CHAPTER 2 )

HILBERT SPACES

The concept of Hilbert space extends the methods of linear algebra by generalizing notions of
Euclidean space. These spaces owe their name to the German mathematician David Hilbert.

Hilbert spaces are a special case of Banach spaces. In this chapter, we generally take K = C.

2.1 Inner product

2.1.1 Definitions

Definition 2.1.1. Let H be a real vector space, resp. complez. We call inner product

on H any symmetric bilinear form, resp. hermitian, which is positive-definite.

We will denote by < x|y > the inner product of the vectors r,y € H.
This means that the application:

<.|.> HxH—K=RorC

(z,y)—<z|y>

fulfilled the conditions:

1) for all y € H, the map z € H +3< = | y >€ K is a linear form;






CHAPTER 2. HILBERT SPACES
2) for all x,y € H, we have:

<y|lzr>=<x|y> if the space is real

<y|lz>=<z|y> (complex conjugation), if the space is complex;
3)forallze H,wehave <z |z >20and < z |z >=0if and only if z = 0.

Remark 3. 1) This means that, in the compler case, we therefore have, for z,y € H and
AeC:

(a) {ax+ By.z) =alzr,z) + B(y.2)

(®) (z.ay+ Bz) = alx,y) + Alz.z)
2) (a) shows that the inner product is lincar in the first factor. Since in (c) we have complez
conjugates @& and 3 on the right, we say that the inner product is conjugate linear in the second
factor. Expressing both properties together, we say that the inner product is sesquilinear. This

means 'l% times linear”.

Definition 2.1.2. If the vector space H is endowed with an inner product, we say

that it is an inner product space pre-Hilbert space.
Exemples. 1) a) The usual inner product of R” is defined by:

I <zly>=z1y1 ...+ Inyn

for z = (T4,...,Zu), ¥ = (¥U1,..-,Ya) € R®.

The usual inner product of C" is defined by:

I< Iy >=1y4; + ... +.r,,y',.|

for £ = (x1,...,Zn),y = (y1,...,9n) € C".

b) We can define other inner products on K” by giving weights, that is to say numbers
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wi,...,wn > 0, and by setting:

< zly >= Y oy WkTkYk, fK=R

<z|y>=£:_,w,,zkgh, ifK=VS

2) Si(S, .7, m) is a measured space, we provide H = L%(m) with a inner product (which we

will call of natural) by setting, for f,g € L?(m):

<(f|g>=/]gdm in the real case,
S

And :

|<f|g >= fsfgdmlin the complex case.

In particular, on £3, we have the natural inner product defined by:

|<z|y>:z,°.°_l.t,.y,,|inthcrmlcasc.

And :

|< z|y>= Z,?_lr,.y,,lin the complex case.

for £ = (Tn)pa1 ¥ = (Yn)na1 € €2. Consider the sequences

z=(1,1,1,...) and y= (l,

] -
| -
00| -
it

Since 12 4 12 4+ ... does not converge, x does not belong to in 5. On the other hand, the

it 11 (%)2 + (%)2 + --- does converge; hence y belongs to £2.
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2.2 Elementary properties

Notation. since < z|r >> 0, we can put:

llzll = V{=]x).

Proposition 2.2.1. forallz,yc H:

o) [lz+ylP ==+ Iy + 2 <zly>] (real case);

8) Iz +ul? = =) + |y|? + 2Re < zly >|  (complex case).

Proof. Just expand:

lz+yl? =<z4y|lz+y>=<z|z>+<y|ly>+<z|y>+<y|lz>,

and use thefact that < z |y > 4 < y|z>=<z|y>+<z|y>=2< x|y > in the real

case , and = 2Re < z | ¥ > in the complex case. m}

2.2.1 Cauchy-Schwarz inequality

Theorem 2.2.1 (Cauchy-Schwarz inequality). For all z,y € H:

[T<zly>1< =Nl |

Exemple. In the case where H = L2(m), it is equivalent to the Cauchy-Schwarz inequal-

ity for integrals:

| [ sodm| < [ 1s6lam <  [[1s2am) " ([ Igizam) "

Proof. We will only do it in the complex case; it’s a little easier in the real case (we consider
the sign of the inner product instead of its argument). In fact the proof is valid even for

inner semi-products, that is to say if the symmetric bilinear form (resp. Hermitian) is only
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positive (that is to say that we do not ask that (r|r) = 0 implies z = 0).
Let 8 € R such that:

(e ™z|y)=c®<z|y>cR,

if <z =># 0,0 is the argument of the complex number < r > ). Let = e ¥z, For
( y gu p y

all ¢t € R, we have, by the Proposition 2.2.1:
2 2
III° + 2Re ( | )t + lul®® = |’ + ty]|” > 0.

If |ly|| = 0, we have IZ 1% +2Re (¢ | y)t = Oforall t € R; this is only possible if Re (2’ | y) = 0.
If |lyll # 0, we have a second degree trinomial in ¢, which is always positive or zero; its

discriminant must be negative or zero:

Re (2 | y) - |2 lull? < 0.

As:
(@ |y =c¥<z|y>=|<z|y>|cRy
we have :
Re(@|y) =@ |y)=|<z|y>|
Since, in addition, ||| = ||z||, we obtain the announced inequality. m}

Corollary 2.2.1. The ezpression ||z = /(z[z) defines a _norm on H, called the

Hilbert norm.

Proof. Just check the triangle inequality:

Iz + yli? = Izl + llyl® + 2Re(zly) < l=I? + llyl® + 2=l lvll = (=l + lwil)?,

thanks to the Cauchy-Schwarz inequality. m}
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Corollary 2.2.2. for each y € H , the linear form:

®: H — K=RorC

T — <z|y>

is continue. Its norm in H* is|||®, || = ||y]| |

Proof. We can assume y # 0. The Cauchy-Schwarz inequality says that:
[®y(2)] = | <z |y >] < lyllll=l;

this proves that $, is continuous and that ||®, || < ||yl

Since dy(y) = [Jul?, we have [y = L _ |y, o

important Remark . Case of equality in the Cauchy-Schwarz inequality. When we
look at the proof of the inequality (in the case of a dot product), we see that we have
|(x]y)] = llz|lllyll if and only if y = 0 or if y # 0 and the discriminant of the second degree
trinomial at t is zero; this means that this trinomial has a (double) root: there exists to € R
such that ||z’ + toy|| = 0; in other words e “x 4 toy = 0: the vectors r and y are linearly

related.

Conversely, if r and y are linearly dependent, it is clear that we have equality.

2.2.2 Parallelogram equality

Lemma 2.2.1 (parallelogram identity). For all u,v € H:

[l + ol + llu — vl = 2(1ul? + Iv1?) | (2.1)

The proof is immediate, with the Proposition 2.2.1. This means that the sum of the

squares of the diagonals of a parallelogram is equal to the sum of the squares of the four
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sides.

