CHAPITRE V

EQUATIONS DIFFERENTIELLES

RESULTATS FONDAMENTAUX

Le but de ce chapitre est de démontrer les théoremes généraux d’existence et
d’unicité des solutions pour les équations différentielles ordinaires. Il s’agit du
chapitre central de la théorie, de ce fait nécessairement assez abstrait. Sa bonne
compréhension est indispensable en vue de la lecture des chapitres ultérieurs.

1. DEFINITIONS. SOLUTIONS MAXIMALES ET GLOBALES

1.1. EQUATION DIFFERENTIELLE ORDINAIRE DU PREMIER ORDRE

Soit U un ouvert de R x R™ et
f:U—R™
une application continue. On considere I’équation différentielle

(E) v =fty), (tyelU teR, yeR™.

Définition — Une solution de (E) sur un intervalle I C R est une fonction
dérivable y : I — R™ telle que

(i) (vtel) (Lyt)eU
(i) (vtel)  y'(t) = f(ty(0).

L’«inconnue » de 1'équation (E) est donc en fait une fonction. Le qualificatif
«ordinaire » pour ’équation différentielle (E) signifie que la fonction inconnue y
dépend d’une seule variable ¢ (lorsqu’il y a plusieurs variables ¢; et plusieurs dérivées
dy/0t;, on parle d’équations aux dérivées partielles).
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Ecriture en coordonnées — Ecrivons les fonctions & valeurs dans R™ en
termes de leurs fonctions composantes, c’est-a-dire

y=W o ym), S =01, fm)-

L’équation (E) apparait comme un systéme différentiel du premier ordre & m
fonctions inconnues yi, ..., Ym :

yi(t) = fl(t7y1(t)’ s aym(t))
E) {...
y;n(t) = fm(ta yl(t)v cee 7ym(t))'

Probléme de Cauchy — Etant donné un point (tg,y0) € U, le probleme de
Cauchy consiste a trouver une solution y : I — R™ de (E) sur un intervalle I
contenant ¢y dans son intérieur, telle que y(to) = yo.

Interprétation physique — Dans de nombreuses situations concretes, la
variable t représente le temps et y = (y1,...,ym) est une famille de parametres
décrivant 1’état d’un systeme matériel donné. L’équation (E) traduit physiquement
la loi d’évolution du systéme considéré en fonction du temps et de la valeur des
parametres. Résoudre le probleme de Cauchy revient a prévoir 1’évolution du
systeme au cours du temps, sachant qu'en ¢ = ty le systeme est décrit par les
parametres yo = (Yo,1,---,Yo,m). On dit que (to,yo) sont les données initiales du
probleme de Cauchy.

1.2. CAS DE LA DIMENSION UN (m = 1)
Si on note z = t, I’équation (E) se récrit

p_dy _

(E) V=0 = f(z,y), (2,9) €U CRxR.

Yor— — —

I
<)
8
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Résoudre le probleme de Cauchy revient & trouver une « courbe intégrale » de (E)
passant par un point donné (zg,yo) € U.

Champ des tangentes — A tout point M = (zg, o), on associe la droite Dy
passant par M et de coefficient directeur f(xq,yo) :

Dy iy —yo = f(@0,y0)(x — 7o)

L’application M — Dy, est appelée champ des tangentes associé & I’équation (E).
Une courbe intégrale de (E) est une courbe différentiable C' qui a pour tangente en
chaque point M € C la droite Dj; du champ des tangentes. L’exemple ci-dessous

correspond a 1’équation y' = f(x,y) = z — 3.

D]\/[

Lignes isoclines de (E) — Par définition, ce sont les courbes
Iy flz,y) =p

correspondant a l’ensemble des points M ou la droite Djy; a une pente donnée p.

La courbe I'y joue un réle intéressant. On a en effet un régionnement de U :

U=U,UU_UTy ol
Up={MeU; f(M)>0}, U_-={MeU; f(M)<O0}.

Les courbes intégrales sont croissantes dans U,, décroissantes dans U_, station-
naires (souvent extrémales) sur I'y.

Exemple — Les lignes isoclines de I'équation v/ = f(z,y) = = — y? sont les
paraboles z = 3% + p.
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U,

Ty
U_

1.3. SOLUTIONS MAXIMALES

Nous introduisons d’abord le concept de prolongement d’une solution. L’expression
solution mazximale est alors entendue implicitement au sens de la relation d’ordre
fournie par le prolongement des solutions.

Définition 1 — Soienty: I — R™, §: 1 — R™ des solutions de (E). On dit que
g est un prolongement dey si I DI et yl; = y.

Définition 2 — On dit qu’une solution y : I — R™ est maximale si y n’admet
pas de prolongement iy : I — R™ avec 2 1.

Théoréme — Toute solution y se prolonge en une solution maximale y (pas
nécessairement unique).

Démonstration.* Supposons que y soit définie sur un intervalle I = |a, b| (cette
notation désigne un intervalle ayant pour bornes a et b, incluses ou non dans I).
11 suffira de montrer que y se prolonge en une solution ¥ : |a,g\ — R™ (b > b)
maximale a droite, c’est-a-dire qu’on ne pourra plus prolonger y au dela de b. Le
méme raisonnement s’appliquera a gauche.

Pour cela, on construit par récurrence des prolongements successifs y(1), y(2) . .. de y
avec Y : |a,bg[— R™. On pose y) =y, b1 = b. Supposons y(,_1) déja construite
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pour un indice k > 1. On pose alors
¢k = sup{c; y(x—1) se prolonge sur |a,c[ }.

On a ¢ > bip_1. Par définition de la borne supérieure, il existe by tel que
bp—1 < br < ¢ et un prolongement yu) : |a,bp[— R™ de yp_1) avec by
arbitrairement voisin de cj ; en particulier, on peut choisir

cr —bp < £ si ¢ < 400,
b >k si ¢ = 4o00.

La suite (cx) est décroissante, car 'ensemble des prolongements de y(;_1) contient
I'ensemble des prolongements de y(x) ; au niveau des bornes supérieures on a donc
Cp > Cka1. Sl ¢ < 400 a partir d'un certain rang, les suites

by <by <...<bp<...<¢p <1 <...<

sont adjacentes, tandis que si ¢y = 400 quel que soit k on a by > k. Dans les deux
cas, on voit que B
b= lim b, = lim c¢.

k—-+4oco k—-+o0

Soit y : |a,g| — R™ le prolongement commun des solutions y), éventuellement
prolongé au point b si cela est possible. Soit z : |a,c| — R™ un prolongement de 3.
Alors z prolonge y(,_1) et par définition de ¢y il s’ensuit ¢ < ¢x. A la limite il vient
¢ < ¢, ce qui montre que la solution y est maximale & droite. |

1.4. SOLUTIONS GLOBALES

On suppose ici que 'ouvert U est de la forme U = J x € ou J est un intervalle de
R et © un ouvert de R™.

Définition — Une solution globale est une solution définie sur intervalle J tout
entier.

y
U
Ya)
0 /—\
mu)
\ \
! \
] {
0 J t

Attention : toute solution globale est maximale, mais la réciproque est fausse.
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Sur le schéma ci-dessus par exemple, y(;) est globale tandis que y(2) est maximale
mais non globale.

Donnons un exemple explicite de cette situation.

Exzemple — (E) v =y*swrU=RxR.
Cherchons les solutions t — y(t) de (E).

e On a d’une part la solution y(t) = 0.

e Si y ne s’annule pas, (E) s’écrit ;’—; =1, d’ol1 par intégration

1
e =

Cette formule définit en fait deux solutions, définies respectivement sur | — oo, —C|[
et sur | —C, 400 ; ces solutions sont maximales mais non globales. Dans cet exemple
y(t) = 0 est la seule solution globale de (E).

