcul des probabilités

Pour une VA continue, on s'intéresse surtout a une probabilité d'intervalle. La fonction de densité
étant compliquée, des tables ont été prévues pour faciliter ce calcul.

Toutefois, étant donnée gu'il existe une infinité de lois normales distinctes par leurs parametres, une
seule variable normale est tabulée et sert de référence pour les autres : il s'agit de la loi normale
centrée réduite.

* Le passage de la loi normale a la loi normale centrée réduite s'effectue a l'aide du changement de
variable suivant :

X-m
]=——
O

La loi normale centrée réduite a pour paramétre : m =0 et 6=1
Propriétés :

Le graphique de la fonction de densité de probabilité de la LNCR est une courbe en cloche
symétrique par rapport au point d'abscisse z= 0

La droite verticale z= 0 divise l'aire comprise entre la courbe et I'axe des abscisses en deux parties
égales P(Z<0) = 0,5 et P(Z>0) = 0,5.

La grande partie des observations se situe dans l'intervalle -3 ;3.



*Intervalles remarquables
P[-2/3 <Z< 2/3] = 50% ;
P[-1<Z<+1]= 68%
P[-2<Z<+2] = 95%;
P[-3<Z<+3]z= 99,74%

AN

99.7%

2.6.4.Courbe de densité de la loi N (0; 1) :



La courbe de la densité de la loi normale N (0; 1) porte le nom de « courbe en cloche »,
qui est symétrique par rapport a 1’axe de coordonnées. Elle admet donc un maximum

au 0.

loi normale N(0,1)

~
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Figure 9. Courbe de densité de la loi N(O, 1)
La courbe de densité permet de calculer les probabilités. On peut noter :
*La probabilité (a < X) = / —x(x) c'estl’air allant de I'infinie jusqu’asla valeur de a
o La probabilité (—x < X) = (X > +x) ;
o La probabilité (a >X) =1-(a <X)
2.6.5. Utilisation de la table N(O; 1)

Cette table nous donne les probabilités de trouver une valeur inférieur a z

La Table comprenne deux zones. On retrouve la variable z qui est la donnée d'entrée et
la probabilité. L'unité et le premier chiffre aprés la virgule sont dans la premiére colonne.

Le second chiffre se trouve sur la premiere ligne.

EXEMPLE :

X suit une loi normale N(345; 167)

On souhaite connaitre la probabilité pour que X soit inférieur a 500.
SOLUTION :

On effe(itue le changement de variable:

i X—=x_X-=345
o 167




On cherche p(X < 500)=

p(X < 500)= p(z 350(1’6## p(Z <0.93)=(0.93)=0.8238

L’erreur relative pour la loi normale est donnée par la formule :
tc x Cv
P= ———
VN

tc: est I'inverse de la probabilité de loi normale (ou coefficient de probabilité) ;

ag
Cv : coefficient de variation ; CV =

X

N : nombre d’'individu
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Chapitre 111 : Les méthodes d’interpolation spatiales

I11.1. Introduction

L’interpolation est le procédé qui vise a cartographier une variable Z a des positions dans
I’espace ou aucun échantillon n’est disponible en utilisant un ensemble de donnees

d’échantillons dont la position dans I’espace et la valeur de la variable Z sont connues (Fig. 11).

La plupart des techniques d’interpolation sont locales et déterminatives a 1’exception du
krigeage (qui sera étudier dans la partie géostatistique) qui est de nature stochastique. Ce dernier

est genéralement consideré comme un interpolateur exact (Arnaud and Emery 2000).

\

-
A -

e Valeur attributaire connue

Valeur attributaire inconnue

Figure 11. Principe des méthodes d'interpolation

Les méthodes d'interpolation spatiales peuvent étre classées en deux principales catégories : les
approches déterministes et géostatistiques ou stochastique. Ce sont des techniques utilisées pour
estimer des valeurs inconnues a des endroits non échantillonnés, en se basant sur des points de
données géoréférencées. Elles permettent de créer des surfaces continues ou des cartes de

répartition d’une variable a partir d'un ensemble de points de données dispersés (Bosser 2011).

111.2. Méthodes d'interpolation barycentriques

Les méthodes d'interpolation barycentriques sont une classe de techniques d'interpolation
spatiale qui calculent les valeurs d'un point inconnu comme une moyenne pondérée des valeurs
aux points de données voisins. Elles sont basées sur le principe que la valeur interpolée en un
point doit &tre une combinaison convexe (moyenne pondérée) des valeurs aux points de données

environnants. Les poids sont déterminés en fonction de la géométrie des points de données

autour du point cible (Bosser 2011).



111.3. La méthode du plus proche voisin

La méthode d'interpolation du plus proche voisin (Nearest Neighbor Interpolation) est
une technique d'interpolation spatiale tres simple. Prenant le cas de 2D. Si on divise notre espace
en un grille et on attribue a chaque point de la grille de sortie la valeur du point de donnée le
plus proche. En d'autres termes, pour chaque emplacement ou on veut estimer une valeur, on
cherche le point de donnée le plus proche dans I'espace et on lui assigne directement cette valeur
(Despagne 2006).

Cette méthode est trés rapide a calculer mais produit une surface en "marches d'escalier"
avec des changements brusques entre les cellules voisines, correspondant a un manque de
continuité. Elle convient lorsqu'on veut conserver les valeurs originales sans lissage, mais tend

a créer un résultat decoupé.

Les avantages sont sa simplicité de mise en ceuvre et sa préservation exacte des valeurs
d'entrée. Cependant, le résultat manque de lissage et n'est généralement utilisé que pour des

donnees qualitatives.

Exemple :

Exemple de points de donnees : soit la une grille sur laquelle des données sont déterminées ou
mesurées (indiquées en gras). Les valeurs estimées, qui sont indiquées en rouge, sont estimées

a partir des valeurs mesurées les plus proches :

%5 *s 8 15
'E 1 *o s
e * 1 s o
s 1 ?10 K

Figure 12. La méthode du plus proche voisin : en gras et noir les valeurs mesurées, et en

rouge les valeurs estimées



111.4. Méthode de I'inverse des distances

La méthode d'interpolation par inverse des distances (Inverse Distance Weighting -
IDW) est une technique d'estimation spatiale qui permet de calculer des valeurs inconnues a
partir d'un ensemble de points de données géoréférencées dispersés (Mitas and Mitasova 1999).