We conclude that if a norm does not satisfy 2.1, it cannot be obtained from an inner

product. Such norms do exist; We conclude that, not all normed spaces are inner product

spaces.

2.2.3 Orthogonality

Definition 2.2.1. We say that two vectors x and y of a pre-Hilbert space H are orthogonal

if (z|y) = 0. We note .

Exemple. In H = R? | for the usual inner product, we have (—1,1) L (1,1).
Note that the orthogonality relation is symmetric: if z L y, then y L x (because (y|z) =
(=ly))-

According to Propasition 2.2.1, we have, in the real case:

[ Ly lz+ 9l = Iz + s}

what we can call the Pythagorean Theorem.

In the complex case:

zlye= [z +yl? = I=I? + lyl® and |z + iyl = = + Ivl?]-

Indeed, for any complex number a, we have Im(a) = Re(—1a) and consequently I'm(z|y) =

Re(z|iy).
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Parts A, B C H are called orthogonal if all z € A is orthogonal to all y € B:

rly VzeAVyeB.

We also say that one is orthogonal to the other.

Definition 2.2.2. The orthogonal of a part A C H is the set:

[4* = {ye H;y L z,vz e A}]

We have B C A* if A C B; therefore in particular (A)* C A*; but the continuity of

applicalio1u|<l>,:z-—><z|y>|lcadatothal (A)* = AL

Proposition 2.2.2. For any part A of H, A* is orthogonal to A; it is the largest orthogonal

part to A. Moreover A* is a closed vector subspace of H .

Proof. The beginning is clear. For the rest, note that:

|A‘L :nzﬁﬁkcr‘b’l

and that each vector subspace ker &, = ¢, !({0}) is closed since &, is continuous. a

2.2.4 Hilbert spaces

Definition 2.2.8. If a pre-Hilbert space is complete, for the norm induced by its

inner product, we say that it is a Hilbert space.

It is therefore a special case of Banach space.

Exemples.

1 Any pre-Hilbert space of finite dimension is a Hilbert space. When it is a R— vector

space, we say that it is an Euclidean space.

2 For any positive measure m, Iiz(m) is a Hilbert space I, by virtue of the Riesz-Fisher
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theorem, since the norm ||.||2:

112 = ( [, 170 Pam@)) ™

is associated with the usual inner product:

(f19)= [ f@a@dmie).

In particular, | £3 is a Hilbert space | .

2.3 The Projection Theorem and its consequences

2.3.1 Projection Theorem

It is thanks to this theorem that we obtain all the good properties of Hilbert spaces.

Let us first recall that a part C of a vector space is said to be convex if the segment [z, y|

is contained in C since r,y € C:
z,y€C =» [x,9] CC,
where [z,y] =tz + (1 —t)y;t € [0,1] .

vector subspace is convex; every ball is convex.
Theorem 2.3.1 (Projection theorem). Let H be a Hilbert space and let C be a

non-empty convez and closed part of H. Then, for allz € H, there exists a unique
y € C such that:

Iz — yl| = dist(z,C).

We say that y = Po(x) is the projection of = onto C. It is characterized by the

property:

yeC and Re(r—ylz—y)<0,VzC. ®)
Note that the completeness of I is not absolutely essential: we can remove it, but assuming
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that it is C which is complete.

Proof. 1) Existence.

Let d = dist(z,C) = infrec|z — z|-
Note that if d = 0, then z € C (because C is closed), and y = r is the unique point of C such
that ||z — y|| =d.

For all n > 1, there exists z,, € C such that:
2 1
[l = zal| €d2+;

Let us then apply, for n,p = 1, the identity of the parallelogram tou = r —z, and v = x —z;
we obtain :

2
Zn+z 2 2 2
4||z-%ﬂ +llzn = 2l = 2 (llx =zl + Iz - z]*) -

But, C being convex, we have 2232 ¢ C; therefore:

Zn+2p
"I—T 2d

so that we obtain:

||2n—zyﬂ2£2(d2+%+d2+%)—4d2=2(%+%).

The sequence (z,,),, is therefore a Cauchy sequence. As H is complete, it therefore converges

to an element y € H. But since C is closed, we have in fact, since the z, arein C,y € C.

Morcover, the fact that ||z — za|? < & + 1/n leads, passing to the limit, that ||z — y|| < d.

We therefore have ||z — y|| = d, since y € C.

2) Uniqueness. If ||z — yy|| = ||z — w2 = d, with y;,y2 € C | then, as above, the identity
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of the parallelogram gives:

2
2 nty 2
s+ o —al? < e 22 gy

=2(lz-wl + Iz- nl) =2 (& + #)

hence ||y1 — y2||2 < 0, which is only possible if y1 = y2.
3) Proof of ().

a)Ifz€C, wehave (1 —t)y+tz € C for 0 £t < 1, by the convexity of C; SO :
llz— (1 —t)y— ez = |z — yll%,
or by expanding ||z — (1 - t)y— tz|]2 = ||(z — y) + t(y — z)||* with Proposition 2.2.1:
%y — 2| + 2tRe(z —y | y— z) 2 0.
For t # 0, divide by ¢, then let ¢ tend to 0; it comes Re(z—y |y —z) = 0, or:
Re(r—y|z-y) <0
b) Conversely, if y satisfies (+), we have, for all z € C:

l=—=I? =1l (= v+ w—2) |F =[|=— y[f+] v - =I? + 2Re(z -y | y - 2)

=llz— 9yl +lly-zI* - 2Re(z —y | z— y) = ||z — y|%;

therefore y = Pe(x), by uniqueness. a

2.3.2 Consequences

Proposition 2.3.1. The map Pc : H — C is continuous; more precisely, we have, for all
1,72 € H:

|Pc (x1) — Pe(z2)ll < |lxy — =2l -
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Proof. Let y1 = Pe (1) and y2 = Pc (x2); the condition (=) gives:

Re(zy—y|z—-w) <0 VzeC;

Re(z2— w2 |2 —w) €0 VZeC.

Taking z = y, and 2’ = y;, and adding, it comes:

Re([z1 — 1] — [r2— w2 |32 — w1) < 0.

We therefore obtain:

Iyt — val® = Rellys — wall® = Re ([y2 — 2] + [z2 — z1) + [£1 — 0] | v2 — 1)
=Re(lz1—y1| - 22— w2 | 2 — 1) + Re(z2— 21 | ;2 — 1)
€Re(nz—x1|2—w)
€ |(z2— z1 | 2 — w1l € =2 — 24|l w2 — wall

by the Cauchy-Schwarz inequality. It follows, by dividing by |ly2 — ;|| (which we can assume

is not zero, because otherwise the result is obvious), that we have indeed

llys — w2l = lz2 — =4l O

In the case where the convex C is a vector subepace, we have better properties.
Theorem 2.3.2. If F is a closed vector subspace of the Hilbert space H, then the

mapping Py : H — F is a continuous lincar mapping, and Py:(x) is the unique point

y € F such that:

yeF e z—yeF“l.