1.5. REGULARITE DES SOLUTIONS

Rappelons qu’une fonction de plusieurs variables est dite de classe C* si elle admet
des dérivées partielles continues jusqu’a l'ordre k.

Théoréme — Si f : R xR™ DU — R™ est de classe O, toute solution de (E)
y' = f(t,y) est de classe C*+1,

Démonstration. On raisonne par récurrence sur k.

e k=0 : f continue.

Par hypothese y : I — R est dérivable, donc continue.

Par conséquent y/'(t) = f(t,y(t)) est continue, donc y est de classe C.

o Si le résultat est vrai & I'ordre k — 1, alors y est au moins de classe C*. Comme

f est de classe C*, il s’ensuit que y’ est de classe C* comme composée de fonctions
de classe C*, donc y est de classe C*+1.

Calcul des dérivées successives d’une solution y — On suppose pour
simplifier m = 1. En dérivant la relation y/(z) = f(x,y(z)) il vient

y'(x)
yl/

fol y(@) + f(z, y(@)y' (@),
f;:(l'vy) + f’(:c,y)f(a:,y) = fm(x’y)

avec fl = f/+ f,f- Notons de maniere générale I'expression de la dérivée k-ieme
y*®) en fonction de .,y sous la forme

y®) = (g y)
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d’apres ce qui précede f00 = f, fl = ¢/ 4 f; f. En dérivant une nouvelle fois, on

trouve
y B = (FE) (@, y) + (FE) (2, y) Y
= (fF) (@) + () (2 y) £(2,y).

On obtient donc les relations de récurrence

<

(k+1):f[k]( Y)
FH = (A (fTY f avee £ = .

En particulier, le lieu des points d’inflexion des courbes intégrales est contenu dans
la courbe £l (z,7) = 0.

2. THEOREME D’EXISTENCE DES SOLUTIONS

Dans tout ce paragraphe, on consideére une équation différentielle

(E) y' =f(ty)

ou f:U — R™ est continue et U est un ouvert de R x R™.

2.1. EQUIVALENCE DU PROBLEME DE CAUCHY AVEC LA RESOLUTION D’UNE
EQUATION INTEGRALE

Le lemme tres simple ci-dessous montre que la résolution de (E) est équivalente &
la résolution d’une équation intégrale :

Lemme — Une fonction y : I — R™ est une solution du probléme de Cauchy de

données initiales (to,yo) si et seulement si

(i) y est continue et (Vt € I) (t,y(t)) € U,

(i) (e I) y(t) —yo+/fuy

En effet si y vérifie (i) et (ii) alors y est différentiable et on a y(to) = wyo,
y'(t) = f(t,y(t)). Inversement, si ces deux relations sont satisfaites, (ii) s’en déduit
par intégration. [

2.2. CYLINDRES DE SECURITE

Pour résoudre ’équation différentielle (E), on va plutdt chercher & construire des
solutions de ’équation intégrale 2.1 (ii), et en premier lieu, on va montrer qu’une
solution passant par un point (to,yo) € U ne peut s’éloigner «trop vite » de yo.
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On note || | une norme quelconque sur R™ et B(x,r) (resp. B(z,r)) la boule
ouverte (resp. fermée) de centre x et de rayon r dans R™. Comme U est supposé
ouvert, il existe un cylindre

Co = [to — To, to + To] x B(yo, 7o)

de longueur 27j et de rayon rq assez petit, tel que Cy C U. L’ensemble Cj est fermé
borné dans R™*!, donc compact. Ceci entraine que f est bornée sur Cp, c’est-a-dire

M= sup |[f(t,y)] < +oo.
(t,y)eCo

Soit C' = [tg — T, to + T] x B(yo,70) C Cp un cylindre de méme diametre que Cy et
de demi-longueur T < Ty.

Définition — On dit que C est un cylindre de sécurité pour l’équation (E) si toute
solution y : I — R™ du probléeme de Cauchy y(to) = yo avec I C [to — T,to + T
reste contenue dans B(yo,To).

Rm,

Yo| e —

2To

Sur le schéma ci-dessus, C est un cylindre de
sécurité mais Cy n’en est pas un : la solution
y «s’échappe » de Cy avant le temps to+ Tj.

Supposons que la solution y s’échappe de C' sur lintervalle [tg,to + T]. Soit 7 le
premier instant ou cela se produit :

T =inf{t € [to,to + T|; lly(t) — yol| > 70}
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Par définition de 7 on a ||y(t) — yol|| < r pour ¢ € [to, 7[, donc par continuité de y
on obtient ||y(7) — yo|| = ro. Comme (t,y(t)) € C C Cy pour t € [tg, 7], il vient
ly" @Ol = 1F & y(E)]] < M et

o= ) = woll = | [y < asr =10

donc 7 — tg > 1r9/M. Par conséquent si T < ro/M, aucune solution ne peut
s’échapper de C sur [tg — T, to + T.

Corollaire — Pour que C soit un cylindre de sécurité, il suffit de prendre

) r
T < min (TO7 MO)

Le choiz T = min (TO, %) convient par ezemple.
Remarque — Si C C Cj est un cylindre de sécurité, toute solution du probleéme

de Cauchy y : [to — T, to + T] — R™ vérifie ||y/(¢)|| < M, donc y est lipschitzienne
de rapport M.

2.3. SOLUTIONS APPROCHEES. METHODE D’EULER

On cherche & construire une solution approchée de (E) sur un intervalle [to, to + 7.
On se donne pour cela une subdivision

to <t <ty...<ty_1<ty=tog+T.
Les pas successifs sont notés
B =tnst —tn, 0<n<N-—1,

et on pose
hmax = max(ho, ey hN71)~

La méthode d’Euler (ou méthode de la tangente) consiste & construire une solution
approchée y affine par morceaux comme suit. Soit y, = y(¢,). On confond la
courbe intégrale sur [t,,t,+1] avec sa tangente au point (., yn) :

y(t) = Yn + (t - tn)f(tnayn)v te [tn;tn+1]-
Partant de la donnée initiale g, on calcule donc ¥, par récurrence en posant

{yn—i-l :yn+hnf(tn7yn)
tn-‘rl:tn“‘hn) OS”SN_l

La solution approchée y s’obtient graphiquement en tragant pour chaque n les
segments joignant les points (tn, ¥n), (tnt1, Ynt1)-
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to t ty s ... tn=1lo+T 1

On construit de méme une solution approchée sur [ty — T',¢g] en prenant des pas
hp, < 0.

Proposition 1 — SiC = [to—T,to +T] x B(yo,r0) est un cylindre de sécurité
tel que T' < min (TO, %), to_ute solution approchée y donnée par la méthode d’Fuler
est contenue dans la boule B(yo,T0)-

Démonstration. On vérifie par récurrence sur n que
{y([t0>tn]) C B(yo, o)
ly(t) —yoll < M(t —to) pour tE€ [to,tn].

C’est trivial pour n = 0. Si c’est vrai pour n, alors on a en particulier (¢,,y,) € C,
donc || f(tn, yn)|| < M, et par conséquent

ly(t) = ynll = (@ = to)[lf (tns yn) | < M(t = 1)
pour ¢ € [t,,tpt1]. Par hypothése de récurrence
lom = woll = lly(tn) = yoll < M(tn —to).
L’inégalité triangulaire entraine alors Vt € [ty,, t,41] :
ly(t) = yoll < M(t —tn) + M(tn —to) < M(t —to).
En particulier |y(t) — yo|| < MT < rg, d’olt
y([to: tn+1]) € Blyo, o). u

Définition — Soit y : [a,b] — R™ une fonction de classe C1 par morceauz (ceci
signifie qu’il existe une subdivision a = ag < a1 < ... < ay = b de [a,b] telle que
pour tout n la restriction Y, 4, ,,] soit de classe C' ; on suppose donc seulement
la continuité et l'existence d’une dérivée a droite et & gauche de y aux points ay ).
On dit que y est une solution e-approchée de (E) si

(i) (vielab]) (Hyt)eU;
(i) (vn), (Vt €lan, anal)  ly'(t) = F(Hy@)] <e.
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Autrement dit, y est une solution e-approchée si y vérifie (E) avec une erreur < ¢.