Cette technique a pour but I’estimation de la teneur a un point donné (Xo) a partir des
teneurs des autres points environnante, en tenant compte des distances séparant le point a

estimer des autres points (Bosser 2011).

X1

d1 X3

d3
X0

d2
X2

Figure 13. Principe de la méthode des inverses aux distances

La formule d’estimation est :

1
Zid_n
i

Ou ti : sont les valeurs mesurées de la variable étudiée ;

t : la valeur estimé au point X0

Le principe de base est d'attribuer des poids plus importants aux points de données les plus
proches de la position a estimer, et des poids plus faibles aux points plus éloignés. Les poids
sont une fonction inverse de la distance. Les points plus proches ont un poids plus grand dans

le calcul de la moyenne pondérée.



I11.5. La méthode d'interpolation par triangulation

Cette technique est utilisée beaucoup plus pour des données géochimiques de surface. Dans un
plan, on trace entre chacune de 3 échantillons un triangle chaque échantillon représente un
sommet du triangle. La méthode la plus utilisée consiste a tracer des triangles les plus

équilatéraux possibles (triangulation de Delaunay).

L'avantage de cette méthode est qu'elle attribue exactement les valeurs aux points de
données. La surface interpolée est continue, formée de facettes triangulaires planes. Cependant,
elle peut générer des artéfacts en "crétes de toit" la ou les triangles se rejoignent. En plus
I’interpolation est limitée seulement au champ convexe du domaine des données qui est couvert

par les triangles (Despagne 2006).

Z3
Z1

=

2

Figure 14. La méthode d'interpolation par triangulation

Il existe plusieurs méthodes pour I’interpolation de données a partir d’une triangulation.

A. Interpolation linéaire

On considére le triangle (x1, x2, x3) de surface S, contenant le point a estimer X de la variable
régionalisée Z. donc les valeurs Z1, Z2 et Z3 sont attribuées aux point x1, X2, X3,
successivement.

On divisant le triangle en 3 sous-triangles a partir du point X, ce qui définit donc trois surfaces
(triangles) : la surface S1 (X1, X, X3), la surface S2 (X1, X, X2), et la surface S3 (X2, X3, X).

La valeur Z au point X :



Z(x) = (Z1+S3 + 22 +S1+Z3 +52)/S

Ou chaque valeur est multipliée par la surface qui I’oppose.

Z2

Figure 15. La méthode d'interpolation linéaire par triangulation

B. Interpolation par moyenne arithmétique

La teneur estimée pour le triangle est la teneur moyenne des trois sommets.

t1=15%

test =12.66%

t3=11%

t2 =12%

Figure 16. Principe de la méthode d’interpolation de triangulation par moyenne



Chapitre IV : Géostatistique linéaire

IV.1. Les Variables régionalisées

On appelle variable le caractére sur lequel porte une étude d’un ensemble d’individus et qui change de I’'un a
I’autre. Si le changement de ce caractére est imprévisible, la variable est dite variable aléatoire. Si cette
variable aléatoire est répartie dans ’espace, dite variable régionalisée.

L'ensemble des variables aléatoires (teneurs mesurées sur des échantillons géologiques ou dans des
sondages) implantées aux points Xi de coordonnées Xz, X2i, X3 et notées z(x;) forme la fonction aléatoire Z(X).
Mais les teneurs mesurées ne sont pas forcément les teneurs vraies. La teneur z(x;) mesurée en xi est une
réalisation particuliére de la variable aléatoire Z(x) et I'ensemble des teneurs mesurées en différents points
est interprété comme une réalisation particuliere de la fonction aléatoire Z(X).

IV.1.1. DEFINITION DES MOMENTS

En géostatistique appliquée d'estimation, on s’intéresse essentiellement aux deux premiers moments de
la variable régionalisée Z (x) (Journel, 1978).

-moment d'ordre 1 - E[Z(x)]: m(X) qui est I'Espérance mathématique
-momentd'ordre 2 - 2y(x,h) = E{[z(x) —z(x+ h)]z} appelé variogramme
ou

C(x,h) = E{[Z (x+h) —m(x+ h)]*[Z (x)— m(x)]} appelé covariance

A partir de la covariance, on définit le corrélogramme qui exprime les variations de corrélations spatiales
entre les valeurs (teneurs) mesurées au point x et celles observées au point (x+ h). Il est généralement noté
p et est égale aux valeurs de la covariance au point x+h divisées par celle de la covariance au point x (h=0.)

n_ Ch)
)

Les trois moments quantifient chacun 'autocorrélation entre les valeurs Z(x) au point x et Z(x+h) au point
x+h.

X x+h

L 2
L 4

Z(x) Z(x+h)
IV.1. 2. LASTATIONNARITE

La F.A. Z(x) est dite stationnaire d'ordre 2 si ses deux premiers moments sont invariants par translation sur
I'espace de définition et par conséquent :



E[Z(X)]=m

E[Z(x+h)-Z(x)]" =27(h) = 2y(-h)

E[Z(x+h).Z(x)]- m? = C(h) = C(=h)

- Le variogramme est toujours positif mais la covariance peut présenter des valeurs négatives ;

- La relation entre le variogramme et la covariance est donnée par cette formule :

y(h) =C(0)-C(h)

2v( )

C
® palier C pour le variogramme - C{0) pour Clh)

c

a h

portée

Fig. 2 - Schéma représentant la relation entre variogramme et covariance

« L'hypotheése d'existence du variogramme étant moins forte; en géostatistique appliquée au domaine des
sciences de la terre et du génie civil, on préfere I'outil variogramme a la covariance »(Journel, 1978).

IV.1.3. Le variogramme théorique

Considérons deux valeurs numériques, Z(x) et Z(x+h), implantées en deux points distants du vecteur h,

X xth

z'(x} h Z {x+hd

on caractérise la variabilité entre ces deux mesures, par la fonction variogramme :27/(X,h) , définie

comme l'espérance de la variable aléatoire [Z(x)—Z(x+h)]?
2y (x,h) = E{ [Z(X)—Z(X+ h)]Z} ; donc

Le variogramme est une fonction du vecteur h; il indique si les valeurs différent beaucoup au fur et a mesure
que la distance augmente, il montre les particularités directionnelles du phénomeéne (si I'on examine dans
différentes directions).

