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Le but de ce chapitre est de démontrer les théorèmes généraux d’existence et
d’unicité des solutions pour les équations différentielles ordinaires. Il s’agit du
chapitre central de la théorie, de ce fait nécessairement assez abstrait. Sa bonne
compréhension est indispensable en vue de la lecture des chapitres ultérieurs.
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Soit U un ouvert de R × Rm et

f : U → Rm

une application continue. On considère l’équation différentielle

(E) y′ = f(t, y), (t, y) ∈ U, t ∈ R, y ∈ Rm.

Définition – Une solution de (E) sur un intervalle I ⊂ R est une fonction
dérivable y : I → Rm telle que

(i) (∀t ∈ I) (t, y(t)) ∈ U

(ii) (∀t ∈ I) y′(t) = f(t, y(t)).

L’〈〈 inconnue 〉〉 de l’équation (E) est donc en fait une fonction. Le qualificatif
〈〈 ordinaire 〉〉 pour l’équation différentielle (E) signifie que la fonction inconnue y
dépend d’une seule variable t (lorsqu’il y a plusieurs variables ti et plusieurs dérivées
∂y/∂ti, on parle d’équations aux dérivées partielles).
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Écriture en coordonnées – Écrivons les fonctions à valeurs dans Rm en
termes de leurs fonctions composantes, c’est-à-dire

y = (y1, . . . , ym), f = (f1, . . . , fm).

L’équation (E) apparâıt comme un système différentiel du premier ordre à m
fonctions inconnues y1, . . . , ym :

(E)


y′
1(t) = f1(t, y1(t), . . . , ym(t))

. . .

y′
m(t) = fm(t, y1(t), . . . , ym(t)).

Problème de Cauchy – Étant donné un point (t0, y0) ∈ U , le problème de
Cauchy consiste à trouver une solution y : I → Rm de (E) sur un intervalle I
contenant t0 dans son intérieur, telle que y(t0) = y0.

Interprétation physique – Dans de nombreuses situations concrètes, la
variable t représente le temps et y = (y1, . . . , ym) est une famille de paramètres
décrivant l’état d’un système matériel donné. L’équation (E) traduit physiquement
la loi d’évolution du système considéré en fonction du temps et de la valeur des
paramètres. Résoudre le problème de Cauchy revient à prévoir l’évolution du
système au cours du temps, sachant qu’en t = t0 le système est décrit par les
paramètres y0 = (y0,1, . . . , y0,m). On dit que (t0, y0) sont les données initiales du
problème de Cauchy.
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Si on note x = t, l’équation (E) se récrit

(E) y′ =
dy

dx
= f(x, y), (x, y) ∈ U ⊂ R × R.

U

x0 x

y

y0

y(x)
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Résoudre le problème de Cauchy revient à trouver une 〈〈 courbe intégrale 〉〉 de (E)
passant par un point donné (x0, y0) ∈ U .

Champ des tangentes – A tout point M = (x0, y0), on associe la droite DM

passant par M et de coefficient directeur f(x0, y0) :

DM : y − y0 = f(x0, y0)(x − x0)

L’application M → DM est appelée champ des tangentes associé à l’équation (E).
Une courbe intégrale de (E) est une courbe différentiable C qui a pour tangente en
chaque point M ∈ C la droite DM du champ des tangentes. L’exemple ci-dessous
correspond à l’équation y′ = f(x, y) = x − y2.

1 x0

1

y

M

DM

C

Lignes isoclines de (E) – Par définition, ce sont les courbes

Γp : f(x, y) = p

correspondant à l’ensemble des points M où la droite DM a une pente donnée p.
La courbe Γ0 joue un rôle intéressant. On a en effet un régionnement de U :

U = U+ ∪ U− ∪ Γ0 où
U+ = {M ∈ U ; f(M) > 0}, U− = {M ∈ U ; f(M) < 0}.

Les courbes intégrales sont croissantes dans U+, décroissantes dans U−, station-
naires (souvent extrêmales) sur Γ0.

Exemple – Les lignes isoclines de l’équation y′ = f(x, y) = x − y2 sont les
paraboles x = y2 + p.
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0 x

y

1

1

U+

U−
Γ0

Γ3/2
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Nous introduisons d’abord le concept de prolongement d’une solution. L’expression
solution maximale est alors entendue implicitement au sens de la relation d’ordre
fournie par le prolongement des solutions.

Définition 1 – Soient y : I → Rm, ỹ : Ĩ → Rm des solutions de (E). On dit que
ỹ est un prolongement de y si Ĩ ⊃ I et ỹ|I = y.

Définition 2 – On dit qu’une solution y : I → Rm est maximale si y n’admet
pas de prolongement ỹ : Ĩ → Rm avec Ĩ � I.

Théorème – Toute solution y se prolonge en une solution maximale ỹ (pas
nécessairement unique).

Démonstration.* Supposons que y soit définie sur un intervalle I = |a, b| (cette
notation désigne un intervalle ayant pour bornes a et b, incluses ou non dans I).
Il suffira de montrer que y se prolonge en une solution ỹ : |a, b̃| → Rm (̃b ≥ b)
maximale à droite, c’est-à-dire qu’on ne pourra plus prolonger ỹ au delà de b̃. Le
même raisonnement s’appliquera à gauche.
Pour cela, on construit par récurrence des prolongements successifs y(1), y(2) . . . de y
avec y(k) : |a, bk[→ Rm. On pose y(1) = y, b1 = b. Supposons y(k−1) déjà construite
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pour un indice k ≥ 1. On pose alors

ck = sup{c ; y(k−1) se prolonge sur |a, c[ }.

On a ck ≥ bk−1. Par définition de la borne supérieure, il existe bk tel que
bk−1 ≤ bk ≤ ck et un prolongement y(k) : |a, bk[→ Rm de y(k−1) avec bk

arbitrairement voisin de ck ; en particulier, on peut choisir

ck − bk < 1
k si ck < +∞,

bk > k si ck = +∞.

La suite (ck) est décroissante, car l’ensemble des prolongements de y(k−1) contient
l’ensemble des prolongements de y(k) ; au niveau des bornes supérieures on a donc
ck ≥ ck+1. Si ck < +∞ à partir d’un certain rang, les suites

b1 ≤ b2 ≤ . . . ≤ bk ≤ . . . ≤ ck ≤ ck−1 ≤ . . . ≤ c1

sont adjacentes, tandis que si ck = +∞ quel que soit k on a bk > k. Dans les deux
cas, on voit que

b̃ = lim
k→+∞

bk = lim
k→+∞

ck.

Soit ỹ : |a, b̃| → Rm le prolongement commun des solutions y(k), éventuellement
prolongé au point b̃ si cela est possible. Soit z : |a, c| → Rm un prolongement de ỹ.
Alors z prolonge y(k−1) et par définition de ck il s’ensuit c ≤ ck. A la limite il vient
c ≤ c̃, ce qui montre que la solution ỹ est maximale à droite.
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On suppose ici que l’ouvert U est de la forme U = J × Ω où J est un intervalle de
R et Ω un ouvert de Rm.

Définition – Une solution globale est une solution définie sur l’intervalle J tout
entier.

0 J t

Ω

y
U

y(1)

y(2)

Attention : toute solution globale est maximale, mais la réciproque est fausse.
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Sur le schéma ci-dessus par exemple, y(1) est globale tandis que y(2) est maximale
mais non globale.

Donnons un exemple explicite de cette situation.

Exemple – (E) y′ = y2 sur U = R × R.

Cherchons les solutions t → y(t) de (E).

• On a d’une part la solution y(t) = 0.

• Si y ne s’annule pas, (E) s’écrit y′

y2 = 1, d’où par intégration

− 1
y(t)

= t + C, y(t) = − 1
t + C

.

Cette formule définit en fait deux solutions, définies respectivement sur ]−∞,−C[
et sur ]−C,+∞[ ; ces solutions sont maximales mais non globales. Dans cet exemple
y(t) = 0 est la seule solution globale de (E).
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Rappelons qu’une fonction de plusieurs variables est dite de classe Ck si elle admet
des dérivées partielles continues jusqu’à l’ordre k.

Théorème – Si f : R × Rm ⊃ U → Rm est de classe Ck, toute solution de (E)
y′ = f(t, y) est de classe Ck+1.

Démonstration. On raisonne par récurrence sur k.

• k = 0 : f continue.

Par hypothèse y : I → Rm est dérivable, donc continue.

