1.5.3 Mesure positive invariante (stationnaire) pour une chaine de Markov

Soit $(X_n)_{n\geq 0}$ une de Markov homogène, définie sur un espace (Ω, \mathcal{A}, P) à valeurs dans un espace d'états $(E, \mathcal{P}(E))$ de matrice de transition P. Soit π une mesure positive sur $(E, \mathcal{P}(E))$ pour tout $i \in E$ on note $\pi_i = \pi(\{i\})$ et π sera le vecteur de composantes $(\pi_i)_{i\in E}$ de dimension card(E)

Définition 16 On dit que π mesure positive sur $(E, \mathcal{P}(E))$ est une mesure invariante de la chaine de markov si

$$\pi P = \pi$$

- * On prendra garde au fait que π n'est pas nécessairement une probabilité.
- * Pour que π soit une probabilité invariante on doit avoir $\pi(E) = \sum_{i \in E} \pi_i = 1$
- * Observons que si π est une probabilité invariante et la loi initiale de X_0 est $\mu_0 = \pi$ alors la loi μ_n de X_n est aussi vérifie $\mu_n = \pi$ pour tout $n \in \mathbb{N}$.

1.6 Exercices

Exercise 6 (La marche aléatoire sur \mathbb{Z}) On considère une suite de variables aléatoires $(Y_n)_{n\geq 1}$ à valeurs dans \mathbb{Z} indépendantes et de même loi, et Y_0 une variable aléatoire à valeurs dans \mathbb{Z} , indépendante des $(Y_n)_{n\geq 1}$. Posons

$$X_0 = Y_0, \quad X_{n+1} = X_n + Y_{n+1} = \sum_{i=0}^{n+1} Y_i, \quad \forall n \ge 0.$$

1. Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov.

On suppose maintenant que Y_1 est à valeurs dans $\{-1,1\}$ de loi,

$$\mathbb{P}[Y_1 = 1] = p, \quad \mathbb{P}[Y_1 = -1] = 1 - p,$$

où 0 .

1. Donner la matrice de transition et dessiner le graphe de cette chaîne de Markov.

Définition. Si $p = 1 - p = \frac{1}{2}$, $(X_n)_{n \geq 0}$ s'appelle la marche aléatoire simple sur \mathbb{Z} .

Solution.

1. La chaîne $(X_n)_{n\geq 0}$ est à valeurs dans $E=\mathbb{Z}$. Pour tout $x_0,\ldots,x_{n+1}\in\mathbb{Z}$, on a :

$$\mathbb{P}[X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0] = \frac{\mathbb{P}[X_{n+1} = x_{n+1}, X_n = x_n, \dots, X_0 = x_0]}{\mathbb{P}[X_n = x_n, \dots, X_0 = x_0]}$$

$$= \frac{\mathbb{P}[Y_{n+1} = x_{n+1} - x_n, X_n = x_n, \dots, X_0 = x_0]}{\mathbb{P}[X_n = x_n, \dots, X_0 = x_0]}$$

$$= \mathbb{P}[Y_{n+1} = x_{n+1} - x_n] \quad \text{(indépendance)}$$

$$= \mathbb{P}[X_{n+1} = x_{n+1} \mid X_n = x_n].$$

Ainsi, $(X_n)_{n\geq 0}$ est une chaîne de Markov. De plus, on a montré que pour tout $(x,y)\in\mathbb{Z}^2$,

$$\mathbb{P}[X_{n+1} = y \mid X_n = x] = \mathbb{P}[Y_{n+1} = y - x] = \mathbb{P}[Y_1 = y - x],$$

la suite $(Y_n)_{n\geq 0}$ étant identiquement distribuée. Cette quantité ne dépend pas de n et la chaîne est donc homogène.

2. La matrice de transition P = (p(x, y)) est de taille infinie. Les lignes et les colonnes sont indexées par \mathbb{Z} et on a

$$\forall (x,y) \in \mathbb{Z}^2, \quad p(x,y) = \mathbb{P}[X_{n+1} = y \mid X_n = x] = \mathbb{P}[Y_1 = y - x].$$

Ainsi, pour tout $x \in \mathbb{Z}$, la x-ième ligne a pour seuls coefficients non nuls :

$$p(x, x - 1) = 1 - p$$
 et $p(x, x + 1) = p$.

Le graphe associé à cette chaîne de Markov est un graphe infini où chaque état x a une arête vers x-1 avec probabilité 1-p et une arête vers x+1 avec probabilité p.

Exercise 7 (Chaine d'Ehrenfest Eh(d)) Soit d un entier $(d \ge 1)$. On répartit d boules numérotées dans deux urnes A et B. On tire un nombre i au hasard (c'est à dire suivant la loi uniforme) entre 1 et d et on change la boule numéroté i d'urne. Soit X_n le nombre de boules dans l'urne A après n tirages indépendants.

- 1- Montrer que $(X_n)_{n\geq 0}$ est une CM homogène.
- 2- Donner sa matrice de transition et son graphe
- 3- La chaine est elle irréductible.

Exercise 8 On considère une chaîne de Markov $(X_n)_{n\geq 0}$ d'espace d'états $E=\{1,2,3,4,5\}$ de matrice de transition P donnée par

$$P = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- 1- Dessigner le graphe de cette chaine 2- Déterminer les classes d'équivalences
- 3- La chaine est-elle irréductible 4- déterminer les périodes de chaque états
- $5) \ \textit{Calculer les probabilités} \ P_{1,4}^{(5)}, \ P_{3,4}^{(2)} \ , \ P\left(X_{2}=3 \,|X_{0}=1\right), \ P\left(X_{4}=4 \,|X_{0}=2\right), \ P\left(X_{4}=4 \,|X_{0}=2\right$
- 6) Donner la loi de X_n dans le cas ou X_{n-1} prend que les deux valeurs 1 et 2 avec même probabilité
 - 7) Déterminer les lois de probabilité invariantes de la chaine.

Solution

- 1- Graphe de cette chaine (Voir Figure Graphe de la chaine)
- 2- Déterminer les classes d'équivalences : On a