Le graphe de (X, h) enfonction de h a les caractéristiques suivantes :
1- Il passe par l'origine (pour h=0 ; Z(x +h) = Z(x)) ;
2- C'est en général une fonction croissante de h ;

3- Dans la plupart des cas, il croit jusqu'a une certaine limite appelée palier, puis s'aplatit (fig.3)



a

Fig. 3 - les caractéristiques du graphe 5 (x, h) en fonction de h

IV.3. - Portée et zone d'influence

Lorsque le variogramme a atteint sa limite supérieure c'est a dire son palier, il n'y a plus de corrélation entre
les échantillons séparés par cette distance h : cette distance critique est appelée portée du variogramme (fig.
3), qui fournit une définition plus précise de la notion de zone d'influence.

IV.1.4 - ESTIMATION DU VARIOGRAMME
Afin de pouvoir utiliser le variogramme dans la pratique, il est nécessaire de pouvoir I'estimer.

Considérons un champ S ou la variable régionalisée (ex: teneur en CaO) est stationnaire. On peut alors
considérer que le variogramme y(x,h) ne dépend que du vecteur h (module et direction). Cette hypothése
rejoint en partie I'hypothése de stationnarité et est appelée Hypothése intrinséque.

En pratique, on ne dispose que d'une seule réalisation [Z(x+h)-Z(x)] mais ces hypothéses permettent d'avoir
plusieurs couples et I'on peut calculer le variogramme expérimental.

Un estimateur de 2 y(h) c'est la moyenne arithmétique des différences aux carrées entre 2 mesures
expérimentales implantées en 2 points distants de h.

N (h)

27(h)=%\l(h).Z[Z(x)—Z(xm)}2

N(h) tant le nombre de couples expérimentaux [z(x)-z(x+h)]



h=1 pas (1 rmaille)

|
2% L% spme 4905 1.5m4 2.0% 3.1%
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h=2pa

h=3 pas

Fig. 4 - Schéma de calcul du variogramme expérimental

Les résultats sont aussi représentés sous forme graphique :

y(h)

h

Fig. 5— Représentation graphique d’un variogramme

IV.2. INTERPRETATION DU VARIOGRAMME

Le variogramme caractérise la structure de la variabilité spatiale des variables régionalisées. Il quantifie la
structure d'un phénoméne «géologique — géotechnique ou agronomique» qui peut étre utilisée par la suite
pour |'évaluation des ressources par exemple. Il permet de distinguer entre différents types de parcelle,
champ ou site - Par exemple, la variabilité des teneurs en sels dans différents sites.

Le variogramme, en général, croit avec le module du vecteur h. Le type de croissance du variogramme a
I'origine caractérise la continuité de la variable étudiée. Au dela d'une certaine valeur de h appelée portée,
le variogramme se stabilise c.a.d au dela de cette distance, les valeurs ne sont plus corrélées. Cette portée
représente la zone d'influence d'un échantillon ou d'un sondage.

IV.2.1.REGLE PRATIQUE POUR LE CALCUL DU VARIOGRAMME EXPERIMENTAL

En régle pratique, afin que le variogramme expérimental soit un bon estimateur du variogramme local il faut
que : N >30 couples et h < L/2 - moitié du champ.

IV.2.1.1. Variogramme a 1 Dimension -

Dans la pratique, il arrive souvent que I'on ait a caractériser la variabilité d'une variable dans une seule
direction comme par exemple la variabilité des teneurs en sel, taux d’une fraction granulométrique,...dans



des sondages (puits) - les données sont dites jointives. Il arrive aussi que l'on ait a construire des
variogrammes dans les directions horizontales a partir des données de sondages par exemple, les données
dans ce cas ne sont pas jointives.

IV.2.1.2. Calcul du variogramme moyen a 1 dimension - 1D

Le variogramme a 1D ne peut étre significatif que si le nombre de données est assez grand (25 et plus). Il est
donc nécessaire de regrouper les variogrammes élémentaires a 1D en un seul variogramme moyen
représentant la variabilité dans cette méme direction. Cependant il faudra veiller a ne regrouper que les
données homogenes et ayant méme support.

Le variogramme moyen est estimé a partir de tous les couples de données distants de h. Il faut donc pondérer
chaque variogramme élémentaire par le nombre de couples correspondant :

Soient 2 variogrammes élémentaires expérimentaux calculés pour un méme h dans deux sondages différents
par exemple:

2y,(h) = %\,12[2(@ —Z(x+h)]’et2y,(h) = %\,ZZ[Z(x)-Z(xm)}zet

Le variogramme moyen sera :

N

2 Nivi(h)
_ N1y (h)+ N2y, (h) et.en..général :...y, . (h) ==—

N1+N2 ZNi

i=1

Ymoy (1)

IV.2.2. Variogramme a 2 Dimensions

Quand les données sont réparties suivant deux ou plusieurs directions a 2D, il est souvent nécessaire de
calculer le variogramme moyen dans toutes ces directions. Si la structure de la variabilité est la méme dans
les différentes directions, les variogrammes expérimentaux de ces directions présenteront les mémes allures
(a peut prés méme palier et méme portée). On dira que le phénomene est isotrope, sinon le phénomene est
anisotrope.

IV.2.2.1. Cas isotrope

Dans le cas ou la variabilté est isotrope, le variogramme moyen a 2D est calculé en faisant la somme des
variogrammes élémentaires pondérés par le nombre de couples correspondants (comme pour le
variogramme moyen a 1D).

IV.2.2.2. Cas d'anisotropes
On distingue 2 types d'anisotropies : anisotropie géométrique et anisotropie zonale.
A.Anisotropie géométrique

Il y a anisotropie géométrique quand les variogrammes présentent la méme variabilité globale et en
particulier le palier mais ont des portées différentes.



vy

a1 a2 a3 h
Fig. 10 - Schéma d'une anisotropie géométrique

L'étude de l'anisotropie est facilitée par I'établissement de roses de portées ou des inverses des
pentes a l'origine.

a3

% “
a

Fig. 11 - Rose des portées d'une anisotropie géométrique

Dans la rose des portée, la direction 3 (a3) - direction d'aplatissement de I'ellipse - est la direction de
rapide variabilité du phénomene étudié. Dans ce cas la maille de reconnaissace la mieux adaptée est une
maille rectangulaire dont les directions (profils) sont les directions principales de I'ellipse.