Proof. First, if y € F et x — y € F*, then we have:
. 2 _ . - 2 2] e a2
dist(z, F)? = inf |z — 2| = inf, [l — I + ly — =I?] = = - ol
so ||z — y|| = dist(z,F) et y = Pp(z). The converse results from the condition (*):

Re<z—-y|z-y><0, VzeF;

11
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in fact, as F' is a vector subspace, we have:
z=y+MweF, YweF e VicK.
When H is real, we therefore have, for all w € F:
A<z—y|lw>=<z—-y|Aw><£0, VAcR

which is only possible if < r — y | w >> 0. When the space H is complex, we have, in the

same way, for all w € F:

ARe<r—y|w>=Re<z—y|dlw><£0, VAcR,
and, with z = y 4 i\w :

Aim<z—y|lw>=Re<z—y|ilw)><£0, VAecR

which, again, is only possible if < £ — y | w >= 0. The linearity of Py is then ecasy to see,
thanks to the uniqueness; indeed, if

w1 = Pr (z1).42 = Pp (22), then (21 — y1), (x2 — y2) € F*; 50, for ay,a2 € K, (ay7y + apx2) —
(a1 + a2y2) € F4;

hence Py (ayzy 4 azx2) = ayyy + azys. O

Note that continuity was seen in Proposition 2.3.1, and that by taking r2 = 0 in this

proposition, we have: ||Pp(x)|| < ||z|| for all x € H; the norm of P is therefore £ 1. But

since Pp(x) = x for all £ € F, we obtain, if F £ {0}, um.

As an exercise, we can show that, for a closed convex C, Pg is linear if and only if C is a
vector subspace.
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Theorem 2.3.3. If H is a Hilbert space, then, for any closed vector space, we
have:

H=F@Ft

and the projection onto F parallel to the associated F* is Py. It is therefore con-

tinuous, so that the direct sum is a direct topological sum.
We say that Py is the orthogonal projection on F.

The fact that H is the direct sum of F and F'* means that all € H is uniquely written
as|z =y+z L with |y €F,z¢ Fil. Note that, since F and F* are orthogonal, we have:

Il = lyll* + llz1%; in other words:

[l = 1Pe@)I? + Iz - Pe(2))?. |

We find the fact that Pp is continuous and of norm 1, if F # {0}. We also sce that
[Hdy; — Pg|| = 1, if F* # {0}; but we will see just after that in fact Idy — Pp is the

orthogonal projection on F*.

Proof. We have z = Pp(z) + (x — Pp(z)), with z — Pp(z) € F* , by Theorem 2.3.2.

Onthcothcrhand.ifrEFﬁFJ‘.wchavc. in particular, < z |z >=0;s0 z = 0. O

Remark. The Theorem 2.3.3 is really specific to Hilbert spaces.

The following result can be shown directly, but it is easily obtained from Theorem 2.3.3

Corollary 2.3.1. We have F** = F for every vector subspace F of the Hilbert space H.

H = F* @ F**, which can also be written: H = F** @ F*
On the other hand, we can also apply this theorem to the closed vector subspace F' : H =

F @ (F)* = F® F*. It follows, since we know that FF C F** that F++ = F. n

Note that in general a vector subspace has an infinity of supplementaries; but it only has

one orthogonal supplement.
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We deduce, since H = {0} and 0" = H , the following very practical density criterion.
Corollary 2.3.2. Let H be a Hilbert space, and F be a vector subspace of H. Then

F is dense in H if and only if F*+ = 0.
Thus, to show that an vector subsw F is dense in H, it suffices to verify that:

[((zly) =0, Vze F] = y=0]

Let’s see an example application. Recall that the support of f : R — C, denoted suppf, is

the adhesion of {x € R; f(z) # 0} .
Theorem 2.3.4. The space ¥ (R) of continuous functions on R with compact sup-

port is dense in L*(R).

This theorem is demonstrated, in a more general form, in any Integration course (see also
Theorem I11.1.2); but it is a question here, even if the result is important in itself, of seeing
how to apply the Corollary 2.3.2

Note that ¥ (R) is not really contained in L?(R), since the latter is a space of equivalence
classes of functions, but, as two continuous maps which are equal almost everywhere, for the
Lebesgue measure, are in fact everywhere, the canonical map j : J#(R) — L?(R), which
associates each function with its equivalence class, is injective; we can therefore identify each

f € ¥ (R) with its equivalence class j(f), that is to say J'(R) with j[¢ (R)).

Proof. Let g € L2(R) such that:
<flg>= [ fadr=0, VfeX(R).

We want to show that g = 0.
Taking the real and imaginary parts, we can assume that g is real-valued, and we write

9=9"— g . We have, for all f € ¥ (R):

[ 10 @t = [ se)a e)ae.
R R
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Let a < b. There exist fn € J#(R) such that:

0% fn S Yoy

falt) Foaey 4 Ljap((t) for t € R,

and such that the sequence (f,),, is increasing.

The Monotone Convergence Theorem gives:

[ o0 = tim 1 [ 10" @t = Jim 1 [ 050 =[5 @a

This means that positive measures 4 = g*.A and v = g~ .\ are equal on all intervals |a, b
and take finite values there:

[[s* @< [ lotokd = [ lo@itian(0ae < Vialla < 40
by the Cauchy-Schwarz inequality. The Uniqueness of Measures Theorem then says that
2 =v. This means that gt = g~ almost everywhere, i.e. g =0 in L3(R). (m]
Corollary 2.3.8. €([0,1)) is dense in L?(0,1).

Proof. Let f € L?(0,1). Let's extend it to f on R by 0 outside [0,1]. We have f € L?(R).
For all € > 0, there exists g € J'(R) such that ||f — g|lr2m) < €. Let h = gjo1) be the
restriction of g to [0,1). We have, on the one hand, h € ¥([0,1]) and, on the other hand,

If = Blle2eyy < IF - glle2@m <€ m]
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2.3.3 Representation of the dual

Recall that the dual is:
H* = {®:H - K; & continuous linear},

where K = R or C is the coordinate space .
Knowing how to give a concrete representation of the dual of a functional space often allows
us to solve problems about the space itself. In the case of Hilbert spaces, it is particularly
simple.