Par conséquent y′(t) = f(t, y(t)) est continue, donc y est de classe C1.

• Si le résultat est vrai à l’ordre k − 1, alors y est au moins de classe Ck. Comme
f est de classe Ck, il s’ensuit que y′ est de classe Ck comme composée de fonctions
de classe Ck, donc y est de classe Ck+1.

Calcul des dérivées successives d’une solution y – On suppose pour
simplifier m = 1. En dérivant la relation y′(x) = f(x, y(x)) il vient

y′′(x) = f ′
x(x, y(x)) + f ′

y(x, y(x))y′(x),

y′′ = f ′
x(x, y) + f ′(x, y)f(x, y) = f [1](x, y)

avec f [1] = f ′
x +f ′

yf . Notons de manière générale l’expression de la dérivée k-ième
y(k) en fonction de x, y sous la forme

y(k) = f [k−1](x, y) ;
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d’après ce qui précède f [0] = f , f [1] = f ′
x + f ′

yf . En dérivant une nouvelle fois, on
trouve

y(k+1) = (f [k−1])′x(x, y) + (f [k−1])′y(x, y) y′

= (f [k−1])′x(x, y) + (f [k−1])′y(x, y) f(x, y).

On obtient donc les relations de récurrence

y(k+1) = f [k](x, y)

f [k] = (f [k−1])′x + (f [k−1])′y f, avec f [0] = f.

En particulier, le lieu des points d’inflexion des courbes intégrales est contenu dans
la courbe f [1](x, y) = 0.
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Dans tout ce paragraphe, on considère une équation différentielle

(E) y′ = f(t, y)

où f : U → Rm est continue et U est un ouvert de R × Rm.
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Le lemme très simple ci-dessous montre que la résolution de (E) est équivalente à
la résolution d’une équation intégrale :

Lemme – Une fonction y : I → Rm est une solution du problème de Cauchy de
données initiales (t0, y0) si et seulement si

(i) y est continue et (∀t ∈ I) (t, y(t)) ∈ U ,

(ii) (∀t ∈ I) y(t) = y0 +
∫ t

t0

f(u, y(u))du.

En effet si y vérifie (i) et (ii) alors y est différentiable et on a y(t0) = y0,
y′(t) = f(t, y(t)). Inversement, si ces deux relations sont satisfaites, (ii) s’en déduit
par intégration.
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Pour résoudre l’équation différentielle (E), on va plutôt chercher à construire des
solutions de l’équation intégrale 2.1 (ii), et en premier lieu, on va montrer qu’une
solution passant par un point (t0, y0) ∈ U ne peut s’éloigner 〈〈 trop vite 〉〉 de y0.
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On note ‖ ‖ une norme quelconque sur Rm et B(x, r) (resp. B(x, r)) la boule
ouverte (resp. fermée) de centre x et de rayon r dans Rm. Comme U est supposé
ouvert, il existe un cylindre

C0 = [t0 − T0, t0 + T0] × B(y0, r0)

de longueur 2T0 et de rayon r0 assez petit, tel que C0 ⊂ U . L’ensemble C0 est fermé
borné dans Rm+1, donc compact. Ceci entrâıne que f est bornée sur C0, c’est-à-dire

M = sup
(t,y)∈C0

‖f(t, y)‖ < +∞.

Soit C = [t0 − T, t0 + T ]×B(y0, r0) ⊂ C0 un cylindre de même diamètre que C0 et
de demi-longueur T ≤ T0.

Définition – On dit que C est un cylindre de sécurité pour l’équation (E) si toute
solution y : I → Rm du problème de Cauchy y(t0) = y0 avec I ⊂ [t0 − T, t0 + T ]
reste contenue dans B(y0, r0).

0 t0 − T0 t t0 t0 + T0 t

2T

2T0

C0

C

y(t)

y0

Rm

U

r0

Sur le schéma ci-dessus, C est un cylindre de
sécurité mais C0 n’en est pas un : la solution
y 〈〈 s’échappe 〉〉 de C0 avant le temps t0 +T0.

Supposons que la solution y s’échappe de C sur l’intervalle [t0, t0 + T ]. Soit τ le
premier instant où cela se produit :

τ = inf {t ∈ [t0, t0 + T ] ; ‖y(t) − y0‖ > r0}.
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Par définition de τ on a ‖y(t) − y0‖ ≤ r pour t ∈ [t0, τ [, donc par continuité de y
on obtient ‖y(τ) − y0‖ = r0. Comme (t, y(t)) ∈ C ⊂ C0 pour t ∈ [t0, τ ], il vient
‖y′(t)‖ = ‖f(t, y(t))‖ ≤ M et

r0 = ‖y(τ) − y0‖ =
∥∥∥∫ τ

t0

y′(u)du
∥∥∥ ≤ M(τ − t0)

donc τ − t0 ≥ r0/M . Par conséquent si T ≤ r0/M , aucune solution ne peut
s’échapper de C sur [t0 − T, t0 + T ].

Corollaire – Pour que C soit un cylindre de sécurité, il suffit de prendre

T ≤ min
(
T0,

r0

M

)
.

Le choix T = min
(
T0,

r0
M

)
convient par exemple.

Remarque – Si C ⊂ C0 est un cylindre de sécurité, toute solution du problème
de Cauchy y : [t0 − T, t0 + T ] → Rm vérifie ‖y′(t)‖ ≤ M , donc y est lipschitzienne
de rapport M .
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On cherche à construire une solution approchée de (E) sur un intervalle [t0, t0 + T ].
On se donne pour cela une subdivision

t0 < t1 < t2 . . . < tN−1 < tN = t0 + T.

Les pas successifs sont notés

hn = tn+1 − tn, 0 ≤ n ≤ N − 1,

et on pose
hmax = max(h0, . . . , hN−1).

La méthode d’Euler (ou méthode de la tangente) consiste à construire une solution
approchée y affine par morceaux comme suit. Soit yn = y(tn). On confond la
courbe intégrale sur [tn, tn+1] avec sa tangente au point (tn, yn) :

y(t) = yn + (t − tn)f(tn, yn), t ∈ [tn, tn+1].

Partant de la donnée initiale y0, on calcule donc yn par récurrence en posant{
yn+1 = yn + hnf(tn, yn)
tn+1 = tn + hn, 0 ≤ n ≤ N − 1.

La solution approchée y s’obtient graphiquement en traçant pour chaque n les
segments joignant les points (tn, yn), (tn+1, yn+1).
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t0 t1 t2 t3 . . . tN = t0 + T t

y0

y1

y2

y3

y

On construit de même une solution approchée sur [t0 − T, t0] en prenant des pas
hn < 0.

Proposition 1 – Si C = [t0 − T, t0 + T ] × B(y0, r0) est un cylindre de sécurité
tel que T ≤ min

(
T0,

r0
M

)
, toute solution approchée y donnée par la méthode d’Euler

est contenue dans la boule B(y0, r0).

Démonstration. On vérifie par récurrence sur n que{
y([t0, tn]) ⊂ B(y0, r0)
‖y(t) − y0‖ ≤ M(t − t0) pour t ∈ [t0, tn].

C’est trivial pour n = 0. Si c’est vrai pour n, alors on a en particulier (tn, yn) ∈ C,
donc ‖f(tn, yn)‖ ≤ M , et par conséquent

‖y(t) − yn‖ = (t − tn)‖f(tn, yn)‖ ≤ M(t − tn)

pour t ∈ [tn, tn+1]. Par hypothèse de récurrence

‖yn − y0‖ = ‖y(tn) − y0‖ ≤ M(tn − t0).

L’inégalité triangulaire entrâıne alors ∀t ∈ [tn, tn+1] :

‖y(t) − y0‖ ≤ M(t − tn) + M(tn − t0) ≤ M(t − t0).

En particulier ‖y(t) − y0‖ ≤ MT ≤ r0, d’où

y([t0, tn+1]) ⊂ B(y0, r0).

Définition – Soit y : [a, b] → Rm une fonction de classe C1 par morceaux (ceci
signifie qu’il existe une subdivision a = a0 < a1 < . . . < aN = b de [a, b] telle que
pour tout n la restriction y[an,an+1] soit de classe C1 ; on suppose donc seulement
la continuité et l’existence d’une dérivée à droite et à gauche de y aux points an).
On dit que y est une solution ε-approchée de (E) si

(i) (∀t ∈ [a, b]) (t, y(t)) ∈ U ;

(ii) (∀n), (∀t ∈ ]an, an+1[) ‖y′(t) − f(t, y(t))‖ ≤ ε.