B.Anisotropie zonale

L'anisotropie zonale, cas le plus fréquent en pratique, affecte I'ensemble du variogramme - les
portées et les paliers sont différents.

03

Fig. 12 - Schéma de variogrammes représentants une anisotropie zonale



IV.2.3. Variogramme de surface (multi et bivarié)
Le variogramme de surface permet l'identification d’un comportement anisotropique de la variable

étudiée.
Les valeurs des variogrammes sont représentées dans les directions hy et hy.

La représentation de surface nécessite la segmentation de I'espace dans chacune des composantes hy et
hy. en un nombre d’intervalles donnés. Ce ci abouti a une discrétisation de la surface en un ensemble de
« maille » ou « panneau » de couleurs différentes et qui est fonction de la valeur du variogramme
expérimental obtenu dans la direction Centre de la surface (de coordonnée relative 0.0) ->vers le centre
du dit panneau. Le nombre de couple est inscrit a I'intérieur du panneau (fig. ). On en déduit que la
surface  résultante  est symétrique.

4:’-{1'%!7?5:'(

ny

Bee b

Fig. 13 — Graphe d’un variogramme de surface
IV.2.4.Effet de pépite pur

On dit qu'il y a effet de pépite pur lorsque le variogramme observé ne traduit que la seule constante de
pépite (variogramme plat). y(h)=CO des que h >0. Il y a alors indépendance spatiale et la géostatistique
retrouve tous les résultats de la statistique des variables indépendantes.

c 1l N o A\
S S —— N~

Fig. 15 - Schéma d'un variogramme représentant un effet de pépite pur
IV.4. SCHEMAS THEORIQUES ET AJUSTEMENT DES VARIOGRAMMES

Les variogrammes expérimentaux sont synthétisés dans un modele théorique qui doit rendre compte
des principales caractéristiques structurales de la régionalisation étudiée. Il doit étre opérationnel et simple
a l'emploi.

Les deux principales caracteristiques d'un variogramme stationnaire sont I'existence ou non d'un

palier et le comportement a I'origine. L'élaboration d'un modele synthétique se fait a I'aide de schémas
théoriques de régionalisation. «Les modeles théoriques sont des expressions analytiques ».



Les schémas théoriques d'usage courant sont classés en Schémas a palier; schémas sans palier et
Schémas a effet de trou.

IV.4.1. SCHEMAS A PALIER

Ce sont des variogrammes présentant un palier C. Le comportement des variogrammes a l'origine est soit
lingaire soit paraboligue.

IV.4.1.1. Comportement linéaire a l'origine

On distingue principalement les schémas sphériques et les schémas exponentiels (Figs. 16 et 17).
- Schéma sphérique
Son expression mathématique est :

h3

3

y(h)=
a
y(h) =1, pour,,h>a

vh €| 0;a]

N | w
| =
N |-

nh)




v(n) /
—_\ =\

a3 a b)

Fig. 16 - a) graphe d’un schéma théorique sphérique
b)graphe d’un variogramme expérimentale ajustable a I'aide d’'un d'un schéma sphérique

B- Schéma exponentiel

-h

y(hy=1—e? ,vh>0

nh)
2

o 5%1

%a a h

y(n)

Fig. 17 - a) graphe d’un schéma théorique exponentiel

b) graphe d’un variogramme expérimentale ajustable a l'aide d'un schéma
exponentiel



La différence entre schéma sphérique et schéma exponentiel réside dans les abscisses des intersections de
leures tangentes a I'origine avec le palier :

- au deux tiers de la portée a pour le sphérique
- au un tiers de la portée pratique a' pour I'exponentiel.

IV.4.1 .2. Comportement parabolique a I'origine

En pratique le plus utilisé c'est le schéma gaussien :

_h?

»(h)=1-e? vh>0

nh)

2 590+

14a 82 a h

a)

()

Fig. 18 - a) graphe d’un schéma théorique gaussien

b) graphe d’un variogramme expérimentale ajustable a I'aide d'un schéma gaussien



IV.4. 2. - SCHEMAS SANS PALIER

Ce sont des variogrammes théoriques qui correspondent a des variogrammes expérimentaux dont la
croissance ne présente pas de palier dans les limites h < b ol b est la limite de I'observation

v(h) tend vers + oc quand h tend vers + oc

Deux types de schémas sont assez souvent utilisés.
- les schémas en h7L avec O<A<2

. A
IV.4.2.1. Schémas en h

y(h)=h7\ Vh>0avec0< A< 2

¥ b
1<h<2

A<l

Fig. 19 - Graphe des schémas en hx
.1V.4.2.2. SCHEMA A EFFET DE TROU

On dit qu'un variogramme y(h) présente un effet de trou si sa croissance n'est pas monotone. Les schémas a
effet de trou présentent une allure sinusoidale au niveau du palier.

sin (h)

y(h)=1- vh>0

v(n)
. /\\J/_\\/

Fig. 20 - Graphe d'un schéma a effet de trou



Le schéma a effet de trou présente un comportement parabolique a I'origine :

h2
y(h) = o quand h tend vers 0.

L'effet de trou refléte une pseudo-periodicité de la variable regionalisée. Ainsi la succession stationnaire dans
un gisement de 2 types de sols bien differenciés provoque un effet de trou sur le variogramme experimental.
Il peut étre provoqué par I'hétérogeneité de l'information (2 campagnes d’échantillonnages par exemple).

IV.4.3. AJUSTEMENT D'UN VARIOGRAMME EXPERIMENTAL

Le variogramme représentant une structure gigogne est ajusté a l'aide d'une somme de deux ou plusieurs
schémas théorique.

Dans la pratique, il existe plusieurs Methodes d'ajustement, cependant I'justement « a la main » est la
méthode la plus simple et la plus juste.