Let us first recall that we have seen that, forall y € H | the linear form &, : x € H — (z]y)
is continuous, i.c. say is an element of the dual H*, and that |[®,]| = [|y]|. It turns out that

all elements of the dual are of this form.
Theorem 2.3.5 (Fréchet-Riesz representation theorem). Let H be a Hilbert space.

For all® € H*, there erists a (unique) y € H such that| ®(x) = (z|y) | for all z inH .

This theorem was independently proven by M. Fréchet and F. Riesz in 1907, for H -

L2(0, 1); both articles were published, coincidentally, in the same issue of Notes aux Comptes

de I'’Académie des Sciences. Another way to see this theorem is to say that the application:

J: H — H*

y — Py =J(y)

is surjective. It is therefore bijective because it is an isometry (in the sense of metric spaces):
I17(w) =7 (W)l = iy — ¥y || = [[®y-y | = ly - ¥l

Note that in the real case, J is linear, but that in the complex case, it is only semi-linear.

Proof. We already know that J is a metric isometry; this proves uniqueness. What we need
to see is surjectivity.

Let ® € H* be non-zero. As ¢ is continuous, the vector subspace F' = ker & is closed.
So:

H = (ker ®) @ (ker ).

16
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But since ¢ is a non-zero linear form, ker ® is of codimension 1; therefore (kcl"l’)l is of

dimension 1.
Let u € (ker ®)*, of norm 1, and let y = ®{u)u. Then, like y € (ker ®)*, ¥, is zero on

ker ®; but, on the other hand:
Py(u) =<u|y>=d(u) <ulu>= (u)||u)? = ®(u)

Thus we have & = &y, (m]

Remark. The value y = ®(u)u may seem to *fall from the sky”. In fact, if we want to
have ®(x) = (z]y) for all x € H , we must have it for r € ker®; so y must be in (ker®)*.
Thus y = cu, and the equality $(u) = (uly) results in $(u) = &(ulu) = &ul]? = &. We

therefore necessarily have y = ®(u)u.

2.3.4 Adjoint of an operator
We call an operator on H any continuous linear map T : H — H.

Proposition 2.8.2. Let H be a Hilbert space. For all T € #(H), there exists another

operator, denoted T*, and called the adjoint of T, such that:

(Tzly) = (z|T*y)|, ¥r,yeH.

Moreover, ||T*| = ||T|.

Proof. Let y € H. The mapping:

$,0T: H—K

z+—3<Tz|y>

is a continuous linear form on H: there therefore exists, by the FréchetRiesz Theorem, a
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unique element of H, which we will denote T*y, such that:

(z|T’y) =<Tz|y> VreH.

Because of uniqueness, the map T* : y € H «» T*y € H is clearly linear: if yy,y2 € H and

ay,az € K, we have, forall z € H:
(x| T* (a1y1 + a2wa)) = (Tx | agyy + azyz) = a1 (Tx | yy) + a2 (T | ya)
=ay (x| Ty} +az2(z | T*w) = (x| aiT" vy + a:T" )

therefore T (ayyy + azy2) = a1T*yy + a2 y,.

On the other hand, the Cauchy-Schwarz inequality gives:

[(#yoT) ()l = | < Tz |y >| < [|T=|lly]l < ITUl=Nllyl:

therefore ||T*y|| = ||®y o T|| < ||T|||ly]|l. This proves that the linear map T* is continuous and
that |7 < ||T.

To see that ||T|| < ||T*||, notice that T* itself has an adjoint T**, and that we have
™™ =T:

{y|Tz) =Ty | z) =< y | Tz >

for all x,y € H; this implies that T**x = Tr forallz € H. Then ||T| = |T**|| < T*] O

2.4 Orthonormal bases

2.4.1 Separable spaces

Definition 2.4.1. A topological space E is said to be separable if there exists a part D CE

which is countable and dense in E : D = E .

In the case of normed spaces, we have an equivalent notion.
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Proposition 2.4.1. Let E be a normed vector space. For E to be separable, it is necessary
and sufficient that there exists in E a part A which is countable and total in E.
We say that a part A of a normed vector space E is total when the vector subspace vect

(A) generated by this part is dense.

Proof. The Q-vector subspace (respectively the (Q + #Q)-vector subspace) generated by A is

countable and its adherence is the same as that of vect (A). m}

Exemples. 1) Any vector space of finite dimension is separable.

2) The spaces cp and £, for 1 < p < oo, are separable, because if

en=(0,...,0,1,0,...)
t

n'® position

then A = {e,;n = 1} is totale, since, for all £ = (£1,&,...) € &, we have:

= - (Grer +--- + Gnea)l” = > |&l® —2 0

k-n+1

and whenr € ¢y :

llx — (1e1 4 --- + Enen)loe = .,2‘,'.5’,,'&' — 0.

n-»20
It can be shown that £ is not separable.
Proposition 2.4.2. Any subspace of a separable metric space is separable.

Proof. Let E be a separable metric space, I) = {zg:n 2 1} a part of dense countable E, and
F C E. For any pair of integers n, k 2 such that F N B (z,, 1/k) is not empty, let us choose
an element y, ¢ inF'NB (1y, 1/k); otherwise (for notational purposes), let yp, & = y, where 3
is a given fixed element of F (we can assume F not empty) . Then Dg = {ypein,k = 1} isa
countable part of ', and it is dense in F: let y € F'; there exists, forall k = 1, an integern = 1
such that d(y,z,) < 1/k; we therefore have y € B (z,, 1/k); therefore FN B (z,, 1/k) # 0,
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and yngk € F N B (zn,1/k); then d(y, ynk) = d(y,zn) + d(zn,ynk) < 2/k. (m}

2.4.2 Orthonormal systems
We will assume in the following that H is a pre-Hilbert space, of infinite dimension.

Definition 2.4.2. Let (u;);er be a family of elements of H, indezed by an arbitrary set I,
non-empty. We say that it is an orthonormal family, or an orthonored system, if:
D]l =1, Viel;
2u; L uj,Vl' # 7.

Note that every subsystem (u;)icy (J C I) of an orthonormal system (u;)icy is still

orthonormal.

Exemples. 1) In £;, the sequence (e,)n>1 is orthonormal.

2) In L3(0,1), we put:
ez

the system (eg,)nez is orthonormal; we say that it is the trigonometric system.