V – Équations différentielles. Résultats fondamentaux 135

Autrement dit, y est une solution ε-approchée si y vérifie (E) avec une erreur ≤ ε.

Majoration de l’erreur pour les solutions approchées d’Euler – Soit
ωf le module de continuité de f sur C, défini par

ωf (u) = max{‖f(t1, y1) − f(t2, y2)‖ ; |t1 − t2| + ‖y1 − y2‖ ≤ u}

où u ∈ [0,+∞[ et où les points (t1, y1), (t2, y2) parcourent C. Comme C est
compact, la fonction f est uniformément continue sur C, par conséquent

lim
u→0+

ωf (u) = 0.

On suppose dans la suite que C = [t0 − T, t0 + T ] × B(y0, r0) est un cylindre de
sécurité tel que T ≤ min

(
T0,

r0
M

)
.

Proposition 2 – Soit y : [t0 − T, t0 + T ] → Rm une solution approchée
construite par la méthode d’Euler avec pas maximum hmax. Alors l’erreur ε vérifie
ε ≤ ωf ((M + 1)hmax).

En particulier, l’erreur ε tend vers 0 quand hmax tend vers 0.

Démonstration. Majorons par exemple ‖y′(t) − f(t, y(t))‖ pour t ∈ [t0, t0 + T ],
où y est la solution approchée associée à la subdivision t0 < t1 < . . . < tN = t0 +T .
Pour t ∈ ]tn, tn+1[, on a y′(t) = f(tn, yn) et

‖y(t) − yn‖ = (t − tn)‖f(tn, yn)‖ ≤ Mhn,

|t − tn| ≤ hn.

Par définition de ωf , il vient

‖f(tn, yn) − f(t, y(t))‖ ≤ ωf (Mhn + hn),
‖y′(t) − f(t, y(t))‖ ≤ ωf ((M + 1)hmax.

Montrons finalement un résultat sur la convergence des solutions approchées.

Proposition 3 – Soit y(p) : [t0 − T, t0 + T ] → Rm une suite de solutions
εp-approchées contenues dans le cylindre de sécurité C, telles que y(p)(t0) = y0 et
limp→+∞ εp = 0. On suppose que y(p) converge uniformément sur [t0 − T, t0 + T ]
vers une fonction y. Alors y est une solution exacte du problème de Cauchy pour
l’équation (E).

Démonstration. Comme ‖y′
(p)(t) − f(t, y(p)(t)‖ ≤ εp, il vient après intégration

‖y(p)(t) − y0 −
∫ t

t0

f(u, y(p)(u))du‖ ≤ εp|t − t0|.
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Si δp = max
[t0−T,t0+T ]

‖y − y(p)‖, on voit que

‖f(u, y(p)(u)) − f(u, y(u))‖ ≤ ωf (δp)

tend vers 0, d’où, grâce à la convergence uniforme :

y(t) − y0 −
∫ t

t0

f(u, y(u))du = 0, ∀t ∈ [t0 − T, t0 + T ].

Comme la limite uniforme y est continue, le lemme du début du § 2 entrâıne que y
est une solution exacte de (E).
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Il s’agit d’un résultat préliminaire de nature topologique que nous allons formuler
dans le cadre général des espaces métriques. Si (E, δ) et (F, δ′) sont des espaces
métriques, rappelons que par définition une suite d’applications ϕ(p) : E → F
converge uniformément vers ϕ : E → F si la distance uniforme

d(ϕ(p), ϕ) = sup
x∈E

δ′(ϕ(p)(x), ϕ(x))

tend vers 0 quand p tend vers +∞.

Théorème (Ascoli) – On suppose que E,F sont des espaces métriques compacts.
Soit ϕ(p) : E → F une suite d’applications k-lipschitziennes, où k ≥ 0 est une
constante donnée. Alors on peut extraire de ϕ(p) une sous-suite ϕ(pn) uniformément
convergente, et la limite est une application k-lipschitzienne.

Soit Lipk(E,F ) l’ensemble des applications E → F lipschitziennes de rapport k.
Une autre manière d’exprimer le théorème d’Ascoli est la suivante.

Corollaire – Si E,F sont compacts, alors (Lipk(E,F ), d) est un espace métrique
compact.

Démonstration. On construit par récurrence des parties infinies

S0 = N ⊃ S1 ⊃ . . . ⊃ Sn−1 ⊃ Sn ⊃ . . .

telles que la sous-suite (ϕ(p))p∈Sn ait des oscillations de plus en plus faibles.
Supposons Sn−1 construite, n ≥ 1. Comme E, F sont compacts, il existe des
recouvrements finis de E (resp. de F ) par des boules ouvertes (Bi)i∈I , resp. (B′

j)j∈J ,
de rayon 1

n . Notons I = {1, 2, . . . , N} et xi le centre de Bi. Soit p un indice fixé.
Pour tout i = 1, . . . , N il existe un indice j = j(p, i) tel que ϕ(p)(xi) ∈ B′

j(p,i).
On considère l’application

Sn−1 −→ JN , p 
−→ (j(p, 1), . . . , j(p,N)).
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Comme Sn−1 est infini et que JN est fini, l’un des éléments (l1, . . . , lN ) ∈ JN

admet pour image réciproque une partie infinie de Sn−1 : on note Sn cette partie.
Ceci signifie que pour tout p ∈ Sn on a (j(p, 1), . . . , j(p,N)) = (l1, . . . , lN ) et donc
ϕ(p)(xi) ∈ B′

li
. En particulier

(∀p, q ∈ Sn) δ′(ϕ(p)(xi), ϕ(q)(xi)) ≤ diam B′
li ≤

2
n

.

Soit x ∈ E un point quelconque. Il existe i ∈ I tel que x ∈ Bi, d’où δ(x, xi) < 1
n .

L’hypothèse que les ϕ(p) sont k-lipschitziennes entrâıne

δ′(ϕ(p)(x), ϕ(p)(xi)) <
k

n
, δ′(ϕ(q)(x), ϕ(q)(xi)) <

k

n
.

L’inégalité triangulaire implique alors (∀p, q ∈ Sn)

δ′(ϕ(p)(x), ϕ(q)(x)) ≤ 2
n

+ 2
k

n
=

2k + 2
n

.

Désignons par pn le n-ième élément de Sn. Pour N ≥ n on a pN ∈ SN ⊂ Sn, donc

δ′(ϕ(pn)(x), ϕ(pN )(x)) ≤ 2k + 2
n

. (∗)

Ceci entrâıne que ϕ(pn)(x) est une suite de Cauchy dans F pour tout x ∈ E. Comme
F est compact, F est aussi complet, donc ϕ(pn)(x) converge vers une limite ϕ(x).
Quand N → +∞, (∗) implique à la limite d(ϕ(pn), ϕ) ≤ 2k+2

n . On voit donc que
ϕ(pn) converge uniformément vers ϕ. Il est facile de voir que ϕ ∈ Lipk(E,F ).

Exercice – On pose E = [0, π], F = [−1, 1], ϕp(x) = cos px. Calculer∫ π

0

(ϕp(x) − ϕq(x))2dx

et en déduire que d(ϕp, ϕq) ≥ 1 si p �= q. L’espace

Lip (E,F ) =
⋃

k≥0
Lipk(E,F )

est-il compact ?
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L’idée est d’utiliser le théorème d’Ascoli pour montrer l’existence d’une sous-suite
uniformément convergente de solutions approchées. On obtient ainsi le

Théorème – Soit C = [t0 − T, t0 + T ] × B(y0, r0) avec T ≤ min
(
T0,

r0
M

)
un

cylindre de sécurité pour l’équation (E) : y′ = f(t, y). Alors il existe une solution
y : [t0 − T, t0 + T ] → B(y0, r0) de (E) avec condition initiale y′(t0) = y0.
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Démonstration. Soit y(p) la solution approchée donnée par la méthode d’Euler
en utilisant la subdivision avec pas constant h = T/p des intervalles [t0, t0 + T ] et
[t0−T, t0]. Cette solution est εp-approchée avec erreur εp ≤ ωf ((M+1)T/p) tendant
vers 0. Chaque application y(p) : [t0 − T, t0 + T ] → B(y0, r0) est lipschitzienne de
rapport M , donc d’après le théorème d’Ascoli on peut extraire de (y(p)) une sous-
suite (y(pn)) convergeant uniformément vers une limite y. D’après la proposition 3
du § 2.3, y est une solution exacte de l’équation (E).