Il faudra tenir compte de :

- L’existance ou non du palier ;

- De l'effet de pépite et du palier expérimental ;

- Ducomportment a l'origine et de la tangente a I'origine dans le cas de comportement linéaire pour
la proposition du schéma théorique.

Exemple : Si on veut ajuster un variogramme expérimental par un schéma sphérique, il faudra, a I’aide du
graphe du variogramme expérimental tracé sur I'écran de I'ordinateur, choisir :

- un palier C

- un effet de pépite Co

- une portée a

- le choix d’'un modele en fonction du comportement a I'origine et de la tangente a I’origine

et le variogramme d'ajustement sera :

v(h) = Co + C.ysphérique (pour le modéle choisi)



CHAPITRE V — VARIANCE D'ESTIMATION

V. 1.Définition d’estimation

Cela consiste a se servir des données d'un échantillon statistique pour attribuer certaines valeurs aux
parametres inconnus de la population. Cependant on peut se proposer dattribuer une valeur unique aux
parametres inconnus et 1'on aura alors une estimation dite ponctuelle comme on peut se proposer de d,terminer
un intervalle de confiance dans lequel les parametres se situeront et I'on aura alors l'estimation dite par
intervalle. Dans ce dernier cas il sera encore opportun d'exprimer ou de chiffrer la crédibilité attachée a cet
intervalle. Cette crédibilité est appelé niveau de confiance. Ces parametres peuvent étre estimes a l'aide de
plusieurs méthodes qui ne donnent pas forcement le méme résultat. 1l est alors nécessaire de choisir une
méthode d'estimation en fonction des qualités des estimations.

a. - QUALITE DES ESTIMATIONS
La teneur moyenne d'un bloc minier, par exemple, peut étre estimée de plusieurs facons (moyenne
arithmétique, krigeage ...). On peut donc obtenir plusieurs estimateurs de cette teneur moyenne. 1l reste a savoir

quelle est la meilleure estimation ou le meilleur estimateur.

Estimateur sans biais :

L'estimateur est dit sans biais si son espérance mathématique est égale au paramétre de la population.
E(x) =X

X étant le paramétre de la population et x I'estimateur de ce parametre. Si on pose le biais égale a b alors :
EX)-X=b=0
Si b = 0 alors on dit que l'estimation est biaisé

Estimateur convergent :

Un estimateur est dit convergent si, étant sans biais, sa variance tend vers zéro, lorsque la taille de
I'échantillon statistique n augmente indéfiniment.

Exemple : La moyenne arithmétique est un estimateur sans biais et convergent puisque E(m)- m =0 et s (m)
=S /n - donc quand n tend vers l'infinie s (m) tend vers 0

Estimateur efficace :




On dit qu'un estimateur est d'autant plus efficace que sa variance est plus petite.
Un estimateur sera donc d'autant meilleur qu'il sera sans biais, convergent et de variance aussi
faible que possible.

V.1. ESTIMATION PONCTUELLE

Rappelons certaines estimations ponctuelles pour une loi de distribution normale :

V.1.1. Estimation d'une moyenne m : m=

m étant la moyenne expéerimentale, si u est la variable aléatoire correspondante nous avons :
2

2 _ Fpop

" n

V.1.2. Estimation d'une variance o?

E(m=xu et o ; m est I'estimateur de p

2
» NS

O =
(n-1)
V.1.3. ESTIMATION PAR INTERVALLE

L'estimation par intervalle donne un ensemble de valeurs susceptibles d'étre prises par ce parametre,
avec une borne inférieure et une borne supérieure qui sont les limites de I'intervalle. Cet intervalle est appelé
intervalle de confiance et on lui affecte un coefficient de crédibilité, appelé niveau de confiance. Exemple : La
teneur moyenne tm d'un élément chimique dans un gisement est comprise entre 0.40 % et 0.50 % avec un

niveau de confiance de 95 %.
0.40 % <tm < 0.50 %

avec un niveau de confiance (1-a.) =95% ; a est appelé Risque d'erreur.

Ce coefficient de confiance "veut dire™ que, par exemple, si I'on prélevait d'un méme ouvrage minier et de la
méme facon un grand nombre d'échantillons (statistique) on trouverait pour chacun d'eux des teneurs

moyennes différentes mais que 95% de ces valeurs moyennes seraient situées dans cet intervalle.
Pl@<Z(x)<bh)=1-a
En répartissant a/2 aux deux extrémités de la distribution, on calcule une valeur tm telle que :
P(tml < tm) = a/2
et une autre valeur tm2 telle que :

P(tm2 > tm) = o/2

Connaissant la loi de probabilité, on détermine tml et tm2 les limites de l'intervalle et I'on a l'intervalle de

confiance pour tm.

tml< tm < tm2



V.1.4. Estimation par intervalle d'une moyenne m :

Iy deux cas a étudier separement : le cas ou I'effectif n de I'échantillon est inférieur a 30 et le 2éme
cas ou n est supérieur a 30.

-n<30

Soit un échantillon statistique qui suit une loi normale N(m, s) ou m est une variable aléatoire suivant
aussi une loi normale N(m, s/vn).

Posons T = (u-M)/ Smoy

SJn
rappelons que omey = o\N et que o= -
n —
Alors on peut écrire :
To_(u-M)

S n-1

T est, par définition, une variable de Student a n-1 d.l. que l'on note Tn-1.
L'on peut écrire :

P(-t, <M<+tc):1—a

-1

S
n-1

d'ou on peut tirer:  |u=M =*t_.

ou tc est pris de la table de Student pour n-1 d.l.
-n>30

Dans le cas ou n est supérieur a 30, en suivant le méme raisonnement que pour n < 30, I'on abouti au
résultat suivant :

P(—tc<(’u_—2M)<+tc):1—a et u=M =+t
S
7

ou tc est pris de la table de la loi normale.