Majoration de l’erreur pour les solutions approchées d’Euler — Soit
wy le module de continuité de f sur C, défini par

wr(u) = max{|| f(tr,y1) — f(t2, y2)|l5 [t1 —ta| + |ly1 — yol| < u}

o u € [0,400[ et ou les points (t1,y1), (t2,y2) parcourent C. Comme C est
compact, la fonction f est uniformément continue sur C, par conséquent

lim wy(u) =0.

u—04

On suppose dans la suite que C' = [tg — T,to + T] x B(yo,70) est un cylindre de
sécurité tel que T' < min (To, TMO)

Proposition 2 — Soit y : [to — T,tg + T] — R™ une solution approchée
construite par la méthode d’Euler avec pas mazimum hyay. Alors Uerreur € vérifie
e <wr((M + 1)hmax)-

En particulier, 'erreur € tend vers 0 quand hy,.x tend vers 0.

Démonstration. Majorons par exemple ||y/(t) — f(¢,y(¢))| pour ¢ € [to,to + T,
ou y est la solution approchée associée a la subdivision tg < t; < ... <ty =tg+T.
Pour t €ty tny1], on a y'(t) = f(tn,yn) et

ly(@) = ynll = (€ = ta) 1f (b yn) | < M,
[t —tn| < hy,.

Par définition de wy, il vient

[ (tnsyn) = F&y(O)I] < wp(Mhy + ha),
1y () = £t y))] < wr (M + 1hmax. ]

Montrons finalement un résultat sur la convergence des solutions approchées.

Proposition 3 — Soit y,y : [to — T,to + T] — R™ une suite de solutions
ep-approchées contenues dans le cylindre de sécurité C, telles que y,) (to) = yo et
limy,_ yoc €, = 0. On suppose que y(,) converge uniformément sur [to — T',to + T
vers une fonction y. Alors y est une solution exacte du probléme de Cauchy pour
Uéquation (E).

Démonstration. Comme HyEp) (t) = f(t,y@w)(t)|] < ep, il vient apres intégration

t
190 () — w0 — / (1t iy () )] < £t — to).
to
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Si (S — ma - on Olt o
P [to—T,ti(-i,-T] ”y Y(p) ”’ AY q

1 (s Yy () = f (u, y(w)) || < wp(dp)

tend vers 0, d’ou, grace a la convergence uniforme :

t
y(t) —yo — flu,y(u))du =0, Vteto—T,to+T).

to

Comme la limite uniforme y est continue, le lemme du début du § 2 entraine que y
est une solution exacte de (E).

2.4. THEOREME D’ASCOLI

Il s’agit d’un résultat préliminaire de nature topologique que nous allons formuler
dans le cadre général des espaces métriques. Si (F,0) et (F,d’) sont des espaces
métriques, rappelons que par définition une suite d’applications ¢, : £ — F
converge uniformément vers ¢ : E — F si la distance uniforme

d(ppy, @) = sup ' (p(py (), ()

tend vers 0 quand p tend vers +oo.

Théoréme (Ascoli) — On suppose que E, F sont des espaces métriques compacts.
Soit 9,y + E — F une suite d’applications k-lipschitziennes, ou k > 0 est une
constante donnée. Alors on peut extraire de (,) une sous-suite ¢y, ) uniformément
convergente, et la limite est une application k-lipschitzienne.

Soit Lip,(E, F) ensemble des applications E — F lipschitziennes de rapport k.
Une autre maniere d’exprimer le théoréeme d’Ascoli est la suivante.

Corollaire — Si E, F sont compacts, alors (Lip,(E, F),d) est un espace métrique
compact.

Démonstration. On construit par récurrence des parties infinies
S9=NDS5D...085,.1D085,D...

telles que la sous-suite (¢(p))pes, ait des oscillations de plus en plus faibles.
Supposons S, _1 construite, n > 1. Comme FE, F sont compacts, il existe des
recouvrements finis de £ (resp. de F') par des boules ouvertes (B;);cr, resp. (B});e,
de rayon % Notons I = {1,2,...,N} et z; le centre de B;. Soit p un indice fixé.
Pour tout i = 1,..., N il existe un indice j = j(p, 1) tel que @) (z;) € B;.(p o

On considere ’application

Sn71_>JN7 p'—>(](p71)77.7(p7N))
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Comme S, est infini et que JV est fini, I'un des éléments (I,...,In) € JV
admet pour image réciproque une partie infinie de S,,_1 : on note .S,, cette partie.
Ceci signifie que pour tout p € S,, on a (§(p,1),...,45(p, N)) = (I1,...,In) et donc
@) (i) € B] . En particulier

[\]

(Vp,q € Sn) 8" (0(p) (i), o) (2i)) < diam B), < o

Soit # € F un point quelconque. Il existe ¢ € T tel que z € B;, d’ou §(z,z;) < %

L’hypothese que les () sont k-lipschitziennes entraine

6/(90@)('17)7 P(p) (xl)) <- 5/(¢(Q) ($), P(q) ($,)) <

S|

k
n
L’inégalité triangulaire implique alors (Vp,q € S,,)

2 k_2k+2

8 () (@), o) (7)) < e

Désignons par p,, le n-ieme élément de S,,. Pour N > n on a py € Sy C S, donc

2k +2

8 (@) (), 0(pa) () < - (*)

Ceci entraine que ¢, () est une suite de Cauchy dans F' pour tout x € E. Comme

F est compact, F' est aussi complet, donc ¢, )(x) converge vers une limite o(x).

Quand N — +oo, (*) implique & la limite d(¢p, ), ») < zl“n—” On voit donc que

©(p,) converge uniformément vers . Il est facile de voir que ¢ € Lip,(E, F). ®

Ezxercice — On pose E = [0,7], F = [—1,1], pp(x) = cos pz. Calculer

| @t = i@y
et en déduire que d(pp, pq) > 1 sip # q. L'espace
Lip (B, F) =, Lipi (B, F)

est-il compact ?

2.5. THEOREME D’EXISTENCE (CAUCHY-PEANO-ARZELA)

L’idée est d’utiliser le théoreme d’Ascoli pour montrer ’existence d’une sous-suite
uniformément convergente de solutions approchées. On obtient ainsi le

Théoréme — Soit C = [tg — Tty + T] x B(yo,m0) avec T < min (TO, %) un
cylindre de sécurité pour l'équation (E) : y' = f(t,y). Alors il existe une solution
y:lto—T,to+T] — Blyo,r0) de (E) avec condition initiale y'(to) = yo.
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Démonstration. Soit y(,) la solution approchée donnée par la méthode d’Euler
en utilisant la subdivision avec pas constant h = T/p des intervalles [tg,to + T et
[to—T,to]. Cette solution est ep,-approchée avec erreur €, < wy((M+1)T/p) tendant
vers 0. Chaque application y,) : [to — T,to + T] — B(yo, 7o) est lipschitzienne de
rapport M, donc d’apres le théoreme d’Ascoli on peut extraire de (y,)) une sous-
suite (y(p,,)) convergeant uniformément vers une limite y. D’apres la proposition 3
du § 2.3, y est une solution exacte de ’équation (E). [ |

Corollaire — Par tout point (to, yo) € U, il passe au moins une solution mazimale
y: I —R™ de (E). De plus, Uintervalle de définition I de toute solution mazimale
est ouvert (mais en général, il n’y a pas unicité de ces solutions mazimales).