Proposition 2.4.8. If the finite system (u1, ..., un) is orthonormal, then, for all ay,...,an €
K:

2 n
=Y lal?
-1

n
3 acu
w1

Proof. Just develop using Proposition 11.1.3:

i‘l&uﬁ

1

2 n
=3 lowual® + 3 (anr | ajus),
k-1 kA
and use that |lague|| = |ae| ||uel| = |ai| and that, for k # j, (aeus | aju;) = aa; (e | ;) =
0 (m}

Corollary 2.4.1. Any orthonormal family is free (that is to say that the vectors composing

it are lincarly independent).
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Proposition 2.4.4 (Bessel inequality). Let H be a pre-Hilbert space. For any orthonormal

family (w;);., in H, we have, forallz € H:

[ S Iz 1w < =l ]

In the inequality above, the sum on the first member is defined as follows: if (a;)ics is a

family of positive real numbers, then:

Yu* e Ya

el JCI J Gnite 5y

If &(1) = {("i)o'el €KY lasf? < +oo}, Bessel’s inequality leads to an application:

S: H— ()

z+— (< zlw; >)ies

it is linear, and Bessel's inequality further says that it is continuous, and of norm < 1.

Proof. If & = (x | u;), we have, since the family is orthonormal, for any finite part J of I:

2
0< iz &Gl ==l -2) Re(z | &) + Y I&
€J i€t €J
which gives the result car (z | &iw) = & (z | w) = && = |£.'|2. (m]

Proposition 2.4.5. Let H be a pre-Hilbert space and let (up)n>y be an orthonormal se-

quence in H. If a vector x € H can be written = Y_;° | éntin , then we necessarily have

& < efun 5] for alin> 1.

Here sequence means countable family.

Proof. For each k z 1, the linear form ®y, is continuous; So :

(x| we) = Py, (x) = i Py, (Enun) = i &n (un | ue) = &.
n-1

n=1

51



CHAPTER 2. HILBERT SPACES

]

Proposition 2.4.6. Lef (uy,) be an orthonormal sequence and x = Y 72, &nuy. Let Fy, be

nal
the vector subspace generated by uy, ..., u,. So :

Pr,(z) = Zn: St
k-1

Proof. Aswehave & = (x | ug), by the previous proposition, we obtain that (r — Y0, &g | uj) =
Oforall j < n; s0if yn = 2Py &etig, we have £ —yn € Fi. Like yn € Fn, the characterization

of Theorem 11.2.4 says that y, = Py, (z). (]

Proposition 2.4.7. If H is un Hilbert space, and (uy), ., is an orthonormal sequence in H
then, for every sequence (£,),y € €2, the series Y 07 | &quy converges in H .

In other words (using Proposition 2.4.5), the lincar map continues:
S: H— 123
I—— (< I|u,. >)n>_’1
is surjective.

Proof. Just note note that the series satisfies the Cauchy criterion, because the Propaosition

2.4.3 gives:
n+p ntp
1Y &ul® =3 6l — 0,
k—n k-n
uniformly in p a

2.4.3 Orthonormal bases

Definition 2.4.3. We say that an orthonormal sequence (un)n>1 in a pre-Hilbert
space H is an orthonormal basis of H if the set u,:n > 1 is total in H. We also

say that (up)n>1 is a Hilbert basis.
Note that, as we have restricted ourselves to taking countable families, the space H will

necessarily be separable.

o
L]
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On the other hand, it should be noted that this notion of orthonormal base is, in infinite
dimension, different from the notion of base, in the algebraic sense of the term: a family of
vectors of a vector space is a base if any vector can s "write, uniquely, as a linear combination
of an finite number of terms of the family; but the following theorem says that, for an
orthonormal base, any element is written as the sum of an series, which involves all the terms

of the orthonormal base.
Theorem 2.4.1. Let H be a pre-Hilbert space and let (un)n>y be an orthonormal

basis of H. Then, any element x € H is written:

I=Z€uuny with £n=(1|“n)
n-1

Moreover, for all z,y € H, we have the Parseval formulas:
o0

Nl = 3 1= | uadl? f
n-1

—~

oC
f)|<z|y>= Z (x| un) Ty [ tuny | . the series absolutely converges.

ne1

Proof. Let Fy, denote the vector subspace generated by ui,...,un, and let zn = Pp,(z) .

The set un;n > 1 being total, the subspace Upy 1Fy, is dense in H; then, the sequence

(Fn)n>1 being increasing, we have:
|z = zq|| = dist (z, Fy) = 0.

On the other hand, according to the Corollary 2.4.1, {uy,...,u,} is a base, in the usual sense,

of Fy,; and, by Proposition 2.4.5, we therefore have:

In=Z(1n|l&)ub-

k=1
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But (z— xn) € Fy; therefore, for k < n, (zn | ue) = (z | w) = & does not depend on n. We

therefore have:
n x
x = Jim 32 G = 3 G
k=1 k1
Likewise y = Y57 ; Gettee, with G = {y | %) . Then, by continuity (Corollary 2.2.2):
oc oc oo —
<z|y>= (Z&.ukly> =Y &Glm|y) =) &G,
k=1 k-1 k-1
which gives the other identity when y = z. O

It follows from Theorem 2.4.1 and Proposition 2.4.7 that we have:
Corollary 2.4.2. Let H be a separable Hilbert space, and let (un)n>1 be an orthonor-

mal basis of H. Then the linear map:

S: ”—)[2

x— (< I]u,. >)n>_.1

is an isomorphism of Hilbert spaces, that is to say an isomorphism preserving the

inner product:(S(£)|S(C)) = (§I¢) for all§,C € &.
It is in particular an isometry ||S(x)|| = ||z|| for all z € H . When H is not complete, we

always have an isometry preserving the inner product, but it is not surjective.

The reciprocal isomorphism is:

s &—H

(En)n>1 > Y_ &ntin
ne-1

We will see that in fact every separable Hilbert space has orthonormal bases, and therefore

the previous corollary applies to all separable Hilbert spaces.

2.4.4 Existence of orthonormal bases

|Theorem 2.4.2. Every separable Hilbert space has orthonormal bases.
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In fact, completeness is not useful here (because at each step, we only work in vector
subspaces of finite dimension, therefore complete).
We obtain, as a consequence of Theorem 2.4.2 and of the Corollary 2.4.2, the following

essential result, in which, this time the hypothesis of completeness cannot be omitted.
Theorem 2.4.3. All separable Hilbert spaces, of infinite dimension, are isomorphic

to each other, and in particular to £ .

Proof of the Theorem 2.4.2 . We simply use the Gram-Schmidt orthonormalization
process.

Consider a countable part {v,:;n > 1} total. We can assume that the v,,n > 1, are
linearly independent (by removing those which are a linear combination of the previous
ones).

Let Fn be the vector subspace generated by vy,...,va. We set uy = g2p, and

Unsr = Pi (tns1) s Uner = IIé::Il

Then the sequence (uy),, ., is orthonormal, and the set {u,;n = 1} is total because the vector
subspace generated by uy,...,u, is F,. Indeed, by Theorem 2.3.2, for 2 £ k < n, we have

u’k — v € FEL_Ll = Fi_1, and thercfore ui € Fy, since vg € Fi and Fi._y C F}.

