University of Oum El Bouaghi Introduction to topology Academic year: 2025/2026 License 2 - Mathematics

Sheet of exercises $N^{\circ}2$

Exercise 1 We equip $X = \{a, b, c, d\}$ with the topology $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}\}.$

- 1. What are the closed sets of the topological space (X, τ) ?
- 2. Give the set of neighborhoods of each of the points a, b and c.
- 3. Determine the closure, the interior and the boundary of the subset $A = \{a, b, c\}$.
- 4. Specify the accumulation points and the isolated points of A.
- 5. Determine the topology τ_A induced on A.

Exercise 2 On the interval X = [0,1[, we introduce the family τ of sets of the form [0,a[with $0 \le a \le 1$.

$$\tau = \{ [0, a[; 0 \le a \le 1 \}.$$

- 1. Show that τ is a topology on X.
- 2. What are the closed sets of (X, τ) ?
- 3. Determine the closure and the interior of the interval $I = \begin{bmatrix} \frac{1}{4}, \frac{3}{4} \end{bmatrix}$ in (X, τ) .
- 4. Verify that (X, τ) is not separated.
- 5. Let $(x_n)_n$ be a sequence of numbers in X that converges in the usual sense to $\frac{1}{2}$, i.e.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N : \quad \left| x_n - \frac{1}{2} \right| < \varepsilon.$$

Show that in (X,τ) , $(x_n)_n$ converges to any number $\ell \in \left[\frac{1}{2},1\right[$.

6. Show that $\mathbb{Q} \cap X$ is dense in (X, τ) . Deduce that (X, τ) is separable.

Exercise 3 (Cofinite topology)

- 1. Let X be a nonempty set.
 - a) Show that the family $\tau = \{\emptyset\} \cup \{\mathcal{O} \in \mathcal{P}(X) ; \mathcal{O}^{\complement} \text{ is finite}\}$ is a topology on X (called Cofinite topology on X).
 - b) Show that if X is an infinite set, then the topological space (X, τ) is not separated.
 - c) Show that if X is an infinite set, then any infinite subset of X is everywhere dense. Deduce that (X, τ) is separable.

- 2. We equip \mathbb{R} with the cofinite topology τ .
 - a) Determine the interior, the closure and the boundary of each of the following parts:

$$\mathbb{N}$$
, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

- b) Show that \mathbb{N} does not admit any isolated point. Deduce the set of accumulation points of \mathbb{N} .
- c) Compare the topology τ with the usual topology τ_u of \mathbb{R} .
- 3. Let f be the map of (\mathbb{R}, τ) in (\mathbb{R}, τ_u) defined by

$$f(x) = \begin{cases} 0, & x \le 0, \\ x^2, & x > 0. \end{cases}$$

- a) Draw the representative curve of f.
- b) Show that f is not continuous at any point of \mathbb{R} .

Exercise 4 For every real number a, we set $J_a =]-\infty, a]$, and denote by τ the collection consisting of the empty set \varnothing and all unions of intervals J_a .

1. Show that:

$$igcup_{a\in\mathbb{R}} J_a = \mathbb{R}$$
 and $igcup_{a\in\mathbb{R}^*} J_a =]-\infty, 0[$.

- 2. Prove that the family τ is a topology on \mathbb{R} .
- 3. Describe the forms of open sets in the space (\mathbb{R}, τ) , then deduce the forms of closed sets in the space (\mathbb{R}, τ) .
- 4. Compare the topology τ and the cofinite topology σ on \mathbb{R} .
- 5. Is (\mathbb{R},τ) a separated (Hausdorff) space? Justify your answer.
- 6. Determine the collection of neighborhoods of an arbitrary point a in (\mathbb{R}, τ) , then find a basis $\mathcal{B}(a)$ for the neighborhoods of a.
- 7. Determine the interior, closure, and derived set of each of the following subsets:

$$A = \{-5, 1\}, \quad B = [-5, 1], \quad C = \mathbb{N}.$$

- 8. Determine the closure of the set \mathbb{Z} . Is (\mathbb{R}, τ) a separable space? Justify your answer.
- 9. Prove that 1/2 is the limit in (\mathbb{R}, τ) for the sequence with general term $x_n = 1/n$ as n tends to $+\infty$.