On vient de voir en effet qu’il existe une solution locale z définie sur un intervalle
[to — T,to + T]. D’aprés le théoréme du § 1.3, z se prolonge en une solution
maximale y = Z : |a,b] — R™. Si y était définie au point b, il existerait une
solution y(1y : [b —&,b +¢] — R™ du probleme de Cauchy avec donnée initiale
(b,y(b)) € U. La fonction y : |a,b+¢] — R™ coincidant avec y sur |a, b] et avec y(1)
sur [b,b+ €] serait alors un prolongement strict de y, ce qui est absurde. |

FExemple — Pour donner un exemple de non unicité, il suffit de considérer
Péquation y' = 3|y|>/®. Le probleme de Cauchy de condition initiale y(0) = 0
admet alors au moins 2 solutions maximales :

ya)(t) =0, yot)=t>, teR.

2.6. CRITERE DE MAXIMALITE DES SOLUTIONS

Nous allons voir ici une condition géométrique nécessaire et suffisante permettant
d’affirmer qu’une solution est maximale.

Théoréme — U un ouvert de R x R™ ety : I = [tg,b] — R™ une solution de
Uéquation (E) y' = f(t,y), ot f est une fonction continue sur U. Alors y(t) peut
se prolonger au dela de b si et seulement si il existe un compact K C U tel que la
courbe t — (t,y(t)), t € [to,b], reste contenue dans K.

Autrement dit, y est non prolongeable au dela du temps b si et seulement si (¢, y(t))
s’échappe de tout compact K de U quand ¢t — b_. La conséquence suivante est
immédiate.

Critére de mazximalité — Une solution y : a,b] — R™ de (E) est mazimale
si et seulement si t — (t,y(t)) s’échappe de tout compact K de U quand t — a
ou quand t — b_. Puisque les compacts sont les parties fermées bornées, ceci
signifie encore que (t,y(t)) s’approche du bord de U ou tend vers oo, c’est-a-dire
It] + [y + 1/d((t, y(t)),0U) — +oo quand t — ay out — b_.

Démonstration du théoreéme. La condition de prolongement est évidemment
nécessaire, puisque si y(t) se prolonge a [tg, b], alors I'image du compact [to,b] par
I'application continue ¢ — (t,y(t)) est un compact K C U.
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Inversement, supposons qu'’il existe un compact K de U tel que (t,y(t)) € K pour
tout ¢ € [to, b[. Posons
M= sup [[f(t,y)] <+oo
(t,y)eK

qui est fini par continuité de |f|| et compacité de K. Ceci entraine que t — y(t) est
lipschitzienne sur [tg, b[, donc uniformément continue, et le critére de cauchy montre
que la limite £ = lim;_;, y(t) existe. Nous pouvons prolonger y par continuité en
b en posant y(b) = ¢, et nous avons (b,y(b)) € K C U puisque K est fermé. La
relation y/(t) = f(¢,y(t)) montre alors que y est de classe C* sur [to, b]. Maintenant,
le théoreme d’existence locale des solutions implique qu’il existe une solution locale z
d probléme de Cauchy de donnée initiale z(b) = ¢ = y(b) sur un intervalle [b—e, b+-<].
On obtient alors un prolongement § de y sur [tg,b + £] en posant §(t) = z(t) pour
t € [b,b+ ¢]. Le théoréme est démontré. [ |

3. THEOREME D’EXISTENCE ET D’UNICITE DE CAUCHY-LIPSCHITZ

Reprenons les notations du début du § 2. On suppose ici en outre que f est
localement lipschitzienne en y : cela signifie que pour tout point (¢g,yo) € U il existe
un cylindre Cy = [to—Tp, to+To] X B(yo,70) C U et une constante k = k(tg, o) > 0
tels que f soit k-lipschitzienne en y sur Cj :

(Y1), (t32) € Co) 1) = F(t2) | < Kllys = psl.

Remarque — Pour que f soit localement lipschitzienne en y sur U, il suffit que

f admette des dérivées partielles gg L1 <1i,j <m, continues sur U. Soit en effet
J

A= max sup
1<i,j<m (t,y)€Co

afi ’

Le nombre A est fini puisque Cy est compact. Le théoréme des accroissement finis
appliqués a f; sur Cy donne
afi

By, W15 — y2,5)

filt,yn) — filt,y2) = Z

avec £ € |yi,y2[. On a donc

max |fi(t,y1) = f(t,y2)] <mA- mjaX|y1,j — Y2,

Sous ces hypotheses sur f, nous allons montrer que la solution du probleme
de Cauchy est nécessairement unique, et que de plus toute suite de solutions
e-approchées avec ¢ tendant vers 0 converge nécessairement vers la solution exacte.
Compte tenu de 'importance de ces résultats, nous donnerons ensuite une deuxieme
démonstration assez différente basée sur le théoréeme du point fixe (chapitre IV,

§1.1).
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3.1. LEMME DE GRONWALL. CONVERGENCE ET UNICITE LOCALES

Soit Cy = [to — To,to + To] x B(yo,m0) C U un cylindre sur lequel f est k-lipschi-
tzienne en y et soit M = supg, ||f]|. On se donne ¢ > 0 et on considere des solutions
Y(1) et y(2) respectivement e1-approchée et ep-approchée du probleme de Cauchy de
donnée initiale (¢o,yo), avec €1,£2 < €.

On a alors [[y(,)(t)|| < M + ¢, et un raisonnement analogue a celui du § 2.1 montre
que les graphes de y(1), y(2) restent contenus dans le cylindre

C = [to—T,to+T] x B(y,m0) C Co
des que T' < min (To, #ia), ce qu’on suppose désormais.

Lemme de Gronwall — Sous les hypothéses précédentes, on a

eklt—tol _ 1
) (t) — yy(@®)I < (61 + €2) —— V€ [to — T, to + T1.

Démonstration. Quitte a changer ’origine du temps on peut supposer tg = 0 et,
par exemple, t € [0, T]. Posons alors

t
olt) = [ o () = oo ().
Comme y;) satisfait '’équation différentielle & €; prés, on obtient par soustraction
[9(2) () = y(1y O < N F(Eye (@) = F(Eyay (O + e+ &2
<klya®) -yl +e1 + e,

en utilisant ’hypothese que f est k-lipschitzienne en y. De plus

oy (1) — e (£) = / (o) (1) — ¥y ()

puisque ¥(2)(0) = y(1)(0) = yo. On en déduit

ly(2) () =y (@B < k/o Y2y (u) — yay(u)ldu + (e1 + e2)t (*)

c’est-a-dire
V'(t) < ko(t) + (g1 + £2)t.

k

Apres soustraction de kv(t) et multiplication par e=*t  on trouve

(' () — ko())e ™ = 2

o (0()e™) < (e +ex)te™.
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Grace a une nouvelle intégration (noter que v(0) = 0), il vient

! 1-(1 —k
v(t)e ™™ < / (61 4 e9)ue ™ du = (g1 + &2) 1= (+kte™
0

k2 ’
kt
e™ — (1+kt
o(t) < (1 +ep) S UMD,
k

tandis que la premiere inégalité intégrée (x) donne

ekt — 1
ly2)(8) = yay @I < kv(t) + (e1 +e2)t < (1 +e2) —
Le cas ou t € [T, 0] s’obtient par un changement de variable ¢ — —t. [ |

Théoréme (Cauchy-Lipschitz) — Si f : U — R™ est localement lipschitzienne
en y, alors pour tout cylindre de sécurité C = [tg — T,to + T] x B(yo,m0) comme
ci-dessus, le probleme de Cauchy avec condition initiale (to,yo) admet une unique
solution exacte y : [to — T,to +T] — U. De plus, toute suite y,) de solutions
ep-approchées avec €, tendant vers 0 converge uniformément vers la solution exacte
y sur [to — T,to+ 7.