2.5 Separability of L(0,1)

2.5.1 Stone-Weierstrass theorem

It is a density theorem in the space ¥g(K) or ¥¢(K) of functions continues f : K — Ror C,
where K is a compact space. Depending on whether the space is real or complex, it is not

stated in the same way: a hypothesis must be added in the complex case.
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Real case

Theorem 2.5.1 (Stone-Weierstrass theorem, real case). Let K be an compact space
and A be a subalgebra of the real Banach algebra $r(K).

We further assume that:
a) A separates the points of K ;

b) A contains constants.

Then A is dense in €3(K).
emarks.

1) A subalgebra of ¥(K) is a multiplication-stable vector subspace.

2) Saying that A separates the points of K means that if x,y € K are distinct, then there

exists f € A such that f(z) # f(y) .

3) The assumption that A contains constant functions is only made to eliminate the case

of subalgebras A = {f € ¥(K); f(a) = 0} fora givena € K.

Note that, A being a vector subspace, A contains the constants if and only if 1 € 4 . We

obtain the following immediate consequence.

Theorem 2.5.2. Let K be a compact part of R®; then the set Pg(K) of all real

polynomials with d variables, restricted to K, is dense in $3(K) .
[ Theorem 2.5.8. The real space L(0,1) is separable. |

Proof. We know that €3([0, 1)) is dense in L%(0,1). On the other hand, Theorem 11.4.2 tells
us that Pg ([0, 1]) is dense in € ([0, 1]). So Pr((0,1]) is dense in LZ(0, 1), because the norm
uniform on ¥R([0,1]) is finer than the norm of L(0,1) : for all f € L%(0,1) and all ¢ > 0,
there exists g € ¥R([0,1]) such that ||f — g||2 < £/2; then there exists p € Fg([0,1]) such

that ||g — plloc < £/2; but then ||g — pll2 < [|9 — plloc = £/2, and therefore || f — p||2 < <.

It only remains to notice that g ([0, 1]) is generated by the sequence defined by:

p(t) =1, p(t)=t, pt)=12, , palt)=t",
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to obtain the separability of L%(0,1).

Note by the way that, we have proven the separability of € namssr([0, 1])- O

[ Corollary 2.5.1. L3(0,1) is isomorphic to the real space £, .

This is the theorem demonstrated by Fisher and Riesz in 1907. The essential point being
the fact that L3(0,1) is complete.
Proof of the Stone-Weierstrass Theorem.

It is done in several stages.
Step 1. There exists a sequence of real polynomials (r,.)nm which converges uniformly on

[0,1] to the square root function 1 : ¢ +-3 /2.

Proof. We define (ry),,.o by induction, starting from rp = 0 and setting, for all n =0:
1 2
e 1(t) = ralt) + 3 (¢ [ral0)).

It is clear, by induction, that the r, are polynomials. Moreover, for all n = 0, we have
0 < rn(t) € VT indeed, by induction: we have, on the one hand, t — [r..(t)]2 = 0 and

therefore rp44(t) = rn(t) = 0, and on the other hand:
VE = rasa(t) = [VE - ra(0)] [1 5 (Vi r..(e))] >0

because VT 4 rq(t) € VI + vE = 2V < 2. Note that in passing, we saw that the sequence
(rn )20 is increasing.

Being increasing and increasing, it converges towards a limit r(t). The recurrence relation
shows that r(t) = /T. It remains to be seen that there is uniform convergence. First method:
by hand. Let us set £,(t) = v — rp(t). We saw above, since rp(t) = 0, that:

0 € €ns1(t) =€alt) [l I r,.(:))] <éenlt) (1 _ "TE)
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SO :

0 < &n(t) < coft) (l B %)" - \/i(‘ ) g)"

< sup 21-z)z" (posex=1-Vi/2)
0£x1/2

=2z, (1= zp)xp withz, =nf(n+1)

2
e = n

s by

(m}
Second method. Just use the following theorem.
Theorem 2.5.4 (Dini’s theorem ). Let K be a compact space.
If (un)n>1 is an increasing sequence of conti functions u,, : K — R which simply

converges to a continuous function u : K — R, the convergence is uniform.

This is of course obviously false if we do not assume the continuous limit.
Proof. Let € >0.
For each z € K , there exists an integer N (z) such that:

nzN(z) = 0<u(z)-—u,(z)<ef3.

As u and uy ) are continuous, there exists a neighborhood of x, which can be taken to be

open, such that:
ju(z) —u(d)| < /3

eV(z) =
I"N(r) () - UN(:)(1)| <¢/3.

As K is compact, there exists ry,...,1,, € K such that:

K= OV(I.').

If N =max{N(zy),...,N (z5)}, we have, for n = N:

0<u(z)—uy(z) €6, Vrek,
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because x belongs to one of V (i) and n = N (zi); So :

0 < u(x)—tn(x) < u(z) — uy(ay(z)

< (ulx) — u () + () — unin) (2)) + (unim) () - uny (@)
1y

$€+€+ =§
I R

2nd step. If f € A, then |f| € A.

Proof. Indeed, we can assume f # 0. Let a = ||f]lc. We have [f(z)]*/a? € [0,1] for all
z € K. But, since ry, is a polynomial, and A is an algebra, we have r,, (f2/a?) € A if f € A.

Passing to the limit, we obtain:
- 2 2 1
|f] = a lim 1o (f?/a?) € 4

the limit being uniform, that is to say taken for the norm of %z(K). m}

Step 3. If f,g € A, then max{f, g}, min{f,g} € A.

Proof. It is enough to note that:

max(f,9) = 3(f +9+1f - g)

min{f,9) = 3(f + 9~ 1f - )
and use Step 2 (as well as the fact that A is a vector subspace). a

Step 3a. If f,g € A, then max{f, g}, min{f, g} € A.

Proof. This results from the fact that A satisfies the conditions required for A: it remains a
subalgebra (recall that the convergence in ¥(K) is the uniform convergence), and, since A

contains the constants and separates the points of K| it is a fortiori the same for A. a
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Of course, by recurrence:

fireenSn€A = max{fy,....fa} € barA and min{fi,..., [} €A.

Step 4. If r,y € K and x # y, then:

(Va,5€R) (3he A) h(z)=a and h(y)= beta

This is the first step in the approximation: we can obtain with a function of A values given

at two given points distinct from K.

Proof. As A separates the points, there exists g € A such that g(x) # g(y). Assume:

B—-a

h=dd+ ) -96)

(9 —g(=)).

We have h(x) = a,h(y) = 5,and h € A, because g € A,I € A, and A is a vector subspace. O

Step 5. For all f € €(K), for all z € K, and all £ > 0, there exists g € A such that:

g(xr) = f(z) and g(y) < f(y) +&,Vye K.