Corollaire – Par tout point (t0, y0) ∈ U , il passe au moins une solution maximale
y : I → Rm de (E). De plus, l’intervalle de définition I de toute solution maximale
est ouvert (mais en général, il n’y a pas unicité de ces solutions maximales).

On vient de voir en effet qu’il existe une solution locale z définie sur un intervalle
[t0 − T, t0 + T ]. D’après le théorème du § 1.3, z se prolonge en une solution
maximale y = z̃ : |a, b| → Rm. Si y était définie au point b, il existerait une
solution y(1) : [b − ε, b + ε] → Rm du problème de Cauchy avec donnée initiale
(b, y(b)) ∈ U . La fonction ỹ : |a, b+ ε] → Rm cöıncidant avec y sur |a, b] et avec y(1)

sur [b, b + ε] serait alors un prolongement strict de y, ce qui est absurde.

Exemple – Pour donner un exemple de non unicité, il suffit de considérer
l’équation y′ = 3|y|2/3. Le problème de Cauchy de condition initiale y(0) = 0
admet alors au moins 2 solutions maximales :

y(1)(t) = 0, y(2)(t) = t3, t ∈ R.

���� �����	�	 
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Nous allons voir ici une condition géométrique nécessaire et suffisante permettant
d’affirmer qu’une solution est maximale.

Théorème – U un ouvert de R × Rm et y : I = [t0, b[ → Rm une solution de
l’équation (E) y′ = f(t, y), où f est une fonction continue sur U . Alors y(t) peut
se prolonger au delà de b si et seulement si il existe un compact K ⊂ U tel que la
courbe t 
→ (t, y(t)), t ∈ [t0, b[, reste contenue dans K.

Autrement dit, y est non prolongeable au delà du temps b si et seulement si (t, y(t))
s’échappe de tout compact K de U quand t → b−. La conséquence suivante est
immédiate.

Critère de maximalité – Une solution y : ]a, b[ → Rm de (E) est maximale
si et seulement si t 
→ (t, y(t)) s’échappe de tout compact K de U quand t → a+

ou quand t → b−. Puisque les compacts sont les parties fermées bornées, ceci
signifie encore que (t, y(t)) s’approche du bord de U ou tend vers ∞, c’est-à-dire
|t| + ‖y(t)‖ + 1/d

(
(t, y(t)), ∂U) → +∞ quand t → a+ ou t → b−.

Démonstration du théorème. La condition de prolongement est évidemment
nécessaire, puisque si y(t) se prolonge à [t0, b], alors l’image du compact [t0, b] par
l’application continue t 
→ (t, y(t)) est un compact K ⊂ U .
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Inversement, supposons qu’il existe un compact K de U tel que (t, y(t)) ∈ K pour
tout t ∈ [t0, b[. Posons

M = sup
(t,y)∈K

‖f(t, y)‖ < +∞

qui est fini par continuité de |f‖ et compacité de K. Ceci entrâıne que t 
→ y(t) est
lipschitzienne sur [t0, b[, donc uniformément continue, et le critère de cauchy montre
que la limite � = limt→b− y(t) existe. Nous pouvons prolonger y par continuité en
b en posant y(b) = �, et nous avons (b, y(b)) ∈ K ⊂ U puisque K est fermé. La
relation y′(t) = f(t, y(t)) montre alors que y est de classe C1 sur [t0, b]. Maintenant,
le théorème d’existence locale des solutions implique qu’il existe une solution locale z
d problème de Cauchy de donnée initiale z(b) = � = y(b) sur un intervalle [b−ε, b+ε].
On obtient alors un prolongement ỹ de y sur [t0, b + ε] en posant ỹ(t) = z(t) pour
t ∈ [b, b + ε]. Le théorème est démontré.
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Reprenons les notations du début du § 2. On suppose ici en outre que f est
localement lipschitzienne en y : cela signifie que pour tout point (t0, y0) ∈ U il existe
un cylindre C0 = [t0−T0, t0 +T0]×B(y0, r0) ⊂ U et une constante k = k(t0, y0) ≥ 0
tels que f soit k-lipschitzienne en y sur C0 :(

∀(t, y1), (t, y2) ∈ C0

)
‖f(t, y1) − f(t, y2)‖ ≤ k‖y1 − y2‖.

Remarque – Pour que f soit localement lipschitzienne en y sur U , il suffit que
f admette des dérivées partielles ∂fi

∂yj
, 1 ≤ i, j ≤ m, continues sur U . Soit en effet

A = max
1≤i,j≤m

sup
(t,y)∈C0

∣∣∣∣ ∂fi

∂yj
(t, y)

∣∣∣∣ .
Le nombre A est fini puisque C0 est compact. Le théorème des accroissement finis
appliqués à fi sur C0 donne

fi(t, y1) − fi(t, y2) =
∑

j

∂fi

∂yj
(t, ξ)(y1,j − y2,j)

avec ξ ∈ ]y1, y2[. On a donc

max
i

|fi(t, y1) − f(t, y2)| ≤ mA · max
j

|y1,j − y2,j |.

Sous ces hypothèses sur f , nous allons montrer que la solution du problème
de Cauchy est nécessairement unique, et que de plus toute suite de solutions
ε-approchées avec ε tendant vers 0 converge nécessairement vers la solution exacte.
Compte tenu de l’importance de ces résultats, nous donnerons ensuite une deuxième
démonstration assez différente basée sur le théorème du point fixe (chapitre IV,
§ 1.1).
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Soit C0 = [t0 − T0, t0 + T0] × B(y0, r0) ⊂ U un cylindre sur lequel f est k-lipschi-
tzienne en y et soit M = supC0

‖f‖. On se donne ε > 0 et on considère des solutions
y(1) et y(2) respectivement ε1-approchée et ε2-approchée du problème de Cauchy de
donnée initiale (t0, y0), avec ε1, ε2 ≤ ε.

On a alors ‖y′
(i)(t)‖ ≤ M + ε, et un raisonnement analogue à celui du § 2.1 montre

que les graphes de y(1), y(2) restent contenus dans le cylindre

C = [t0 − T, t0 + T ] × B(y, r0) ⊂ C0

dès que T ≤ min
(
T0,

r0
M+ε

)
, ce qu’on suppose désormais.

Lemme de Gronwall – Sous les hypothèses précédentes, on a

‖y(2)(t) − y(1)(t)‖ ≤ (ε1 + ε2)
ek|t−t0| − 1

k
, ∀t ∈ [t0 − T, t0 + T ].

Démonstration. Quitte à changer l’origine du temps on peut supposer t0 = 0 et,
par exemple, t ∈ [0, T ]. Posons alors

v(t) =
∫ t

0

‖y(2)(u) − y(1)(u)‖du.

Comme y(i) satisfait l’équation différentielle à εi près, on obtient par soustraction

‖y′
(2)(t) − y′

(1)(t)‖ ≤ ‖f(t, y(2)(t) − f(t, y(1)(t)‖ + ε1 + ε2

≤ k‖y(2)(t) − y(1)(t)‖ + ε1 + ε2,

en utilisant l’hypothèse que f est k-lipschitzienne en y. De plus

y(2)(t) − y(1)(t) =
∫ t

0

(y′
(2)(u) − y′

(1)(u))du

puisque y(2)(0) = y(1)(0) = y0. On en déduit

‖y(2)(t) − y(1)(t)‖ ≤ k

∫ t

0

‖y(2)(u) − y(1)(u)‖du + (ε1 + ε2)t (∗)

c’est-à-dire
v′(t) ≤ kv(t) + (ε1 + ε2)t.

Après soustraction de kv(t) et multiplication par e−kt, on trouve

(v′(t) − kv(t))e−kt =
d

dt
(v(t)e−kt) ≤ (ε1 + ε2)te−kt.
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Grâce à une nouvelle intégration (noter que v(0) = 0), il vient

v(t)e−kt ≤
∫ t

0

(ε1 + ε2)ue−kudu = (ε1 + ε2)
1 − (1 + kt)e−kt

k2
,

v(t) ≤ (ε1 + ε2)
ekt − (1 + kt)

k2
,

tandis que la première inégalité intégrée (∗) donne

‖y(2)(t) − y(1)(t)‖ ≤ kv(t) + (ε1 + ε2)t ≤ (ε1 + ε2)
ekt − 1

k
.

Le cas où t ∈ [−T, 0] s’obtient par un changement de variable t 
→ −t.

