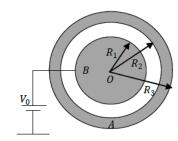
## Série de TD : Conducteurs en équilibre électrostatique

## Exercice 1:


Une sphère conductrice  $S_1$ , de centre  $O_1$  et de rayon  $R_1 = 10$  cm, porte une charge électrique Q = 10 nC.

- 1. Calculer son potentiel V et son énergie interne W;
- 2. On relie, par un fil conducteur, S<sub>1</sub> à une seconde sphère conductrice S<sub>2</sub>, initialement neutre, de centre O<sub>2</sub> et de rayon R<sub>2</sub> = 1 cm. Les centres des deux sphères sont séparés par une distance d = O<sub>1</sub>O<sub>2</sub> = 50 cm. On néglige les caractéristiques du fil de jonction et on ne tient pas compte du phénomène d'influence. Calculer, à l'équilibre, les charges Q<sub>1</sub> et Q<sub>2</sub> portées respectivement par S<sub>1</sub> et S<sub>2</sub>;
- **3.** Calculer l'énergie du système formé par les deux sphères avant et après la connexion. Où est passée l'énergie perdue ?

## Exercice 2:

Un conducteur sphérique creux A, initialement neutre, de rayon intérieur  $R_2 = 2R$  et rayon extérieur  $R_3 = 4R$  entoure un deuxième conducteur sphérique B, de rayon  $R_1 = R$ , porté à un potentiel  $V_0$  par l'intermédiaire d'un générateur (Voir figure ci-contre). Le conducteur B porte une charge  $Q_0$ .

- 1. Quelles sont les charges portées par les surfaces intérieure et extérieure du conducteur *A* ?
- 2. En appliquant le théorème de Gauss, déterminer l'expression du champ électrique  $\vec{E}$  dans les quatre régions suivantes : r < R, R < r < 2R, 2R < r < 4R, r > 4R