S
“In

Exemple : Dans une galerie, on a prélevé 100 échantillons géologiques qui ont accusé une teneur moyenne tm
en or de 50 g/t et une variance S de 400(g/t). La distribution des teneurs en or suit approximativement une loi
Normale. On se pose alors les questions :

- avec un risque d'erreur de 5 %, quelle serait la teneur moyenne de tout le bloc géologique aprés exploitation
7

Solution :



1 - Estimation par intervalle de la moyenne

On pose
P(-t, <—(’u_2M) <+t)=1l-a
S
"
S
et =M +tt,.—=
g Jn

o = 0.05 alors o/2 = 0.025
On obtient :
1-(a/2) = 0.975 alors on lie sur la table normale tc = 1.96.
En remplagant tc, S et m par leurs valeurs respectives, on obtient :
tm =50 g/t + 3.92 g/t

46.08 g/t <tm < 53.92 g/t avec un risque d'erreur de 5 %.

Si Z(x) est la valeur inconnu que I'on cherche a estimer par la valeur mesurée ou calculée Z*(x), I'erreur
commise est [ Z-Z*]. Comme Z est une V.A. alors Z* et [Z -Z* ] sont aussi des

réalisations particulieres de V.A. L'erreur aléatoire [Z-Z*] est caractérisée par ses 2 moments :

- Moyenne, b = E{[ Z - Z* ]},quand cette moyenne est nulle (b =0), on dit que I'estimation est sans biais sinon
I'estimation est biaisée.

- La variance de | ‘erreur est appelée variance d'estimation et est égale a :

pr {[z Z ]2} 0% §ib=0alors ot = {[Z z ]2}

V.1.5. ELABORATION D'UN ESTIMATEUR

L'estimateur Z* ne peut qu'étre dépendant de I'information disponible. Si, par exemple,

L'information | est un ensemble discret de N teneurs :

={Z(x;),i =1aN}




° ° o Z(xi)
V (Z*v)
° ® sondage

Fig. 21 - Schéma de répartition de l'information (sondages) par rapport a V -V n’a pas de dimension
particuliere — il peut étre méme assimilé en un point X : exemple :

L'estimateur Z* est fonction de ces données de sondages
Z" = f[Z(x),Z(X,),,,Z(x)] Z" = F] Z(%),Z(%,),,, Z(X,)]

Cette fonction de n variables ne peut pas étre quelconque :

- Elle doit vérifier le non-biais,

- Elle doit étre telle que I'on puisse calculer la variance d'estimation, c'est a dire les termes du
developpement suivant :

E|(z-2")|=E/(2)’|+E|Z")’|-2E[(2.2")]
ce ci nous conduit a retenir, généralement, des estimateurs lineaires du type :

Z*:Zn:ﬂi.Z(xi)

Rappelons qu'un estimateur est dit optimal s'il minimise la variance d'estimation et s'il est sans biais.
V.2. ESTIMATION D'UNE MOYENNE PAR UNE AUTRE

Soit a estimer la moyenne Zy sur un domaine V par la moyenne Zy' sur un domaine V'.

Rappelons que :

Z,

:\%_V[Z(x)dx

Z.
v

v

1

'jz(x)dx

et




Z(x) désigne la VR ponctuelle, et Z(X) la FA correspondante, stationnaire d'ordre 2
et de variogramme .

Dans les limites de cette hypothése stationnaire, le biais est nul puisque

EZJ-E 2]

Pour calculer la variance d'estimation, il suffit de calculer chacun des termes de I'égalité suivante

en remplagant Zy et Zy' par leurs valeurs respectives.:

E{[Zv - Zv]*} = E{[ Zv]*} + E{ [Zv'])*} - 2E{ Zv.Zv'}

B[ Zy 3= \% [ax [ EZ(0).2(c)ax

- Calculons E{[ Zv]?}: vV oV

E{Z(X).Z(x")}=C[Z(X) eV.Z(X") eV]+m?

or

E(25)=C(V,V)+m?

ceci permet d'écrire :

Le symbole C (v,V)|désignant la valeur moyenne de |C(V,V )lorsque les deux points d'appui x

et x' décrivent indépendamment I'un le domaine V, 'autre le méme domaine V.

- Calculons E(Zv?):

E(Z2) =Vi,2 j dx j E{Z(x).Z(x')};;('

E{Z(x).Z(x')}=C[Z(x) eV'Z(X) eV ']+ m?




E(zZ)=C(V'V)+m’

ceci permet d'écrire:

Le symbole désignant la valeur moyenne d(EE(V‘,V')' lorsque les deux points d'appui x et x' décrivent
indépendamment I'un le domaine V', I'autre le méme domaine V'

- Calculons 2E(Zv.Zv):

E@ZV.2v) :\ﬁ [dx [ E{Z(x).Z(x)}dx

E{Z(x).Z(x')}=C[Z(x) eV.Z(X') eV']+m?

Or: 2E(Z,.Z,")=2C(V,V')+2m?

ceci permet d'écrire:

Le symbole désignant la valeur moyenne d€(V,V") lorsque les deux points d'appui x et x' décrivent
indépendamment I'un le domaine V, I'autre le domaine V'.

En remplagant les différents termes par leur valeur alors on aura :

ot =Elz, -2,/ F|=CV V) +m? 4TV V) +m2 - 2T (v ,V') - 2m?

ot =C(V,V)+C(V'V')-2C(V V")

SiI'on préfére I'outilvariogramme a la covariance C(h), I'expression a I'aide du variogramme sera :

Cte =2V V) =y (V. V) —y(V' V')

Cette notation symbolique s'étend a des domaines V et V' non forcément compacts ou continus



par exemple le domaine V a estimer peut étre constitué de deux panneaux distincts, V=V1+V2;

I'ensemble V' peut étre constitue de plusieurs sondages,

L'écriture symbolique précédente est générale quelles que soient les géométries des domaines
Vet V'. La simple écriture de cette formule rend compte des quatre faits essentiels et intuitifs

gue conditionnent toute estimation. La qualité d'une estimation de V par V' dépend:

y(V.V)

1-de la géométrie du domaine a estimer : terme

V.V

2 - des distances entre l'estimé et I'estimant : terme

y(V'V)

3 - de la géométrie interne de 'estimant : terme

4 - du degreé de régularité du phénomene étudié : utilisation de la caractéristique structurale . 7/ (h)
V.3. ESTIMATION D'UNE MOYENNE PAR UNE MOYENNE PONDEREE

La formule générale précédente s'étend a la variance d'estimation de la teneur moyenne Zs d'un
panneau S par une combinaison linéaire Zs des informations disponibles.