Théorème (Cauchy-Lipschitz) – Si f : U → Rm est localement lipschitzienne
en y, alors pour tout cylindre de sécurité C = [t0 − T, t0 + T ] × B(y0, r0) comme
ci-dessus, le problème de Cauchy avec condition initiale (t0, y0) admet une unique
solution exacte y : [t0 − T, t0 + T ] → U . De plus, toute suite y(p) de solutions
εp-approchées avec εp tendant vers 0 converge uniformément vers la solution exacte
y sur [t0 − T, t0 + T ].

Existence. Soit y(p) une suite quelconque de solutions εp approchées avec
lim εp = 0, par exemple celles fournies par la méthode d’Euler. Le lemme de
Gronwall montre que

d(y(p), y(q)) ≤ (εp + εq)
ekT − 1

k
sur [t0 − T, t0 + T ],

par conséquent y(p) est une suite de Cauchy uniforme. Comme les fonctions y(p)

sont toutes à valeurs dans B(y0, r0) qui est un espace complet, y(p) converge vers
une limite y. Cette limite y est une solution exacte de l’équation (E) d’après la
proposition 3 du § 2.3.

Unicité. Si y(1), y(2) sont deux solutions exactes, le lemme de Gronwall avec
ε1 = ε2 = 0 montre que y(1) = y(2).
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Soit C = [t0 − T, t0 + T ] × B(y0, r0) ⊂ C0 avec T ≤ min
(
T0,

r0
M

)
un cylindre de

sécurité pour (E).

Notons F = C([t0 − T, t0 + T ], B(y0, r0)) l’ensemble des applications continues de
[t0 − T, t0 + T ] dans B(y0, r0), muni de la distance d de la convergence uniforme.

A toute fonction y ∈ F, associons la fonction φ(y) définie par

φ(y)(t) = y0 +
∫ t

t0

f(u, y(u))du, t ∈ [t0 − T, t0 + T ].
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D’après le lemme du § 2.1, y est une solution de (E) si et seulement si y est un point
fixe de φ. On va donc essayer d’appliquer le théorème du point fixe. Observons que

‖φ(y)(t) − y0‖ =
∥∥∥∫ t

t0

f(u, y(u))du
∥∥∥ ≤ M |t − t0| ≤ MT ≤ r0,

donc φ(y) ∈ F. L’opérateur φ envoie donc F dans F. Soient maintenant y, z ∈ F et
y(p) = φp(y), z(p) = φp(z). On a

‖y(1)(t) − z(1)(t)‖ =
∥∥∥∫ t

t0

(f(u, y(u)) − f(u, z(u))) du
∥∥∥

≤
∣∣∣ ∫ t

t0

k‖y(u) − z(u)‖du
∣∣∣ ≤ k|t − t0| d(y, z).

De même

‖y(2)(t) − z(2)(t)‖ ≤
∣∣∣ ∫ t

0

k‖y1(u) − z1(u)‖ du
∣∣∣

≤
∣∣∣ ∫ t

t0

k · k|u − t0|d(y, z)du
∣∣∣ = k2 |t − t0|2

2
d(y, z).

Par récurrence sur p, on vérifie aussitôt que

‖y(p)(t) − z(p)(t)‖ ≤ kp |t − t0|p
p!

d(y, z),

en particulier

d(φp(y), φp(z)) = d(y(p), z(p)) ≤ kpT p

p!
d(y, z) (∗)

et φp est lipschitzienne de rapport kpT p

p! sur F. Comme limp→+∞ kpT p

p! = 0, il existe
p assez grand tel que kpT p

p! < 1 ; pour une telle valeur de p, φp est une application
contractante de F dans F. Par ailleurs, F est un espace métrique complet. Le
théorème du point fixe démontré au chapitre IV (dans sa version géneralisée au cas
d’applications dont une itérée est contractante) montre alors que φ admet un point
fixe unique y. Nous avons donc bien redémontré le théorème de Cauchy-Lipschitz
affirmant l’existence et d’unicité de la solution du problème de Cauchy.

Remarque – D’après (∗), on voit que pour toute fonction z ∈ F la suite itérée
z(p) = ϕp(z) converge uniformément vers la solution exacte y du problème de
Cauchy.
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Le théorème d’unicité locale entrâıne facilement un résultat d’unicité globale, au
moyen d’un 〈〈 raisonnement de connexité 〉〉.
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Théorème – Soient y(1), y(2) : I → Rm deux solutions de (E), avec f localement
lipschitzienne en y. Si y(1) et y(2) cöıncident en un point de I, alors y(1) = y(2)

sur I.

Démonstration. Supposons y(1)(t0) = y(2)(t0) en un point t0 ∈ I. Montrons par
exemple que y(1)(t) = y(2)(t) pour t ≥ t0. S’il n’en est pas ainsi, considérons le
premier instant t̃0 où y(1) et y(2) bifurquent :

t̃0 = inf{t ∈ I ; t ≥ t0 et y(1)(t) �= y(2)(t)}

On a par définition y(1)(t) = y(2)(t) pour t ∈ [t0, t̃0[ et par continuité il s’ensuit que
y(1)(t̃0) = y(2)(t̃0). Soit ỹ0 ce point et soit C̃ = [t̃0−T̃ , t̃0+T̃ ]×B(ỹ0, r̃0) un cylindre
de sécurité de centre (t̃0, ỹ0). Le théorème d’unicité locale implique que y(1) = y(2)

sur [t̃0 − T̃ , t̃0 + T̃ ], ce qui contredit la définition de t̃0. L’unicité est démontrée.

Corollaire – Si f est localement lipschitzienne en y sur U , pour tout point
(t0, y0) ∈ U il passe une solution maximale y : I → Rm et une seule.

Interprétation géométrique – Le théorème d’unicité signifie géométri-
quement que des courbes intégrales distinctes ne peuvent se couper.

Exemple – y′ = 3|y|2/3 sur U = R × R.

Déterminons l’ensemble des solutions maximales. On a ici f(t, y) = 3|y|2/3,
∂f
∂y = signe (y) × 2|y|−1/3 pour y �= 0. La dérivée y �= 0 la dérivée ∂f

∂y est continue
sur les demi-plans y > 0 et y < 0, mais discontinue en y = 0. La fonction f est
localement lipschitzienne en y sur {y > 0} et {y < 0}, mais il est facile de voir
qu’elle ne l’est pas au voisinage de tout point (t0, 0) ∈ R × {0} (on a vu d’ailleurs
qu’il n’y a pas d’unicité locale en ces points). Sur {y > 0} (resp. sur {y < 0})
l’équation équivaut à

1
3

y′y− 2
3 = 1 (resp. − 1

3
y′(−y)−

2
3 = −1)

d’où y
1
3 = t + C1 (resp. (−y)−

1
3 = −(t + C2)) soit y(t) = (t + Ci)3. Si y est une

solution maximale dans U = R × R, alors y′ ≥ 0, donc y est croissante. Notons

a = inf{t, y(t) = 0}, b = sup{t ; y(t) = 0}.

Si a �= −∞, on a y(a) = 0 et y(t) < 0 pour t < a, donc y(t) = (t − a)3. De même
y(t) = (t − b)3 pour t > b si b �= +∞.
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a′ a b t

(t0, y0)

y

On voit que pour tout point (t0, y0) il passe une infinité de solutions maximales : si
y0 > 0, b = t0 − y

1/3
0 est imposé, mais le choix de a ∈ [−∞, b] est arbitraire. Noter

que ce phénomène se produit bien qu’on ait unicité locale au point (t0, y0) !
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Nous donnons ici des conditions suffisantes d’existence pour les solutions globales,
reposant sur des hypothèses de croissance de f(t, y) lorsque ‖y‖ tend vers +∞.
On peut cependant obtenir des conditions suffisantes nettement plus faibles (voir
l’exercice (b) ci-dessous, ainsi que le problème 5.9).

Théorème – Soit f : U → Rm une application continue sur un ouvert produit
U = J × Rm, où J ⊂ R est un intervalle ouvert. On fait l’une ou l’autre des deux
hypothèses suivantes :

(1) Il existe une fonction continue k : J → R+ telle que pour tout t ∈ J fixé,
l’application y 
→ f(t, y) soit lipschitzienne de rapport k(t) sur Rm.

(2) Il existe des fonctions c, k : J → R+ continues telles que l’application
y 
→ f(t, y) satisfasse une croissance linéaire à l’infini du type

‖f(t, y)‖ ≤ c(t) + k(t)‖y‖.