Exercise 5 Show that in a separated space X, a point $x \in X$ is an accumulation point of a part A if and only if every neighborhood of x intersects A in an infinite number of points.

Exercise 6 We propose to show that a subspace of a separable topological space is not necessarily separable.

Let X be an uncountable infinite set and a be a fixed point of X.

- 1. Consider the family $\tau = \{\emptyset\} \cup \{B \in \mathcal{P}(X) ; a \in B\}$.
 - a) Show that τ is a topology on X (called Particular point topology).
 - b) Describe the closed sets of the space (X, τ) .
 - c) Deduce that the space (X, τ) is separable.
- 2. Let the subset $A = X \setminus \{a\}$. Show that the topology τ_A induced on A by τ is the discrete topology on A and explain why (A, τ_A) is not separable.

Exercise 7 Let (X, τ) be a topological space, A a topological subspace of X and B a subset of A.

- i) Show that the closure of B in A is equal to $A \cap \overline{B}$.
- ii) Show that the set of accumulation points of B in A is equal to $A \cap B'$.
- iii) Show that the interior of B in A contains the interior of B in X (no equality in general).
- iv) Show that if A is open in X, then the interior of B in A coincides with the interior of B in X.

Exercise 8 Let X be a topological space. Show that an application f from X to \mathbb{R} (equipped with the usual topology) is continuous if and only if $f^{-1}(]a, +\infty[)$ and $f^{-1}(]-\infty, a[)$ are open whatever $a \in \mathbb{R}$.

Exercise 9 Let f, g be two continuous applications from X to Y, topological spaces, Y being separated.

- 1. Show that the set $\{x \in X ; f(x) = g(x)\}$ is closed in X.
- 2. Deduce that if f and g coincide on an everywhere dense subset of X, then f=g.

Exercise 10 (Pasting Lemma) Let X, Y be topological spaces and A, B be non-empty subsets of X such that $X = A \cup B$. Let $f_1 : A \to Y$ and $f_2 : B \to Y$ be two continuous applications such that for all $x \in A \cap B$, we have $f_1(x) = f_2(x)$. We set:

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in A, \\ f_2(x) & \text{if } x \in B. \end{cases}$$

- 1. Let U be a subset of Y. Determine $f^{-1}(U)$ in terms of $f_1^{-1}(U)$ and $f_2^{-1}(U)$.
- 2. Deduce that if A and B are open (resp. closed), then f is continuous.

Exercise 11 We take $X =]0,1[\cup \{2\}, Y =]0,1]$ (each equipped with the topology induced by the usual topology of \mathbb{R}) and we consider the application $f:X \to Y$ given by

$$f(x) = \begin{cases} x & \text{if } 0 < x < 1, \\ 1 & \text{if } x = 2. \end{cases}$$

- 1. Verify that f is a bijection and determine its reciprocal f^{-1} .
- 2. Verify that f is continuous on X.
- 3. Show that f^{-1} is not continuous at 1 (We can consider the real sequence with general term $x_n = 1 \frac{1}{n}$). Conclude.

Exercise 12 Let X and Y be two homeomorphic topological spaces.

- 1. Show that X is separated if and only if Y is separated.
- 2. Show that X is separable if and only if Y is separable.

Exercise 13 For every real number a, set $D_a = \{(x, y) \in \mathbb{R}^2 ; y = x + a\}$.

- 1. Describe D_2 and sketch it in an orthonormal coordinate system.
- 2. Show that $\mathbb{R}^2 = \bigcup_{a \in \mathbb{R}} D_a$.
- 3. Show that the family τ consisting of the empty set \varnothing and all unions of the sets D_a defines a topology on \mathbb{R}^2 .
- 4. Show that D_a is both open and closed.
- 5. Determine the boundary $\partial (\{(1,1)\})$.
- 6. Show that the space (\mathbb{R}^2, τ) is not Hausdorff.
- 7. Determine the topology τ_A induced on $A = \{(1,0), (0,1)\}.$
- 8. Show that the x-axis (axis of abscissas) is everywhere dense.
- 9. Determine a fundamental system of neighborhoods for a point (b,c) in (\mathbb{R}^2,τ) .
- 10. Let (u_n) be the sequence in \mathbb{R}^2 defined by $u_n = (n, n)$.
 - i) Show that (1,1) is a limit of (u_n) .
 - ii) Determine all the other limits.