Existence. Soit y(,) une suite quelconque de solutions &, approchées avec
lime, =0, par exemple celles fournies par la méthode d’Euler. Le lemme de
Gronwall montre que

efT 1
Ay Y) < (Ep+eq) — sur  [to — T to + T,

par conséquent y(,) est une suite de Cauchy uniforme. Comme les fonctions y,)
sont toutes & valeurs dans B(yo, 7o) qui est un espace complet, Y(p) CONVErge Vers
une limite y. Cette limite y est une solution exacte de ’équation (E) d’apres la

proposition 3 du § 2.3.

Unicité. Si y(1),y2) sont deux solutions exactes, le lemme de Gronwall avec
€1 = g2 = 0 montre que y(1) = y(2)- |

3.2.*¥ AUTRE DEMONSTRATION (PAR LE THEOREME DU POINT FIXE)

Soit C' = [tg — T,to + T] x B(yo,m0) C Cpy avec T < min (TO, %) un cylindre de
sécurité pour (E).

Notons J = €([to — T\ to + T, B(yo,70)) 'ensemble des applications continues de
[to — T,to + T] dans B(yp,ro), muni de la distance d de la convergence uniforme.

A toute fonction y € F, associons la fonction ¢(y) définie par

¢@®zm+lf@%@%ut6m—ﬂm+ﬂ
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D’apres le lemme du § 2.1, y est une solution de (E) si et seulement si y est un point
fixe de ¢. On va donc essayer d’appliquer le théoreme du point fixe. Observons que

160 ~soll = | Ftwswtuna] < atie - to < 2T < 1o,

donc ¢(y) € F. L'opérateur ¢ envoie donc F dans F. Soient maintenant y, z € F' et
Yp) = PP(Y), 2(p) = ¢*(2). On a

I @) = =@ = | [ () = ()
<|/ llyta) — =) da] < Kt — told(y.2).
De méme

I () = 2 0] < | [ Flin(w) = 21w o

t—to]?
‘ / k- klu — told(y, )du’ _pelt=tl _ oF a4y, 2).
to
Par récurrence sur p, on vérifie aussitot que
|t — tol”
1Y) (1) = 2 (D] < kP ———— d(y, 2),
en particulier
LPTP

d(¢¥(y), 9" (2)) = d(Yp), 2(p)) < d(y, 2) (%)
et ¢P est 11psch1t21enne de rapport f=— sur . Comme lim,_, o “—=— kap = 0, il existe
p assez grand tel que 212 < 1 ; pour une telle valeur de p, ¢ est une application

contractante de F dans ?. Par ailleurs, F est un espace métrique complet. Le
théoréme du point fixe démontré au chapitre IV (dans sa version géneralisée au cas
d’applications dont une itérée est contractante) montre alors que ¢ admet un point
fixe unique y. Nous avons donc bien redémontré le théoreme de Cauchy-Lipschitz
affirmant l'existence et d’unicité de la solution du probleme de Cauchy. [ ]

Remarque — D’aprés (x), on voit que pour toute fonction z € F la suite itérée
2(p) = ¢P(2) converge uniformément vers la solution exacte y du probleme de
Cauchy.

3.3. UNICITE GLOBALE

Le théoréeme d’unicité locale entraine facilement un résultat d’unicité globale, au
moyen d’un « raisonnement de connexité ».
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Théoréme — Soient ygy, ye2) : I — R™ deux solutions de (E), avec f localement
lipschitzienne en y. Siya) et yiz) coincident en un point de I, alors yiy = y(2)
sur 1.

Démonstration. Supposons y(1)(to) = y(2)(to) en un point to € I. Montrons par
exemple que y(1)(t) = y(2)(t) pour t > tg. S’il n’en est pas ainsi, considérons le

premier instant ¢ ou y(1) et y(z) bifurquent :

to=1inf{teI; t >ty et yu)(t) # yo ()}

On a par définition y(1)(t) = y(2)(t) pour t € [to, to[ et par continuité il s’ensuit que
y(l)(fo) = y(Q)(%vo). Soit 7y ce point et soit C= [fo—f, %vo—i—f] x B(yo,70) un cylindre
de sécurité de centre (to,yo). Le théoréme d'unicité locale implique que y(1) = y(2)
sur [fo — f, to + f], ce qui contredit la définition de #y. L’unicité est démontrée. W

Corollaire — Si [ est localement lipschitzienne en y sur U, pour tout point
(to,yo) € U il passe une solution mazimale y : I — R™ et une seule.

Interprétation géométrique — Le théoréme d’unicité signifie géométri-
quement que des courbes intégrales distinctes ne peuvent se couper.

Ezxzemple — y' =3|y|*/3 sur U =R x R.

Déterminons l'ensemble des solutions maximales. On a ici f(t,y) = 3Jy/*/3,
g—i = signe (y) x 2Jy|~/3 pour y # 0. La dérivée y # 0 la dérivée a—f est continue
sur les demi-plans y > 0 et y < 0, mais discontinue en y = 0. La fonction f est
localement lipschitzienne en y sur {y > 0} et {y < 0}, mais il est facile de voir
qu’elle ne 'est pas au voisinage de tout point (¢p,0) € R x {0} (on a vu d’ailleurs
quil n’y a pas d’unicité locale en ces points). Sur {y > 0} (resp. sur {y < 0})
I’équation équivaut a

Wl

d'ott ys =t +Cy  (resp. (—y)~3 = —(t + Cy)) soit y(t) = (t + C;)3. Siy est une
solution maximale dans U = R x R, alors 3’ > 0, donc y est croissante. Notons

a =inf{t,y(t) =0}, b=-sup{t; y(t) =0}.

Sia# —oo, on a y(a) =0 et y(t) < 0 pour t < a, donc y(t) = (¢t — a)®. De méme
y(t) = (t — b)® pour t > b si b # +oc.
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(to, o)

On voit que pour tout point (¢, yo) il passe une infinité de solutions maximales : si
yo > 0,b=1ty — y(l)/3 est imposé, mais le choix de a € [—00,b] est arbitraire. Noter
que ce phénomeéne se produit bien qu’on ait unicité locale au point (tg,yo) !

3.4. CONDITIONS SUFFISANTES D’EXISTENCE DE SOLUTIONS GLOBALES

Nous donnons ici des conditions suffisantes d’existence pour les solutions globales,
reposant sur des hypotheses de croissance de f(t,y) lorsque |y|| tend vers +oo.
On peut cependant obtenir des conditions suffisantes nettement plus faibles (voir
Pexercice (b) ci-dessous, ainsi que le probleme 5.9).

Théoréeme — Soit f: U — R™ une application continue sur un ouvert produit
U=JxR™, oudJ CR est un intervalle ouvert. On fait l'une ou l'autre des deux
hypotheses suivantes :

(1) Il existe une fonction continue k : J — Ry telle que pour tout t € J fizé,
Uapplication y — f(t,y) soit lipschitzienne de rapport k(t) sur R™.

(2) Il existe des fonctions ¢, k : J — R4 continues telles que lapplication
y — f(t,y) satisfasse une croissance linéaire a Uinfini du type

1 o)l < et) + E@)yll.

Alors toute solution mazimale de l'équation différentielle y' = f(t,y) est globale
(c’est-a-dire définie sur J tout entier).

Démonstration. Il est évident que I'hypothese (1) entraine '’hypothese (2) (avec
c(t) = ||f(t,0)]), il suffirait donc de donner la preuve pour (2). Cependant, il y a
une démonstration sensiblement plus simple sous I'hypothese (1).