Alors toute solution maximale de l’équation différentielle y′ = f(t, y) est globale
(c’est-à-dire définie sur J tout entier ).

Démonstration. Il est évident que l’hypothèse (1) entrâıne l’hypothèse (2) (avec
c(t) = ‖f(t, 0)‖), il suffirait donc de donner la preuve pour (2). Cependant, il y a
une démonstration sensiblement plus simple sous l’hypothèse (1).
Démonstration sous l’hypothèse (1). Soit (t0, y0) ∈ J × Rm, et [t0 − T, t0 + T ′]
un intervalle compact quelconque contenu dans J . Reprenons la démonstration du
théorème de Cauchy-Lipschitz.
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Comme U = J × Rm, on peut choisir un cylindre de sécurité de rayon r0 = +∞.
L’application φ définie au § 3.2 opère donc sur l’espace complet

F = C([t0 − T, t0 + T ′], Rm).

Soit
K = max

t∈[t0−T,t0+T ′]
k(t).

L’application f est par hypothèse K-lipschitzienne en y sur [t0 − T, t0 + T ′] × Rm.
D’après le raisonnement du § 3.2, l’application φp est lipschitzienne de rapport
1
p! Kp(max(T, T ′))p sur F, donc contractante pour p assez grand. Ceci implique
que la solution (unique) du problème de Cauchy est définie sur tout intervalle
[t0 − T, t0 + T ′] ⊂ J .

Démonstration sous l’hypothèse (2). L’idée est d’utiliser le critère de maximalité des
solutions démontré au 2.6. Supposons qu’on ait une solution y : [t0, b[ → Rm avec
t0, b ∈ J (autrement dit, telle que b ne soit pas la borne supérieure de J). Posons
C = supt∈[t0,b] c(t) et K = supt∈[t0,b] k(t). Nous obtenons

‖y′(t)‖ = ‖f(t, y(t))‖ ≤ C + K‖y(t)‖.

On utilise alors un raisonnement de type lemme de Gronwall pour majorer la
norme ‖y(t)‖. Nous avons y(t) = y(t0) +

∫ t

t0
y′(u) du, donc

‖y(t)‖ ≤ v(t) = ‖y(t0)‖ +
∫ t

t0

‖y′(u)‖ du avec

v′(t) = ‖y′(t)‖ ≤ C + K‖y(t)‖ ≤ C + Kv(t).

Ceci donne la majoration

d

dt

(
v(t)e−K(t−t0)

)
=

(
v′(t) − K v(t)

)
e−K(t−t0) ≤ Ce−K(t−t0).

Par intégration sur [t0, t], on obtient

v(t)e−K(t−t0) − v(t0) ≤ C

K
(1 − e−K(t−t0)),

et comme v(t0) = ‖y(t0)‖, il vient

sup
t∈[t0,b[

‖y(t)‖ ≤ sup
t∈[t0,b[

v(t) ≤ R =
C

K

(
eK(b−t0) − 1

)
+ ‖y(t0)‖eK(b−t0).

Par conséquent (t, y(t)) décrit une partie compacte K = [t0, b] × B(0, R) dans
U = J × Rm, et y ne peut être une solution maximale. Toute solution maximale
est donc globale.

[
Le lecteur pourra étudier l’exercice 5.9 pour un généralisation à

une hypothèse de croissance plus faible que (2), tenant compte uniquement de la
〈〈 direction radiale 〉〉 du vecteur f(t, y)

]
.
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Exercices

(a) Montrer que toute solution maximale de l’équation différentielle y′ = t
√

t2 + y2,
(t, y) ∈ R × R, est globale.

(b) On définit f : R → R par f(y) = e si y ≤ e et f(y) = y ln y si y ≥ e. Montrer
que f n’est pas lipschitzienne au voisinage de 0. Déterminer explicitement les
solutions maximales de l’équation y′ = f(y). Les conditions suffisantes du
théorème précédent sont-elles nécessaires ?
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Un système différentiel d’ordre p dans Rm est une équation de la forme

(E) y(p) = f(t, y, y′, . . . , y(p−1))

où f : U → Rm est une application continue définie sur un ouvert U ⊂ R × (Rm)p.
Une solution de (E) sur un intervalle I ⊂ R est une application y : I → Rm p-fois
dérivable, telle que
(i) (∀t ∈ I) (t, y(t), y′(t), . . . , y(p−1)(t)) ∈ U ,
(ii) (∀t ∈ I) y(p)(t) = f(t, y(t), y(t′), . . . , y(p−1)(t)).
Le résultat suivant se démontre par récurrence d’une manière entièrement analogue
à celle utilisée pour les équations différentielles d’ordre 1. Le détail de l’argument
est laissé au lecteur.

Régularité des solutions – Si f est de classe Ck, les solutions y sont de
classe Ck+p.
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Il est clair que le système (E) est équivalent au système différentiel d’ordre 1

(E1)



dY0
dt = Y1

dY1
dt = Y2

. . .
dYp−2

dt = Yp−1

dYp−1
dt = f(t, Y0, Y1, . . . , Yp−1)

si l’on pose Y0 = y, Y1 = y′, . . .. Le système (E1) peut encore s’écrire

(E1) Y ′ = F (T, Y )

avec
Y = (Y0, Y1, . . . , Yp−1) ∈ (Rm)p

F = (F0, F1, . . . , Fp−1) : U → (Rm)p

F0(t, Y ) = Y1, . . . , Fp−2(t, Y ) = Yp−1,

Fp−1(t, Y ) = f(t, Y ).
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Tout système différentiel (E) d’ordre p dans Rm est donc équivalent à un système
différentiel (E1) d’ordre 1 dans (Rm)p. Il en résulte que les théorèmes d’existence et
d’unicité démontrés pour les systèmes d’ordre 1 sont encore vrais pour les systèmes
d’ordre p, avec des preuves qui sont des transpositions directes du cas d’ordre 1.
En voici les principaux énoncés :
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Pour tout point (t0, y0, y1, . . . , yp−1) ∈ U le problème de Cauchy de conditions
initiales

y(t0) = y0, y′(t0) = y1, . . . , y
(p−1)(t0) = yp−1

admet au moins une solution maximale y : I → Rm, définie sur un intervalle ouvert.

Remarque très importante – On voit ainsi que pour un système d’ordre p,
la condition initiale requiert non seulement la donnée de la valeur y0 de y au temps
t0, mais également la donnée de ses (p − 1) premières dérivées.
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Si de plus f est localement lipschitzienne en (y0, . . . , yp−1) sur U , c’est-à-dire si
∀(t0, y0, . . . , yp−1) ∈ U il existe un voisinage [t0 − T0, t0 + T0] × B(y0, r0) × . . . ×
B(yp−1, rp−1) contenu dans U sur lequel

‖f(t, z0, . . . , zp−1) − f(t, w0, . . . , wp−1)‖ ≤ k(‖z0 − w0‖ + . . . + ‖zp−1 − wp−1‖),

alors le problème de Cauchy 4.3 admet une solution maximale et une seule.

���� ��������� ��������

Si U = J × (Rm)p et s’il existe une fonction k : J → R+ continue telle que (∀t ∈ J)

‖f(t, z0, . . . , zp−1) − f(t, w0, . . . , wp−1)‖ ≤ k(t)(‖z0 − w0‖ + . . . + ‖zp−1 − wp−1‖),

alors les solutions maximales sont définies sur J tout entier.
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5.1. On considère l’équation différentielle y′ = y2 − x.

(a) Quelles sont les lignes isoclines ?

On notera I0 l’isocline correspondant à la pente nulle.

Soit P− l’ensemble des points du plan où la pente des solutions est strictement
négative. Décrire P−. Montrer que si une solution entre dans P−, alors elle y
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reste (c’est-à-dire : si une solution y(x) a un point (x0, y(x0)) dans P−, alors si
x1 > x0, (x1, y(x1)) ∈ P−).

(b) Étudier et tracer le graphe de la courbe I ensemble des points d’inflexion des
solutions de l’équation différentielle. Quelles sont les régions du plan où y′′ > 0,
respectivement y′′ < 0 ?
On notera I1 la partie de I extérieure à P−, et I2 la partie de I qui se trouve
dans P−.

(c) Soit C une courbe solution rencontrant I1 en un point (x, y).

(α) Montrer qu’en ce point, la pente de I1 est strictement inférieure à la pente
de C.