Proof. For all z € K such that = # z, it exists, by Step 4, taking a = f(z) and 8 = f(z), a
h: € A such that h:(x) = f(z) and hz(z) = f(2).
Let h, denote the constant function equal to f(z) I. Then:

(V= €K) he(z) = f(z) and he(z) = f(z).

The continuity of f and that of h; give a neighborhood, which can be taken to be open, V.

z

of z such that:

yeV(iz) = hy) < fly)+e.
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As K is compact, there exists a finite number of elements zy,...,2m € K such that:

K=V(z)U---UV (zm).-

Then g = inf {h;,,...,h;_} € A, by Step 3a, and 1 "we have, for all y € K: g(y) < f(y) +¢,

since y belongs to one of V (z;). a

Step 6. We have A = $p(K).

Proof. Let f € $g(K), and let & > 0.

For all x € K, there exists g, € A satisfying the conditions given in Step 5.

The continuity of f and that of gr give a neighborhood, which we can choose to be open,
U(x) of x such that:

yelU(r) = g:(v)= fly)—=.

The compactness of K makes it possible to find a finite number of elements xy,...,7, € K
such that:

K=U(z;)U---UU (zp).

Then ¢ = max {gs,,...,gx,} € A, thanks to Step 3a; and she checks:

fly)—c <oy = fly) +c, Vyek,

because each y € K is in one of U (z;).
This means that ||f — ¢l < .
As € > 0 was arbitrary, we lmvc]emzﬂ.

This completes the proof of Theorem 2.5.1. A

Bernstein’s proof for a compact interval of R

The general form of the Stone-Weierstrass Theorem was given by Stone in 1948. Orig-

inally, Weierstrass had shown, in 1885, that any continuous function on a closed bounded
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interval of R could be approximated there. uniformly by polynomials. To do this, he used a
convolution product.

In 1913, Bernstein gave a beautiful probabilistic proof, which we will present below. Let
us first note that, by changing the variable, we can assume that the interval in question is [0,
1]. The initial idea is as follows: we fix t € [0, 1] (also, if we want, we can takeonly 0 <t < 1),
and we consider independent random variables Xy, ..., X, all following Bernoulli’s law with
parameter t. Then Sp = X1 + --- + Xp follows the binomial law %(n,t) with parameters n
and t. The weak law of large numbers says that 32 t= E(X}) in probability. Then,
for any function f continuous on [0,1], we have E[f (-%l)] P f(t). Indeed, if € > 0
is given, the uniform continuity of f on [0,1] makes it possible to find § > 0 such that
|f(x) = f(2)] £ ¢ for |z — 2’| £ §; convergence in probability then gives a N = 1 such that

P (|2 —¢| > 8) legslants if n = N. Then, for n > N, we have:

IE [f (%)] N f(¢)| - /{I:-‘-""|>5} If [@] s f(‘)ldl’(w)
’ /{l'—..‘--qu} |f [@] - f(t)ldr(u)

< 2"f"ao€ + &

Or E[f (%)) = ShoCht(1 - 47 (£). We set:
BaNI© = ke - o7 (£)
k-0

It is a polynomial of degree n. It is called the n** Bernstein polynomial of f.
We have just seen that we have a simple convergence of By,(f) to f.
We will see that, thanks to a uniform estimation of the variance of Bernoulli variables, the

proof of the weak law of large numbers for these variables allows to obtain the uniform
convergence of B,(f) towards f.

Let us first recall that if X is a random variable following Bernoulli’s law

of parameter ¢, then its variance is Var(X) = t(1 — t). We have, by the Bienaymé-
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Tehebychev inequality, for all § > 0:

P(%—tl>6)=?(%—£(x)|>6)=P(

L s (%) - %vu(s,.)

% — mathbbE (%)I > 6)

= # z": Var(X;) (by independence)
j=1
Var(X) ¢(1-1¢)

2
5 oy < fracl/4né®.

Consider the continuity modulus of f, defined by:
wy(h) =sup {|f(t) - £ ')|: ]t - ¢| < h}.

Saying that f is uniformly continuous means that wy(h) =i 0. Let's set a § > 0, which we
will specify later. We have, for all ¢ € [0, 1] (we will be careful to differentiate the occurrence
w € 2 from the continuity module wy; we could have modified these notations |, but these are

the ones usually used!):

- B0 01 = [E[ 70 - 7 ()]
cx(fro-1(3) - Lo+ (5D

n

/{l'—'—“iﬂlﬂ} +/{P—=éﬂl>6}

>4)

S,
< wy(8) + 2 fllP (|e o=
1
S wy(8) + 2 floc gz
For any given £ > 0, let’s now choose & so thatwy(8) < £/2, then N 2 1 such that || floc gy <

€/2. We will have, for n = N,| f(t) — [Ba(f)|t) | € for all t € [0, 1], which proves that Ba(f)

tends uniformly towards f.



CHAPTER 2. HILBERT SPACES

separates the points of K : if u # v, there exists f € A such that f(u) # f(v); but then
Re f(u) # Re f(v) or Im f(u) # Im f(v), and Re f,Im f € Ag. It follows from the real case

that Ag is dense in ¥3(K). But then, A = Ag 414y is dense in ¥c(K ) = (K )+i%(K). O

Exemple. Let K be a compact part of C. The set of polynomials, with complex coeffi-
cients, in the two variables = and 2 is dense in ¥c(K).
Note that it is also, by identifying C with R2, the set of polynomials, with complex

coefficients, in the two real variables = and y, by identifying z = = + iy € C with(zr, y) € R2.

2.5.3 The trigonometric systelﬂ

We will consider here functions f : R — C periodic, with period 1 on R.

The surjective application:

eg: R—U={z€GC;z|=1}

t— ™ _y

allows them to be identified with functions defined on U. We can also identify them with the
functions defined on the torus T = R/Z.

Furthermore, we know that for any continuous function f on R of period 1, there exists
auniquccontinuomﬁmctionf:U—#Csm:hthat]:foc; (resp. f: T — C such
that f(r) = ddotf(z + Z)). The space ¥(R) of continuous functions on R of period 1,
provided with the norm || flloc = supsegr |f(z)|. is therefore identified with the space ¥'(U)
of continuous functions on the compact U. It is also identified with the subspace € = {f €

€([0,1)): £(0) = f(1)}. These identifications are isometric since:

sup |f(z)| = sup |f(z)| = sup|f(u)| = sup|f(£)l.
R ref0,1) el €T
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Definition 2.5.1. We call any finite sum a trigonometric polynomial.
Ny )
Z a,.,ch"'
n-N1y

with a, € C dnle,Nze Z N < Nz.
Note that by adding zero coefficients if necessary, we can always write a trigonometric

polynomial in the symmetric form:

N
Y, et

ne—N

where N is a positive integer.