Démonstration sous Uhypothése (1). Soit (to,y0) € J x R™, et [to — T,to + 17]
un intervalle compact quelconque contenu dans J. Reprenons la démonstration du
théoreme de Cauchy-Lipschitz.
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Comme U = J x R™, on peut choisir un cylindre de sécurité de rayon ry = +o0.
L’application ¢ définie au § 3.2 opere donc sur ’espace complet

F=C([to —T,to +T'],R™).

Soit
K= max k(t).
tE[to*T,toﬁ*T’]
L’application f est par hypothese K-lipschitzienne en y sur [tg — T,tg + 17| x R™.
D’apres le raisonnement du § 3.2, I'application ¢P est lipschitzienne de rapport
1% KP(max(T,T"))P sur F, donc contractante pour p assez grand. Ceci implique

que la solution (unique) du probléeme de Cauchy est définie sur tout intervalle
[to—T,to+T'] C J. [ |

Démonstration sous I’hypothése (2). L’idée est d’utiliser le critére de maximalité des
solutions démontré au 2.6. Supposons qu’on ait une solution y : [tg, b — R™ avec
tg,b € J (autrement dit, telle que b ne soit pas la borne supérieure de J). Posons
C = supyepy, ) c(t) et K = sup,cpy, 4 k(t). Nous obtenons

ly" @1 = 1F (& y@)I < C+ Ky @)

On utilise alors un raisonnement de type lemme de Gronwall pour majorer la
Lt
norme |ly(¢)||. Nous avons y(t) = y(to) + fto y'(u) du, donc

t
ly@) < v(t) = lly(to)ll +/t Iy (u)lldu  avec
V() =yl < C+ Kly®)ll < C + Kv(t).
Ceci donne la majoration

d

() ) = (1) — K o) KO < GO0

Par intégration sur [to,t], on obtient

v(t)e KE) _y(tg) < g(1 — e Ktto)y
K
et comme v(tg) = [|ly(to)||, il vient
C _ _
sup ||y(t)H < sup v(t) <R= ?(eK(b to) _ 1) 4 ||y(to)H€K(b to).
te[to,b[ te[to,b[

Par conséquent (¢,y(t)) décrit une partie compacte K = [to,b] x B(0,R) dans
U = J x R™, et y ne peut étre une solution maximale. Toute solution maximale
est donc globale. [Le lecteur pourra étudier I'exercice 5.9 pour un généralisation a
une hypothese de croissance plus faible que (2), tenant compte uniquement de la
« direction radiale » du vecteur f(¢,y) } [ ]



146 ANALYSE NUMERIQUE ET EQUATIONS DIFFERENTIELLES

Ezxercices
(a) Montrer que toute solution mazimale de l’équation différentielle y' = t+/t? + y2,
(t,y) € R xR, est globale.

(b) On définit f :R—>Rpar fly)=esiy<eet fly)=ylny siy>e. Montrer
que [ n'est pas lipschitzienne au voisinage de 0. Déterminer explicitement les
solutions mazimales de 'équation y' = f(y). Les conditions suffisantes du
théoréme précédent sont-elles nécessaires ?

4. EQUATIONS DIFFERENTIELLES D’ORDRE SUPERIEUR A UN

4.1. DEFINITIONS

Un systeme différentiel d’ordre p dans R™ est une équation de la forme

(E) y? = fty o,y Y)
ou f:U — R™ est une application continue définie sur un ouvert U C R x (R™)?.

Une solution de (E) sur un intervalle I C R est une application y : I — R™ p-fois
dérivable, telle que

i) el (ty@®).y@®),....yP V() eU,
(i) (vtel) y®(t) = ft,y@t),yt),....y*= ().

Le résultat suivant se démontre par récurrence d’une maniere entierement analogue
a celle utilisée pour les équations différentielles d’ordre 1. Le détail de I'argument
est laissé au lecteur.

Régularité des solutions — Si f est de classe C*, les solutions y sont de
classe C*+P,

4.2. SYSTEME DIFFERENTIEL D’ORDRE UN ASSOCIE

Tl est clair que le systeme (E) est équivalent au systeéme différentiel d’ordre 1

=0
S ¢
(E1)
d}:ip{z =Y,
Dot = f(t, Y0, Y1, ., Y1)
si 'on pose Yo =y, Y1 =y, .... Le systeme (E;) peut encore s’écrire
(E1) Y' = F(T,Y)

avec
Y =Y, Y1,...,Y,-1) € (R™)P

F = (Fo,Fl, .. -an—l) U — (Rm)p
Fy(t,Y)=Y1,...,Fpo(t,Y) =Y,_1,
F, 1 (t,Y) = f(t,Y).
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Tout systeme différentiel (E) d’ordre p dans R™ est donc équivalent & un systéme
différentiel (E;) d’ordre 1 dans (R™)P. Il en résulte que les théorémes d’existence et
d’unicité démontrés pour les systemes d’ordre 1 sont encore vrais pour les systemes
d’ordre p, avec des preuves qui sont des transpositions directes du cas d’ordre 1.
En voici les principaux énoncés :

4.3. THEOREME D’EXISTENCE

Pour tout point (to,¥o,%1,---,Yp—1) € U le probleme de Cauchy de conditions
initiales
y(tO) = Yo, y/(t()) =Y, 7y(p71)(t0) = Yp—1

admet au moins une solution maximale y : I — R™, définie sur un intervalle ouvert.

Remarque trés importante — On voit ainsi que pour un systéme d’ordre p,
la condition initiale requiert non seulement la donnée de la valeur yo de y au temps
to, mais également la donnée de ses (p — 1) premieres dérivées.

4.4. THEOREME D’EXISTENCE ET D’UNICITE

Si de plus f est localement lipschitzienne en (yo,...,yp—1) sur U, c'est-a-dire si
Y(to, Yo, ---,Yp—1) € U il existe un voisinage [to — To,to + To] X B(yo,70) X ... X

B(yp—1,rp—1) contenu dans U sur lequel

1 (8 205+ s 2p1) = [(t w0, s wp1) || < E([l20 = woll + .. + [[zp—1 — wp—1]);

alors le probleme de Cauchy 4.3 admet une solution maximale et une seule.

4.5. SOLUTIONS GLOBALES
SiU = J x (R™)P et s’il existe une fonction k : J — R, continue telle que (V¢ € J)
1 (2055 2p—1) = [t wo, - s wp1) | < K@) (20 — woll + - . + [[zp—1 — wps]),

alors les solutions maximales sont définies sur J tout entier.

5. PROBLEMES

5.1. On considere I’équation différentielle y' = y? — =.

(a) Quelles sont les lignes isoclines ?
On notera I I'isocline correspondant a la pente nulle.

Soit P~ I'ensemble des points du plan ou la pente des solutions est strictement
négative. Décrire P~. Montrer que si une solution entre dans P, alors elle y
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reste (c’est-a-dire : si une solution y(x) a un point (zg,y(zo)) dans P, alors si
xr1 > To, ("El,y(xl)) € :P_)

(b) Etudier et tracer le graphe de la courbe J ensemble des points d’inflexion des
solutions de I’équation différentielle. Quelles sont les régions du plan ot i/ > 0,
respectivement y” < 0 ?

On notera J; la partie de J extérieure & P~, et Jo la partie de J qui se trouve
dans P~.

(¢) Soit € une courbe solution rencontrant J; en un point (z,y).

(@) Montrer qu’en ce point, la pente de J; est strictement inférieure a la pente
de C.

(8) En déduire que € ne coupe J; qu’en ce point, que € ne rencontre pas P~ et
que € n’a qu’'un point d’inflexion.
(v) Montrer que € posseéde 2 branches infinies & direction asymptotique verti-

cale.