(β) En déduire que C ne coupe I1 qu’en ce point, que C ne rencontre pas P−, et
que C n’a qu’un point d’inflexion.

(γ) Montrer que C possède 2 branches infinies à direction asymptotique verti-
cale.

(δ) Soit (x0, y0) un point de C. Comparer en ce point, la pente de C et la
pente de la solution de l’équation différentielle y′ = y2

2 . En déduire que les
branches infinies de C correspondent à des asymptotes verticales.

(d) Soit D une courbe solution rencontrant I0.

(α) Montrer que D possède une asymptote verticale.

(β) Montrer que D a un point d’inflexion et un seul.

(γ) Montrer que lorsque x → ∞, D est asymptote à I0.

(e) Soit A (resp. B) l’ensemble des points de l’axe Oy par où passe une courbe
solution qui rencontre I1 (resp. I0).

(α) Montrer qu’il existe a tel que A = {0} × ]a,+∞[.

(β) Montrer qu’il existe b tel que B = {0} × ] −∞, b[.

(γ) Montrer que a = b. Quelle est l’allure de la solution passant par le point de
coordonnées (0, a) ?

5.2. On considère l’équation différentielle y′ = f(t, y), où f et ∂f
∂y sont continues.

Soit α une fonction réelle définie sur un intervalle [t0, t1[ où t1 peut éventuellement
être infini ; on suppose α continue et dérivable par morceaux.
On dit que α est une barrière inférieure [respectivement : supérieure] pour l’équation
différentielle si α′(t) < f(t, α(t)) [resp : α′(t) > f(t, α(t))] pour tout t tel que α′(t)
existe, et, aux points où α n’est pas dérivable, pour la dérivée à gauche et pour la
dérivée à droite.

(a) Montrer que si α est une barrière inférieure pour t0 ≤ t ≤ t1 et si u est une
solution de l’équation différentielle vérifiant α(t0) ≤ u(t0), alors α(t) < u(t) pour
tout t ∈ ]t0, t1[. Montrer un résultat analogue pour une barrière supérieure.
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(b) On suppose que α est une barrière inférieure sur [t0, t1[, que β est une barrière
supérieure sur [t0, t1[, et que α(t) < β(t) pour tout t ∈ [t0, t1[. L’ensemble des
points (t, x) tels que t0 ≤ t ≤ t1 et α(t) ≤ x ≤ β(t) est appelé entonnoir.

(α) Montrer que si une solution u de l’équation différentielle est telle que (s, u(s))
soit dans l’entonnoir pour un s ∈ [t0, t1[, alors (t, u(t)) est dans l’entonnoir
pour tout t ∈ [s, t1[.

(β) Si α est une barrière inférieure et β une barrière supérieure, et si α(t) > β(t)
pour t ∈ [t0, t1[, on dit que l’ensemble des (t, x) tels que t0 ≤ t ≤ t1 et
α(t) ≥ x ≥ β(t) est un anti-entonnoir.
Montrer qu’il existe une solution u(t) de l’équation différentielle, telle que
β(t) ≤ u(t) ≤ α(t) pour tout t ∈ [t0, t1[.

(c) Dans la suite du problème, on prend f(t, y) = sin(ty). On se restreindra aux
solutions vérifiant y > 0.

(α) Déterminer les isoclines correspondant aux pentes −1, 0, 1.

(β) Pour quelles valeurs de t ces isoclines sont-elles des barrières inférieures ?
supérieures ? Quels sont les entonnoirs formés par ces isoclines ?

(γ) Soit u une solution de l’équation différentielle ; soit γ la fonction continue,
dérivable par morceaux, définie pour t ≥ 0 par : γ(0) = u(0) > 0 ; γ
est affine de pente 1 depuis t = 0 jusqu’à ce que son graphe rencontre la
première isocline de pente 0, puis γ est affine de pente 0 jusqu’à l’isocline
de pente 0 suivante, puis γ est affine de pente 1 jusqu’à l’isocline de pente
0 suivante, et ainsi de suite. Montrer que le graphe de γ rencontre la droite
y = t.

(δ) Montrer que γ est une barrière supérieure.

(ε) En déduire que toute solution de l’équation différentielle rencontre la droite
y = t, puis reste dans un entonnoir.

(ζ) Dessiner l’allure des solutions de l’équation différentielle y′ = sin(ty).

5.3. On considère l’équation (appelée équation de Van der Pol) :

(E)
{

x′(t) = y(t) − x3(t) + x(t),
y′(t) = −x(t),

t ∈ R.

(a) Montrer que le problème de Cauchy correspondant admet une solution globale
unique (on pourra utiliser le résultat de l’exercice 5.9).

(b) On appelle trajectoire associée à une solution de (E), l’ensemble parcouru
dans le plan Euclidien par le point de coordonnées (x(t), y(t)) lorsque t par-
court R. Montrer que les trajectoires associées à deux solutions distinctes de
(E) cöıncident ou n’ont aucun point commun ; montrer que par chaque point
du plan passe une trajectoire et une seule ; montrer que si une trajectoire a un
point double (c’est-à-dire correspondant à deux valeurs distinctes de t), les so-
lutions associées de (E) sont périodiques (et tous les points sont alors doubles).
Quelles sont les trajectoires réduites à un point ?
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(c) Montrer que la courbe symétrique d’une trajectoire par rapport à (0, 0) est
encore une trajectoire.

(d) On considère maintenant les sous-ensembles du plan

D+ = {(0, y) ; y > 0); D− = {(0, y) ; y < 0} ;

E1 = {(x, y) ; x > 0 et y > x3 − x)}; Γ+ = {(x, x3 − x) ; x > 0)} ;

E2 = {(x, y) ; x > 0 et y < x3 − x} ;

E3 = {(x, y) ; x < 0 et y < x3 − x}; Γ− = {(x, x3 − x) ; x < 0} ;

E4 = {(x, y) ; x < 0 et y > x3 − x}.

Soit (x(t), y(t)) une solution de (E) ; montrer que, si (x(t0), y(t0)) ∈ D+, il
existe t4 > t3 > t2 > t1 > t0 tels que (x(t), y(t)) ∈ Ei pour t ∈ ]ti−1, ti[,
i = 1, 2, 3, 4, et (x(t1), y(t1)) ∈ Γ+, (x(t2), y(t2)) ∈ D−, (x(t3), y(t3)) ∈ Γ− ;
(x(t4), y(t4)) ∈ D+.

(e) Soit y0 > 0 et t0 ∈ R ; il existe une solution de (E) telle que (x(t0), y(t0)) =
(0, y0) ; on pose σ(y0) = y(t2) ; montrer que σ(y0) ne dépend que de y0 (et non
de t0) et que σ est une application monotone continue de R+ dans R−.

(f) En utilisant le (c), montrer que (0, y0) appartient à la trajectoire d’une solution
périodique si et seulement si σ(y0) = −y0.

(g) Soit β > 0 tel que pour la solution de (E) vérifiant (x(t0), y(t0)) = (0, β) on ait
(x(t1), y(t1)) = (1, 0). Montrer que pour y0 < β, on a σ(y0)2 − y2

0 > 0 (regarder∫ t2

t0

d

dt
[x(t)2 + y(t)2]dt).

(h) Soit y0 grand. Soit C la courbe formée des arcs suivants :

• le segment (0, y0), (1, y0) ;
• l’arc de cercle de centre O passant par (1, y0) et coupant (y = x3 − x) en

(x1, y1) avec x1 > 1.
• le segment (x1, y1), (x1, 0).

• l’arc de cercle de centre O passant par (x1, 0) et coupant (x = 1) en (x′
1, y

′
1).

• la tangente en (x′
1, y

′
1) à cet arc de cercle qui recoupe Oy en (0, y2).

Montrer que la solution de (E) passant par (0, y0) est à l’intérieur de C. En
déduire que σ(y0)2 − y2

0 < 0.

(i) En déduire qu’il existe une trajectoire et une seule correspondant à des solutions
périodiques de (E). Montrer que les trajectoires non réduites à (0, 0) convergent
asymptotiquement vers cette trajectoire quand t tend vers +∞.

5.4. Soit t une variable réelle ≥ 0. On considère le problème de Cauchy

y′ = ty, y(0) = 1.
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(a) Démontrer que pour tout T > 0, ce problème admet une solution et une seule
sur [0, T ], et indiquer comment la méthode d’Euler permet d’en trouver une
approximation.