We will note, for all n € Z:

The set en:n € Z is called the trigonometric system.

Trigonometric polynomials are identified with the usual polynomials in u and % on U,
since all u € U is written in the form u = ¢;(t) = €#™ | and then u"e?™™ — ¢,(t) , and that
i =e 2™ _ o .(t) . The complex Stone-Weierstrass theorem applied to %¢(U) therefore

gives:

Theorem 2.5.6. The set of trigonometric polynomials is dense in the space of

continuous functions of period 1 on R .
Now consider the space of measurable functions f : R — C of period 1 as :

/0' If(t)Pdt < +oo.

When quotiented by the subspace of negligible functions, this quotient is identified as L2(0,1) =
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L%(0,1) ; indeed, for any measurable function g : [0,1] — C, the measurable function:

g: [01]—cC

g(t)if0<t <1;

g(0) if t =1

extends by periodicity into a measurable function f : R — C of period 1, and fol |g(t)|?dt =
Is 5 (®)Pat.

These identifications having been made, we can state:

ITheorcm 2.5.7. The trigonometric system is an orthonormal base of L%(0,1) I

Corollary 2.5.2. The real space L%(O, 1) has an orthonormal basis formed by the

Sfunctions:

1, V2 cos(2xt), V2 cos(4xt), ..., V2 cos(2nnt), . ..

V2sin(2xt), V2sin(4xt),. .., V2sin(2nt),. ..

Remarks 1) Z being countable, we could re-index the trigonometric system with positive
integers.

2) The theorem means that, for all f € L%(0,1), we have:

=0
2

N
f- Y fi(nen

A!im
-»00 u——N

where the inner products:

If(n) =(f|en) = fol f(t)c—',,(-t—).dt - iﬂ‘c’)](t)c_z"i"‘dl

for n € Z, are called the Fourier coefficients of f. Parseval’'s formula is then written

[ 1(=)Pdz = S ez 7))
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We know that exists then a strictly increasing sequence of integers (In)n>1 such as :

i .
Jim 3 F(k)e*™ = f(t)
k——ln

for almost all ¢ € [0,1].
Proof of theorem 2.5.7 It is first casy to see that {e,;n € Z} is orthonormal:

_J—— ‘ lifn=
(en | &) = / B R TR LR S
0

Oifn#p
It is total because the trigonometric polynomials are dense in ¥ (U) and || - ||oc = || - ||2 , using

the following lemma:

Lemma 2.5.1. The set 1(R) of continuous functions on R of period 1, identified 4% =
{f € €((0,1]): §(0) = f(1)}, is dense in L*(0,1).

Indeed, if f € L2(0,1), then there exists, for alle > 0,9 € € = €(U) such that ||f —
gllz < €/2; there then exists a trigonometric polynomial p such that ||g — pllec < /2; but

llg— Pllz < llg — plloc < &/2; therefore || f — pll2 < <.

Proof of the lemma. Let f € L2(0,1) and let £ > 0. We know (Corollary 11.2.9) that
there exists h € €([0,1]) such that ||f — hll2 < €/2. Let M > 0 such that |h(t)] £ M for all
t € [0,1), and let us note a = 1 — (g5)°%

We will modify h on [a, 1] by setting h1(1) = h(0) and taking k1 affine between a and 1 .
Then hy € €, ||hy||, < M, and:
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12
I~ haly = ([ 1) - (o) )
<(1-a)" sup (|a(e)] + Ima(e)])
aztzl

<o X (M 4+ M) =

| m

We therefore have ||f — k12 < ¢ .
Application example. Let f: R — R be the function defined by f(t) =tfor0 <t < 1,

and extended by periodicity on R .

Then f € L?(0,1) and:

1
W= [ fa =3

The Fourier coefficients of f are:
- 1 :
fmy = [t e, nez

Forn=0: [jtdt =1/2; forn £ 0:

— 2 1 —2wint
Fn) = [“ 2'f'"] - ‘

—
=mn 0

Parseval’s formula || f||3 = ¥,.c2 |F(n)]? therefore gives:

1 1 1 1 N
ERE APy b A= P

from where :
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Fourier coefficient of functions of L'(0,1)

For any measurable f:[0,1] — C, the Cauchy-Schwarz inequality:

[ ([ )" ([ irora)” - ([ ropa)”

says that #2([0,1)) € #([0,1]). We therefore have a natural injection of L2(0,1) into

L'(0,1). By identifying L(0,1) with its image in L*(0, 1), we will write: [L2(0, 1) subseteqL'(0,1)|

For any f € L'(0,1), we can define the Fourier coefficients:

. 1 .
Fm) = [ ™4, nez

since |e 27| — 1. We have |f(n)| < || f]l; for all n € Z. Moreover :
Theorem 2.5.8 (Riemann-Lebesgue Lemma). For any function f € LY(0,1), its

Fourier cocfficients tend to 0 when |n|tends to infinity:

f(n) |nl_ﬂ)m0

Proof. If g € L?(0,1), Parseval’s formula:

lglz = 3, la(m)I?
nEZ

shows that we have, in particular, §(n) | I—) 0.
ni-*o0
Now, if f € L*(0,1), there exists, for all £ > 0, a function g € L?(0,1) (by example g
stepped, or g continuous) such that || f — g||l1 < &. As we have |f(n) — §(n)| < |If — gl1 <&,

we obtain | f(n)| £ [§(n)| + &; SO :

limsup | f(n)] < limsup |g(n)| +&=¢
In|—0 In|—roc

O

Hilbert space exhibits two phenomena (not occurring in Euclidean m-space) described in

70
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the examples below:

Example 2.1. Consider the sequence (pn) of points in Hilbert space where pp = (ay, az, .. .)
is defined by ag = 8a; ic. ag =1 ifi =k, and ag = 0 if i s k. Obeerve, as illustrated

below, that the projection (x; (pn)) of (pn) into each coordinate space converges to zero:

p1 =(1,0,0,0,...)
p2 =(0,1,0,0,...)
p2 =(0,0,1,0,..)

ps =(0,0,0,1,...)

-3
0-(0,0,0,0,...)
But the sequence (pn) does not converge to 0, since d(pe,0) = 1 for every k € N; in fact,
(pn) has no convergent subsequence.
Example 2.2. Let H# denote the proper subspace of H which consists of all points in H whose
first coordinate is zero. Observe that the function f : H — ¢ defined by f ({ay,az,...)) =

(0,a1,a2,...) is one-one, onfo and preserves distances. Hence Hilbert space is isometric to a

proper subspace of itself.
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