(0) Soit (zg,yo) un point de €. Comparer en ce point, la pente de € et la

2
pente de la solution de I’équation différentielle 3" = %-. En déduire que les

branches infinies de € correspondent a des asymptotes verticales.
(d) Soit D une courbe solution rencontrant Iy.
(o) Montrer que D posséde une asymptote verticale.
(8) Montrer que D a un point d’inflexion et un seul.
(7) Montrer que lorsque  — oo, D est asymptote & Ij.
(e) Soit A (resp. B) 'ensemble des points de 'axe Oy par ou passe une courbe
solution qui rencontre J; (resp. Jo).
(o) Montrer qu’il existe a tel que A = {0} X Ja, +o0l.
(6) Montrer qu’il existe b tel que B = {0} x | — 00, b].

(v) Montrer que a = b. Quelle est allure de la solution passant par le point de
coordonnées (0,a) ?

5.2. On considére 1’équation différentielle y' = f(¢,y), ou f et % sont continues.
Yy

Soit o une fonction réelle définie sur un intervalle [t,t1] ol ¢; peut éventuellement

étre infini ; on suppose « continue et dérivable par morceaux.

On dit que « est une barriere inférieure [respectivement : supérieure| pour 1’équation
différentielle si o/ (t) < f(¢,a(t)) [resp : o/(t) > f(t,a(t))] pour tout ¢ tel que o' (t)
existe, et, aux points ol a n’est pas dérivable, pour la dérivée a gauche et pour la
dérivée a droite.

(a) Montrer que si « est une barriére inférieure pour tg < t < t; et si u est une
solution de ’équation différentielle vérifiant a(to) < u(to), alors a(t) < u(t) pour
tout ¢ € Jtg,t1[. Montrer un résultat analogue pour une barriére supérieure.



v

(b)

(c)

EQUATIONS DIFFERENTIELLES. RESULTATS FONDAMENTAUX 149

On suppose que « est une barriere inférieure sur [tg, t1[, que [ est une barriere
supérieure sur [to, t1[, et que a(t) < B(t) pour tout ¢ € [t,t1[. L’ensemble des
points (t,x) tels que to <t <t et at) < a < B(t) est appelé entonnoir.

() Montrer que si une solution u de I’équation différentielle est telle que (s, u(s))
soit dans I’entonnoir pour un s € [to, t1], alors (¢, u(t)) est dans ’entonnoir
pour tout t € [s, t1].

(8) Si « est une barriere inférieure et 3 une barriére supérieure, et si a(t) > G(t)
pour t € [to,t1[, on dit que l'ensemble des (t,z) tels que to < t < ¢ et
at) > x > B(t) est un anti-entonnoir.

Montrer qu’il existe une solution u(t) de ’équation différentielle, telle que
B(t) <wu(t) < at) pour tout t € [tg, t1].

Dans la suite du probléme, on prend f(t,y) = sin(ty). On se restreindra aux
solutions vérifiant y > 0.

() Déterminer les isoclines correspondant aux pentes —1, 0, 1.

(8) Pour quelles valeurs de t ces isoclines sont-elles des barriéres inférieures ?
supérieures 7 Quels sont les entonnoirs formés par ces isoclines ?

(v) Soit u une solution de I’équation différentielle ; soit v la fonction continue,
dérivable par morceaux, définie pour ¢ > 0 par : ~v(0) = u(0) > 0 ; ~v
est affine de pente 1 depuis ¢ = 0 jusqu’a ce que son graphe rencontre la
premiere isocline de pente 0, puis « est affine de pente 0 jusqu’a l'isocline
de pente 0 suivante, puis v est affine de pente 1 jusqu’a l'isocline de pente
0 suivante, et ainsi de suite. Montrer que le graphe de 7 rencontre la droite
y =t.

(6) Montrer que  est une barriere supérieure.

(¢) En déduire que toute solution de 1’équation différentielle rencontre la droite
y = t, puis reste dans un entonnoir.

(¢) Dessiner lallure des solutions de I’équation différentielle y' = sin(ty).

5.3. On considére 1'équation (appelée équation de Van der Pol) :

(E)

(a)

(b)

(1) = y(t) — 23(t) + (),
{y'm = Zalt), tek

Montrer que le probleme de Cauchy correspondant admet une solution globale
unique (on pourra utiliser le résultat de I’exercice 5.9).

On appelle trajectoire associée a une solution de (E), l’ensemble parcouru
dans le plan Euclidien par le point de coordonnées (x(t),y(t)) lorsque ¢ par-
court R. Montrer que les trajectoires associées a deux solutions distinctes de
(E) coincident ou n’ont aucun point commun ; montrer que par chaque point
du plan passe une trajectoire et une seule ; montrer que si une trajectoire a un
point double (c’est-a-dire correspondant & deux valeurs distinctes de t), les so-
lutions associées de (E) sont périodiques (et tous les points sont alors doubles).
Quelles sont les trajectoires réduites & un point ?
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5.4

ANALYSE NUMERIQUE ET EQUATIONS DIFFERENTIELLES

Montrer que la courbe symétrique d’une trajectoire par rapport a (0,0) est
encore une trajectoire.

On considere maintenant les sous-ensembles du plan

DY ={(0,y); y>0); D™ ={(0,y); y<0};

Ei={(z,y); x>0 et y>a®—u)}; Ty={(z,2°—x); 2>0)};
Ey={(z,y); x>0 et y<a®—ua};
Es={(z,y); <0 et y<a®—z}; T_={(z,2°—2); 2<0};
Ey={(z,y); <0 et y>a®—ua}

Soit (x(t),y(t)) une solution de (E) ; montrer que, si (z(to),y(to)) € DT, il
existe t4 > t3 > to > t1 > to tels que (x(t),y(t)) € E; pour t € Jt;—1,t],
i =1,2,3,4, et (z(t1),y(t1)) € TF, (x(t2),y(t2)) € D™, (x(t3),y(ts)) € I~ ;
(2(t),y(ts)) € D*.

Soit yg > 0 et tp € R ; il existe une solution de (E) telle que (z(to),y(to)) =
(0,90) ; on pose o(yo) = y(t2) ; montrer que o(yy) ne dépend que de yy (et non
de tp) et que o est une application monotone continue de RT dans R~

En utilisant le (c¢), montrer que (0, yo) appartient & la trajectoire d’une solution
périodique si et seulement si o(yo) = —Yo.

Soit # > 0 tel que pour la solution de (E) vérifiant (z(to),y(t0)) = (0, 5) on ait
(z(t1),y(t1)) = (1,0). Montrer que pour yo < 3, on a o(y)? — y2 > 0 (regarder

|4 lale? + e

to

Soit yo grand. Soit C' la courbe formée des arcs suivants :

e le segment (0,30), (1,%0) ;
e larc de cercle de centre O passant par (1,yg) et coupant (y = z° — x) en
(x1,y1) avec 21 > 1.

o le segment (x1,y1), (z1,0).
e l'arc de cercle de centre O passant par (z1,0) et coupant (z = 1) en (z],y]).
e la tangente en (2}, y]) & cet arc de cercle qui recoupe Oy en (0, y2).

Montrer que la solution de (E) passant par (0,y0) est & U'intérieur de C'. En
déduire que o(yp)? — y2 < 0.

En déduire qu’il existe une trajectoire et une seule correspondant a des solutions
périodiques de (E). Montrer que les trajectoires non réduites & (0,0) convergent
asymptotiquement vers cette trajectoire quand ¢ tend vers +oo.

. Soit t une variable réelle > 0. On considere le probleme de Cauchy

y =ty, y(0)=1.
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(a) Démontrer que pour tout T > 0, ce probleme admet une solution et une seule
sur [0,7], et indiquer comment la méthode d’Euler permet d’en trouver une
approximation.

(b) Déduire de ce qui précede la formule

N-1 2
y(t) = Nl—lg-loo Pn(t) avec Pn(t) = };[0 (1 + m)

(¢) Pour a > 0, étudier les variations de la fonction f(z) = x In(1 + «/x) sur
10, +00[ ; on montrera que f”'(z) < 0.