(b) Déduire de ce qui précède la formule

y(t) = lim
N→+∞

PN (t) avec PN (t) =
N−1∏
n=0

(
1 +

nt2

N2

)

(c) Pour α > 0, étudier les variations de la fonction f(x) = x ln (1 + α/x) sur
]0,+∞[ ; on montrera que f ′′(x) < 0.
En déduire l’encadrement(

1 +
t2

N

) n
N ≤ 1 +

nt2

N2
≤

(
1 +

t2

N2

)n

si 0 ≤ n ≤ N − 1.

(d) Calculer la limite du (b), et en déduire y(t).

5.5. On considère l’équation différentielle

y′ = |y|−3/4y + t sin
(π

t

)
= f(t, y)

où le second membre est défini sur R2 à l’aide de prolongements par continuité. On
note Y (t) la solution approchée définie sur R, obtenue par la méthode d’Euler pour
le pas h = 1

n+1/2 où n ∈ N∗, et vérifiant Y (0) = 0. On suppose dans un premier
temps que n est pair.

(a) Calculer Y (h), Y (2h) et Y (3h).

Démontrer les inégalités Y (3h) > h3/2

2 > (3h)3/2

16 .

(b) Déterminer c > 0 tel que 0 < t < c on ait 1
2 t3/8 − t > 1

10 t3/8. En supposant

de plus h ≤ t et c assez petit vérifier (t+h)3/2−t3/2

h < 8
5 t3/8 (on pourra utiliser

la formule de Taylor).

(c) On suppose que pour m ∈ N∗ on a mh < c et Y (m,h) > (mh)3/2

16 .
Démontrer les inégalités

f(mh, Y (mh)) > Y (mh)1/4 − mh >
1
2

(mh)3/8 − mh >
1
10

(mh)3/8.

En déduire Y ((m + 1)h) > ((m+1)h)3/2

16 .
Montrer que si p entier vérifie 0 < ph ≤ c, on a

Y (ph) >
(ph)3/2

16
.
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(d) On suppose ici que n est impair. Calculer Y (h), Y (2h) et Y (3h). Montrer
l’inégalité Y (3h) < − (3h)3/2

16 .

On suppose que pour mh < c on a Y (mh) < − (mh)3/2

16 ; montrer comme ci-

dessus que Y ((m + 1)h) < − ((m+1)h)3/2

16 , puis que Y (ph) < − (ph)3/2

16 pour tout
entier p tel que 0 < ph ≤ c.

(e) Pour 0 < t < c, montrer que les solutions approchées Y (t) ne tendent vers
aucune limite n tend vers +∞.

5.6. Soit le système différentiel dans R2 défini par

(S)


dx

dt
= 2(x − ty)

dy

dt
= 2y.

(a) Déterminer la courbe intégrale qui passe par le point (x0, y0) au temps t = 0.

(b) On utilise la méthode d’Euler avec pas constant h, démarrant au temps t0 = 0.
Soit (xn, yn) le point atteint au temps tn = nh (n ∈ N).

(α) Écrire la relation qui lie (xn+1, yn+1) à (xn, yn).

(β) Calculer explicitement (xn, yn) en fonction de n, h, x0, y0.

(γ) Sans utiliser les théorèmes généraux du cours, vérifier que la solution
approchée qui interpole linéairement les points (xn, yn) converge sur R+

vers la solution exacte de (S).

5.7. Soit f : [a, b] × R → R une fonction continue et lipschitzienne de rapport k en
sa deuxième variable. On définit une suite de fonctions yn : [a, b] → R en posant
y0(t) = λ et

yn+1(t) = λ +
∫ t

a

f(u, yn(u))du, n ∈ N.

On sait d’après V 3.2 que yn converge uniformément vers la solution exacte de
l’équation y′ = f(t, y) telle que y(a) = λ. On étudie ici le cas particulier de
l’équation

dy

dt
= −2y + t, t ∈ [0,+∞[.

(a) Montrer que yn peut s’écrire sous la forme

yn(t) = λPn(t) + Qn(t)

où Pn, Qn sont des polynômes que l’on explicitera.

(b) Calculer limn→+∞ Pn et limn→+∞ Qn. Vérifier ce résultat en résolvant directe-
ment l’équation.
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5.8. Soit T un réel positif et f : [0, T ] × R → R une application continue
lipschitzienne de rapport k en la deuxième variable. On considère l’équation
différentielle

(E) y′ = f(t, y).

Soit un réel h ∈ ]0, T [. On dira que z est une solution retardée de retard h si z est
une fonction continue sur [0, T ], dérivable sur ]h, T ] et si

z′(t) = f(t, z(t − h)), ∀t ∈ ]h, T ].

(a) Soit y0 un réel fixé. Montrer que (E) admet une solution retardée de retard h
et une seule, notée zh, telle que zh(t) = y0 pour tout t ∈ [0, h].

(b) Soit z une solution retardée de retard h. On pose

A = max
t∈[0,T ]

|f(t, 0)|, m(t) = max
u∈[0,t]

|z(u)|.

(α) Montrer que pour tout t ∈ [h, T ] on a

m(t) ≤ m(h) +
∫ t

h

(A + km(u))du.

(β) En déduire que

m(t) ≤
(A

k
+ m(h)

)
ek(t−h) − A

k
, ∀t ∈ [h, T ].

[Indication : étudier la dérivée de la fonction M(t) = e−kt
∫ t

h
(A + km(u))du.]

(γ) Montrer qu’il existe une constante B indépendante de h, que l’on explicitera,
telle que ‖zh‖∞ ≤ B pour tout h > 0, si zh désigne la solution retardée du
(a).

(c) On se propose ici d’étudier la convergence de zh quand h tend vers 0.

(α) Montrer que les fonctions zh sont C-lipschitziennes avec une constante C
indépendante de h.

(β) Soit y la solution exacte (non retardée) de (E) telle que y(0) = y0. On pose

δ(t) = max
u∈[0,t]

|zh(u) − y(u)|.

Montrer que δ vérifie l’inégalité intégrale

δ(t) ≤ δ(h) +
∫ t

h

(kCh + kδ(u))du.

où C est la constante de la question (c) α).
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(γ) En déduire une majoration de ‖δ‖∞ et conclure.

(d) On construit maintenant une méthode de résolution approchée de (E) utilisant
les solutions retardées zh. Pour tout entier n ∈ N, n ≤ T/h, on pose

tn = nh, zn = zh(tn) ;

dans la formule

zn+1 = zn +
∫ tn+1

tn

f(t, zh(t − h))dt

on remplace la valeur exacte de l’intégrale par sa valeur approchée calculée au
moyen de la méthode des trapèzes élémentaires.

(α) Écrire la relation de récurrence définissant la suite (zn).

(β) Exprimer l’erreur de consistance relative à une solution exacte y ; en calculer
un développement limité à l’ordre 2 en fonction de h et des dérivées partielles
de f au point (t, y). Quel est l’ordre de la méthode ? (voir chapitre VIII
pour les définitions).

5.9. Soit J un intervalle ouvert de R et f : J ×Rm → Rm une application continue.
On se propose de démontrer que toute solution maximale de l’équation différentielle
y′ = f(t, y) est globale si f vérifie l’hypothèse suivante :

(H) Il existe des fonctions a, b : I → R+ continues telles que

〈f(t, y), y〉 ≤ a(t)‖y‖2 + b(t), ∀(t, y) ∈ J × Rm,

où 〈 , 〉 et ‖ ‖ désignent respectivement le produit scalaire et la norme
euclidienne standards sur Rm.

(a) Soit y : [t0, t1[→ Rm une solution maximale à droite passant par un point
(t0, y0) et soit r(t) = ‖y(t)‖2. Montrer que r′(t) ≤ 2a(t)r(t) + 2b(t).
En déduire que ‖y(t)‖2 ≤ ρ(t) où ρ : J → R est la solution (toujours globale)
de l’équation linéaire ρ′ = 2a(t)ρ + 2b(t), telle que ρ(t0) = ‖y0‖2.
[Indication : soit A(t) une primitive de a(t) ; étudier le signe de la dérivée de
(r(t) − ρ(t))e−2A(t).

(b) Déterminer un majorant explicite de ‖y(t)‖ lorsque a et b sont des constantes.

(c) On suppose que t1 < sup J . Montrer que y(t), y′(t) sont bornées sur [t0, t1[ et
que ces fonctions se prolongent par continuité en t1. Montrer que ceci conduit
à une contradiction. Conclure.
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