Par exemple si I'on dispose de N informations Si de teneurs moyennes z(xi), Ai étant le pondérateur
associé a l'information Si. L'estimateur Z* est égale a :

Z*=Zn:ﬂi.Z(xi)

)
° ° ® Z(xi)
V (Z*v)
. ® sondage

Fig. 24 - Schéma de configuration de reconnaissance d'un volume V par un certain nombre N
informations de volume vi ou Si



La variance d'estimation s'écrit alors, en notation symbolique :

R WRENEIVADED 3 WIIPICICINTY

i=1 j=1

Cette formule (A) est générale quelles que soient les géomeétries du panneau v et des informations Si,
et quels que soient les pondérateurs 4, . Le non-biais doit cependant étre assuré:

E(Zv-Z* )=0. Pour cela il suffit d'imposer la condition suivante:

- Cette formule (A) peut donc servir a calculer la variance d'estimation d'estimateurs lineaires |7* = Zgi Z(x,)
i=1

du type pondérateur par moyenne arithmétique, par l'inverse de la distance, ou par le polygone d'influence
et autres. Il y a donc une infinité de solutions possibles.

- Cependant en Géostatistique il exise une procedure de construction d’estimateur dite procédure de
krigeage et qui consiste donc a déterminer les pondérateurs Ai tels que I'on ait :

- non-biais E(Zv-Z*)=0
- Variance d'estimation minimale

V.4.CALCUL DES VALEURS MOYENNES DE y(V,V') ou ¥(S,S')

En géostatistique, il est souvent fait appel a des valeurs moyennes y(v,Vv') (calcul des différentes variances,

régularisations, krigeage ...) du variogramme ponctuel ;/(h) quand les deux points d'appuis M et M' du
vecteur h=MM' décrivent indépendamment les volumes v et v' (S,5) ou :

ADE %.V..!dx.Jy(x —x").dx'

dx désignant en réalité une intégrale triple :

” dX..dX..dX.



si v est a trois dimensions X = {x1.x2.x3}; #(V,V') désigne une intégrale sextuple. Dans la pratique, deux

solutions se présentent :
- soit calculer numériquement a l'aide de calculatrice programmable la valeur moyenne y(v,V')
recherchée,

- soit décomposer la résolution analytique des intégrales sextuples en étapes successives dont
certaines auront été résolues a l'avance et une fois pour toutes. Ces étapes intermédiaires sont définies
comme fonctions auxiliaires.

- CALCUL NUMERIQUE
C'est souvent la solution la plus rapide si I'on dispose de calculatrice programmable.

On implante une maille réguliere (x;, i=1 a N) dans le volume v, une autre (xJ-,j=1 ... N') dans le volume

v' et I'on assimile l'intégrale sextuple a une somme discrete :

o o o o e _eox. ¢ o o o o o
— |
X | —
o o o o ® o o o o o o o
e o o o e o o o o o o o
o o o o ® o o o o o o o

Fig. - Schéma de discrétisation de deux "volumes" V et V'

Cependant il faut noter que l'erreur est liée a la densité de discrétisation a l'interieur des volumes v
et v'; elle décroit quand N et N' augmentent. Il est donc nécessaire de choisir N et N' telle que I'erreur soit
pratiquement nulle et ne masque pas la variabilité étudiée.

En pratique, il y a 2 principales régles a suivre :
- La discrétisation doit rester la méme pour toutes les estimations numériques y* des valeurs y(h)
d'une méme formule (variance d'estimation, variance de dispersion, ..).

- La densité de discrétisation peut étre choisie par itération, en s'arrétant des que le supplément de
discrétisation n'apporte pas d'amélioration notable a la réalisation de I'objectif visé.

En pratique pour un domaine a 1D, on prend 10 points, pour 2D, 6x6 et pour 3D, N=4x4x4.

Dans de nombreux cas, le choix d'une approximation indique la discrétisation nécessaire. Par

exemple, pour le calcul de y(v,Vv'),

- avec v et V' distants de plus de la portée : ¥(v,V') = palier



- avec v et V' distants de h et petits vis-a-vis de la portée : ;_/(v,v') = ;_/(h)

- avec V' petit vis-a-vis de la portée; v' peut étre assimilé a son centre de gravité (ponctuel) et on
adoptera une maille N =4 x 4 x 4 points pour discréditer v.

- FONCTIONS AUXILIAIRES

Une fonction auxiliaire est une valeur moyenne y(v,v') correspondante a des géométries relativement

simples et souvent rencontrées de v et v'. 4 fonctions auxiliaires essentielles sont utilisées: a, 7, F et H. Elles
sont définies dans I'espace a 1, 2 ou 3 dimensions.

Ces fonctions auxiliaires sont présentées sous forme d’abaques.



CHAPITRE VI Estimation par krigeage

C’est une méthode d’interpolation spatiale. Elle porte le nom de son précurseur, I’ingénieur
minier sud-africain, D.G. Krige ; c’est le Professeur George Matheron qui a baptisé la méthode
« krigeage » (Gratton 2002).

La procédure de krigeage consiste a trouver la meilleure estimation linaire possible d’une
caractéristique inconnue a partir de I’information disponible (expérimentale) et 1’information
structurale (variogramme, covariance ou corrélogramme) de F.A. représentative de la

régionalisation des variables étudiées.
Il existe au moins trois types de krigeage (Baillargeon 2005): simple, ordinaire et universel,

La différence entre ces types d’estimation réside dans la connaissance de la statistique de la

variable a interpoler (Bostan 2017):

1- Krigeage simple : Variable stationnaire de moyenne connue ;



2- Krigeage ordinaire : variable stationnaire de moyenne inconnue :
1 - Krigeage universel : variable non stationnaire.

V.1.Systéme du krigeage ordinaire

Elle consiste a trouver le meilleur estimateur linaire possible d'une variable régionalisee
d'un volume V implantée a l'intérieur ou a lI'extérieur de V°. Pour cela on utilise le formalisme

mathématique de Lagrange qui a permet d’aboutir un systéme de N+1 équations a N+1

inconnus.

