Module: Algebra 01

First year

TD 04

Exercise 1

We equip $\mathbb R$ with the internal composition law defined as :

$$\forall x, y \in \mathbb{R}^+ : x \star y = \sqrt{x^2 + y^2}.$$

- 1. Show that \star is commutative, associative, and has a neutral element.
- 2. Determine the symmetrizable elements.

Exercise 2

Show that (G, \star) is a group and specify whether it is abelian (commutative):

$$x\star y=\frac{x+y}{1+xy}, \text{ on } G=(-1,1).$$

Exercise 3

Let be the set $\mathbb{R}^* \times \mathbb{R}$ provided with internal law \star such that

$$(a,b)\star(\alpha,\beta)=(a\alpha,\frac{\beta}{a}+b\alpha)$$

Show that $(\mathbb{R}^* \times \mathbb{R}, \star)$ is a group, is it commutative?

Exercise 4

Let (G, +) be a commutative group. We denote End(G) as the set of endomorphisms of G on which we define the operation + as :

$$f+g: G \rightarrow G$$

 $x \mapsto f(x) + g(x).$

Prove that $(End(G), +, \circ)$ is a ring.

Exercise 5

- 1. Determine if part H is a subgroup of group G.
 - (a) $G = (\mathbb{Z}, +)$; $H = \{\text{even numbers}\}$
 - **(b)** $G = (\mathbb{Z}, +); H = \{ \text{odd numbers} \}.$
- 2. Show that $U = \{z \in \mathbb{C}, |z| = 1\}$ equipped with multiplication is a subgroup of (\mathbb{C}^*, \times) .