En déduire ’encadrement
2

<1+t2>%<1+m <(1+t2)n i0<n<N-1
— — — S1 n — 1.
N/ = TNz = N2 =n=

(d) Calculer la limite du (b), et en déduire y(t).
5.5. On considere I’équation différentielle
o —3/4 : E _
y =y tsin (1) = f(ty)

ol le second membre est défini sur R? & 1’aide de prolongements par continuité. On
note Y (¢) la solution approchée définie sur R, obtenue par la méthode d’Euler pour
le pas h = #1/2 ou n € N*| et vérifiant Y (0) = 0. On suppose dans un premier
temps que n est pair.

(a) Calculer Y'(h), Y(2h) et Y (3h).

3/2
Démontrer les inégalités Y (3h) > # > (3h1)6 .

b) Déterminer ¢ > 0 tel que 0 < ¢ < c on ait 2 t3/8 — ¢ > L 3/8 En supposant
( q 5 i pp

(t+h)3/27t3/2
h

de plus h < t et ¢ assez petit vérifier < 2 ¢3/% (on pourra utiliser

la formule de Taylor).

3/2
(¢) On suppose que pour m € N* on a mh < c et Y(m,h) > (mlllé :

Démontrer les inégalités
1 f 1
f(mh,Y (mh)) > Y (mh)"/* —mh > 3 (mh)3/® —mh > o (mh)3/8.

3/2

Sdui m+1)h
En déduire Y ((m + 1)h) > %

Montrer que si p entier vérifie 0 < ph < ¢, on a

(ph)®/?

Y (ph) > 16
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(d) On suppose ici que n est impair. Calculer Y'(h), Y (2h) et Y (3h). Montrer
ve s 1eis 3h)3/2
I'inégalité Y (3h) < —%.

(mh)3/2

; montrer comme ci-
(ph)

On suppose que pour mh < ¢ on a Y(mh) < —

dessus que Y ((m + 1)h) < M
entier p tel que 0 < ph < c.

, puis que Y(ph) pour tout

(e) Pour 0 < ¢t < ¢, montrer que les solutions approchées Y (t) ne tendent vers
aucune limite n tend vers +oo.

5.6. Soit le systéme différentiel dans R? défini par

dr_ 2(x — ty)
dt
(S) p
dy _,
a

(a) Déterminer la courbe intégrale qui passe par le point (xg, ) au temps t = 0.
(b) On utilise la méthode d’Euler avec pas constant h, démarrant au temps to = 0.
Soit (2, yn) le point atteint au temps ¢, = nh (n € N).
() Ecrire la relation qui lie (Zp41,Ynt1) & (Zn, Yn)-
(8) Calculer explicitement (z,,y,) en fonction de n, h, xq, yo.

(v) Sans utiliser les théorémes généraux du cours, vérifier que la solution
approchée qui interpole linéairement les points (z,,y,) converge sur Ry
vers la solution exacte de (S).

5.7. Soit f : [a,b] x R — R une fonction continue et lipschitzienne de rapport k en
sa deuxieme variable. On définit une suite de fonctions y,, : [a,b] — R en posant

Yo(t) = A et
¢
Ynt1(t) = A —I—/ fu,yn(uw))du, neN.

On sait d’apres V 3.2 que y,, converge uniformément vers la solution exacte de
léquation y' = f(t,y) telle que y(a) = A. On étudie ici le cas particulier de
I’équation

dy

= =-2 t t .
7 y+t, te(0,4o0]

(a) Montrer que y, peut s'écrire sous la forme

yn(t) = APn(t) + Qn (t)

ou P,, @, sont des polynémes que l'on explicitera.

(b) Calculer lim,,—, 4o Py, et lim,,— 4 oo @r. Vérifier ce résultat en résolvant directe-
ment ’équation.



V — EQUATIONS DIFFERENTIELLES. RESULTATS FONDAMENTAUX 153

5.8. Soit T un réel positif et f : [0,7] x R — R une application continue
lipschitzienne de rapport k& en la deuxiéme variable. On considere 1’équation
différentielle

(E) y = f(t,y).

Soit un réel h € 10, T[. On dira que z est une solution retardée de retard h si z est
une fonction continue sur [0, T}, dérivable sur |h, T] et si

() = f(t2(t— b)), VtehTI.

(a) Soit yo un réel fixé. Montrer que (E) admet une solution retardée de retard h
et une seule, notée zj, telle que z(t) = yo pour tout ¢ € [0, h].

(b) Soit z une solution retardée de retard h. On pose

A= t,0)], t) = .
e (1)), mlt) = ma [z(u)

() Montrer que pour tout t € [h,T] on a
¢

m(t) < m(h) —&—/h (A + km(u))du.

(8) En déduire que

m(t) < (% + m(h))ek(t_h) - % vt € [h,T).

[Indication : étudier la dérivée de la fonction M (t) = =kt f}f (A + km(u))du.]

(v) Montrer qu’il existe une constante B indépendante de h, que 1’on explicitera,
telle que ||z1 ]l < B pour tout h > 0, si z, désigne la solution retardée du

(a).
(¢) On se propose ici d’étudier la convergence de z;, quand h tend vers 0.

() Montrer que les fonctions zj, sont C-lipschitziennes avec une constante C
indépendante de h.

(8) Soit y la solution exacte (non retardée) de (E) telle que y(0) = yo. On pose

(t) = Jnax, |z (u) — y(u)].

Montrer que § vérifie 'inégalité intégrale
t

o(t) <6(h) +/ (kCh + kd(u))du.
h

ou C est la constante de la question (c) ).
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(7) En déduire une majoration de ||d]|« et conclure.

(d) On construit maintenant une méthode de résolution approchée de (E) utilisant
les solutions retardées zj,. Pour tout entier n € N, n < T'/h, on pose

tn =nh, zp = zp(tn) ;

dans la formule .
n41
Fp— / Ft ot — h))dt
tn
on remplace la valeur exacte de I'intégrale par sa valeur approchée calculée au
moyen de la méthode des trapeézes élémentaires.
(a) Ecrire la relation de récurrence définissant la suite (z,,).

(8) Exprimer 'erreur de consistance relative a une solution exacte y ; en calculer
un développement limité a 'ordre 2 en fonction de h et des dérivées partielles
de f au point (¢,y). Quel est 'ordre de la méthode ? (voir chapitre VIII
pour les définitions).

5.9. Soit J un intervalle ouvert de R et f : J X R™ — R™ une application continue.
On se propose de démontrer que toute solution maximale de I’équation différentielle
y' = f(t,y) est globale si f vérifie 'hypothése suivante :

(H) 1l existe des fonctions a,b: I — Ry continues telles que
(f(ty),9) < a®)llyl® +b(t), V(ty) € J xR™,

ou (, ) et | | désignent respectivement le produit scalaire et la norme
euclidienne standards sur R™.

(a) Soit y : [to,t1[— R™ une solution maximale & droite passant par un point
(to,yo) et soit r(t) = ||ly(t)||*. Montrer que r’'(t) < 2a(t)r(t) + 2b(t).
En déduire que [|y(¢)]|* < p(t) ott p: J — R est la solution (toujours globale)
de I'équation lindaire p’ = 2a(t)p + 2b(t), telle que p(to) = ||lyol|?.
[Indication : soit A(t) une primitive de a(t) ; étudier le signe de la dérivée de
(r(t) = p(t))e 240

(b) Déterminer un majorant explicite de ||y(¢)|| lorsque a et b sont des constantes.

(¢) On suppose que t; < sup J. Montrer que y(¢), y'(t) sont bornées sur [to,t1] et
que ces fonctions se prolongent par continuité en t;. Montrer que ceci conduit
a une contradiction. Conclure.
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