

Synopsis regarding sedimentary structures types mode of formation and environmental interpretation

Sedimentary structures:

Sedimentary structures are physical features within sedimentary rocks, created during or shortly after deposition (primary or secondary). (Post depositional or syndepositional)

These structures help interpreting ancient environmental conditions and processes based on the following agents: water flow, wind direction, leading to the type of depositional setting approaches.

The types or modes of formation, and environmental interpretations of sedimentary structures are the main key leading to the depositional history of an area (see course and modele of interpretation given in the course e.g. Benzagouta M.S et al., 1991 about the fining upward sequence and its overall description and support) .

1 Stratification and layering/

The arrangement of layers (strata) of sediment are set as layers.

These layers can vary in thickness, mineralogical composition, and texture.

Formation:

Stratification forms as sediments which are deposited in distinct layers over time, related to process (mechanism responsible of the formation) , and environment changes (e.g., water depth, current strength, or sediment supply).

Environmental Interpretation:

Stratification is common in most sedimentary environments, including rivers, lakes, deserts, and marine settings. The thickness and grain size can provide information on energy conditions, such as whether (see exercices we provide during the courses) the sediment was deposited in a high-energy environment (e.g., river channels see the courses and explanations already doe for many cases) or a low-energy environment (e.g., deep marine).

2. Cross beddings:

Description:

Layers of sediment that are deposited at an angle to horizontal bedding plane.

Cross-bedding is often seen as sets of inclined layers within a larger sequence.

Formation: These structures are formed by the migration of ripples megaripples or dunes in a current of water or wind. As these features migrate, they leave behind inclined layers

Environmental Interpretation : Common in river channels, deltas, sand dunes, and coastal environments. The direction of cross-bedding can indicate the direction of flow (e.g., wind in deserts or water in rivers).

3. Ripple marks:

Description:

They consist of small, undulating patterns formed on the surface of sediment beds, typically by the action of wind or water.

Formation: Created by the movement of water (such as waves or currents) or wind over a sandy surface.

Environmental Interpretation:

Ripple marks indicate shallow water environments, such as beaches, shallow marine, or tidal flats. Symmetrical ripple marks are typically associated with wave action in shallow marine environments, while asymmetrical ripple marks are often formed by unidirectional currents, such as in rivers or wind-blown dunes.

4. Mud cracks:

Description: Polygonal cracks that form in mud or clay-rich sediments as they dry out and shrink.

Formation:

They occur in environments where water evaporates, leaving behind a cracked surface as the mud dries.

Environmental Interpretation :

Typically found in arid, semi-arid, or seasonal wetland environments where periodic drying occurs. They indicate an alternating wet and dry climate or shallow water environments subject to evaporation (e.g., tidal flats, lakes, or deserts).

5. Graded bedding:

Description:

A sedimentary layer in which the grain size decreases from the bottom to the top. This is a form of sorting within a single layer of sediment.

Formation: Typically forms as a result of rapid sediment deposition from a suspension (e.g., in underwater turbidity currents), where larger particles settle first, followed by finer particles.

Environmental Interpretation:

Graded bedding is commonly associated with deep marine environments, particularly in submarine fans or the aftermath of turbidity currents (e.g., in the deep ocean floor or continental slope).

Convoluted bedding:

Description: Distorted, contorted layers of sediment often seen in fine-grained deposits.

Formation

Typically forms under conditions of soft-sediment deformation, often due to sudden pressure or shock (e.g., seismic events or rapid burial).

Environmental Interpretation:

They can be found in deep-water settings where sediments are rapidly deposited, such as submarine fans, or in areas subject to overloading, such as floodplains or deltas.

7. Fossils Imprints:

Description: Trace fossils (e.g., footprints, burrows) or body fossils (e.g., shells, bones) preserved within sedimentary layers.

Formation:

They form when organisms interact with sediment, such as moving across it, burrowing, or being preserved in the sediment itself.

Environmental Interpretation

Fossil imprints can reveal the type of organisms that lived in a given environment (e.g., terrestrial or marine) and the conditions of that environment (e.g., water depth, salinity, and climate).

8. Flute Casts:

Description: Scour marks or depressions on the underside of a sedimentary layer that are shaped like a spoon or flute

Formation:

Formed by the erosion of soft sediment by strong, unidirectional currents, which create the scooped shapes

Environmental Interpretation:

Flute casts are typically found in deep marine environments, particularly on the sea floor beneath turbidity currents, where strong currents erode and mold the sediment

9. Sole marks:

Description: Features on the base of a sedimentary bed that are formed by the interaction of moving sediment with underlying layers. Examples include tool marks, grooves, and scours.

Formation:

These marks are created when currents move through soft, unconsolidated sediments, eroding them and leaving distinctive impressions.

Mode of Formation of Sedimentary Structures:

10 Water related Process

Current Flow

Rivers, waves, and tides transport sediments, and their strength can influence the formation of structures like cross-bedding, ripple marks, and graded bedding.

Sedimentation from Suspension

Fine particles settle slowly from water suspension, forming structures like graded bedding and laminations.

Evaporation:

In shallow water or arid regions, evaporation can lead to the formation of mud cracks and salt deposits

11 Wind related processes:

Aeolian Transport:

Wind can move fine sand and dust, creating features like dunes (which form cross-bedding) and ripples in desert environments.

12 Biological Activity:

Organisms burrowing into sediment can alter the structure of beds, forming trace fossils like burrows and footprints.

Bioturbation

Organisms burrowing into sediment can alter the structure of beds, forming trace fossils like burrows and footprints

Shell and Organism Accumulation

Marine and freshwater organisms can leave behind shells, corals, and other biological structures that preserve information about past environments

13. Tectonic and Earthquake Activity:

Soft-Sediment Deformation: Sediments that are not fully lithified can deform due to sudden movements like earthquakes, resulting in features like convolute bedding.

Environmental Interpretation:

14 River and Delta

Cross-bedding, graded bedding, and ripple marks are common in these settings, with well-sorted sediments reflecting high-energy, fluctuating conditions.

15 Shallow Marine and Tidal Flats:

Ripple marks, mud cracks, and some fossil imprints can be found in these environments, indicating cyclic flooding and drying.

16 Desert and Wind – Blown (Aeolian) Environments: Cross-bedding from migrating dunes, ripple marks, and other wind-induced features are common in deserts and coastal environments.

17 Deep Marine (Submarine Fans)

Graded bedding, flute casts, and turbidite sequences are indicators of rapid sediment deposition from turbidity currents, often in deep water.

18 Arid Environment (Lakes and Plays)

Mud cracks, salt deposits, and evaporite minerals are typical of environments where evaporation exceeds precipitation, such as in saline lakes and desert playas (see cases of different environments æ

For the overall see your oral magisterial courses with different explanations were set and asked for.

Prof M.S Benzagouta