Le systéme de krigeage ordinaire est donné par le systeme d’équation suivant :

(@ Ny, )=y (v, vy

| Z

J \Vi=1.0.N...et.j=1..4.N
|

La variance d’estimation de krigeage est donnée par la formule suivante :

G2 :Zkiﬂf (v,V)+u—¥(V,V)
k i

=1

Propriétés et remarques a propos du krigeage ordinaire :

- Le systeme de krigeage ordinaire est un systeme a N+1 équations a N+1
inconnues qui sont les N pondérateur A; et u qui est le paramétre de Lagrange.

- Le krigeage est un estimateur linéaire sans biais. C'est un interpolateur exact.

Pour I’écriture matricielle du systeme de krigeage ordinaire :

Yii Yiz Yin 1] |l Vio

Yz1 ¥Yzz  Yan 1| |hz| _ |Yz0

Yn1i ¥nz Ypn 1 |An Yno
1 1 1 ol lu 1



V.5.1. Systéme de Krigeage simple

Le krigeage le moins complexe est celui dans lequel la stationnarité postulée est de
deuxieme ordre et l'espérance de la fonction aléatoire étudiée est supposée connue et
constante sur tout le champ. Il s'agit du krigeage simple. Donc, quand on connait la
moyenne "m" d’un champ a estimer, on utilise le Krigeage simple comme un estimateur

sans biais minimisant la variance d’estimation (Matheron 1978).

Le systéme de krigeage simple est :

Zo = ZliEE +(1 —Z:u)m

Et son écriture matricielle est :

Vi1 Yiz  Yin| M Yio
V21 Y2z  Yzn| |Az] = |Yzo
¥Yni Ynz Ynn An Yno

V.5.2.Systéme de Krigeage universel

C’est une méthode de krigeage souvent utilisée sur les données présentant une tendance spatiale
significative, comme une surface en pente. L’hypothése de stationnarité sur laquelle repose les
deux types de krigeage présentés precédemment peut souvent étre mise en doute. En krigeage
universel, les valeurs attendues des points échantillonnés sont modélisées en tant que tendance

polynomiale (Bostan 2017).
Le modeéle supposé pour la variable régionalisée est :

Z(x)=Y(x)+m(x)

Comportant une dérive m(x) déterministe et un résidu Y (x) stationnaire d'espérance nulle.

On modélise alors la tendance déterministe sous forme d’une somme de fonctions de base :

i

miz) = Z ap fr{x)

=1



ou les ap sont des coefficients réels et ou chaque fonction de base f* ne dépend que d’une seule
coordonnée. En régle générale, on prend des fonctions classiques comme des exponentielles ou

des mondmes X, x2, X3,... et on fixe par convention la premiére fonction de base f1(x) = 1.

Le krigeage universel consiste alors a estimer simultanément la tendance m et la fluctuation
aléatoire

Y en x0. Pour la résolution du probléeme on obtient un systeme de n + | inconnues :

() C'(ry —aa) ... Oz —xy) fl{.rj} fé (z1)] [un] [7(xy — zq)]
({xa —axy) () o Ofza —xn) fYza) ... fMzz)| |we Fra — 1)
Clzn .— 1) {"l:_r'".— Ta) C(xn -— Ty fj[:.J""]I f’{:r“]l .u:“ = 1F(zn .— Tg)

1) fxz) o ) o .. 0 A1 fH(=o)

fay)  fa) e P 0 w0 ] a | e

qui se géneralise sans probleme au cas intrinseque en remplacant comme a 1’accoutumée C par
-y.

La variance de krigeage s’ écrit :

n I

"'v'ur[? — Z]=C(0) - Z wilz; — ) — Z Ap f¥{xn)

i=1 p=1
V.5.3.Le cokrigeage
En géostatistique, le cokrigeage est une extension du krigeage au cas multivarié. qui prend en

compte plusieurs variables (Rivoirard 2003).

VI.5.3.1. Définition

Le cokrigeage, une extension du krigeage, est applicable lorsque deux variables spatiales ou
plus sont en jeu. Initialement développé dans le but d'améliorer la prédiction d'une variable pour
laquelle seuls quelques échantillons sont disponibles, il exploite la corrélation spatiale avec
d'autres variables plus facilement mesurables. Une distinction essentielle entre le cokrigeage et
le krigeage avec dérive externe réside dans le fait que les variables explicatives ne servent pas
a identifier une tendance dans la variable principale, mais sont en elles-mémes des éléments de

prédiction. Cela nécessite de définir covariogramme croisé.


https://fr.wikipedia.org/wiki/G%C3%A9ostatistique
https://fr.wikipedia.org/wiki/Krigeage

VI.6.Covariogramme croisé

pih)
Yey(h) = ﬁ r_E] (z(si) — z{si + h)) (v(s:) — ¥(si + )
avec plh) = Card {{s,-..s'.fjl |s¢ --.f.f| = h}

Comme pour le krigeage, il y aura plusieurs versions pour le cokrigeage. On ne présentera que

le cokrigeage ordinaire. On se limitera au cas ou I’on n’introduit qu’une variable auxiliaire, que

I’on notera Y. L’estimateur que 1’on calcule est de la forme :

ny ny

z'.r-fl:]] = Z'ljz'.ri"r]' | Z EE',Y[.T,]
=1 i=1

avec les contraintes d’absence de biais :

Les équations de cokrigeage s’écrivent :

nz my
ZIJ.;Fm:rz,,z,;+Z!a1(?m~rz,.f_, J+u.=CowZ,y.Z,) Yi=1.nz
f= f=

2A;Cov(Y,, 2, )+3 0 ,Con(Y, Y, J+u, =Cov(Z,,Y;) Vi=l.ny

=1 =1

Et sa variance est

- n= R my
G;J'. = ."rﬂ.i'rZu )= E.ii'.r(._‘ﬂ\'lfrZ“.ZJ = za!Cﬂ'ifz”,}i J _I.l:

i=l 1=l



Toutes les propriétés du krigeage sont valides pour le cokrigeage. En plus, Si l'on estime
directement par cokrigeage une combinaison linéaire des variables, la valeur cokrigée sera égale
a la méme combinaison linéaire appliquée aux valeurs cokrigées de chaque variable. (Ce ne

serait pas le cas pour le krigeage).
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