CHAP 2 : Data Structure <ulall J<a
2-1-Variables: < adiall

In Python, variables are used to store data values. Variables do not need explicit declaration to
reserve memory space. The declaration happens automatically when you assign a value to a
variable. Variables can store different types of data, such as integers, floating-point numbers,
strings, lists, and more.

. Creating and Assigning Variables
. Reassigning Variables

. Multiple Variable Assignment
. Swapping Variables

. Global and Local Variables

. Variable Types

. Constants

. Type Checking with type()

. Deleting Variables

10. Dynamic Typing in Python
11. Variable Naming Rules

12. Variable Scope

© 00 N O Ol B W IN PP

Let’s explore how variables work in Python with explanations and examples.

1. Creating and Assigning Variables — <l yiall cpuad g oL

You can create and assign a variable using the equals sign =. The value on the right side is assigned
to the variable on the left side.

Example:
Python Code
Assigning values to variables
x=10
y=3.14
name = "Ali"

Printing variable values

print("x =", X)

print("y =", y)

print(*name =", name)
Output:

x=10

y=3.14

name = Ali

2. Reassigning Variables il diall Gpan Bl

You can change the value of a variable by assigning a new value to it. Python is dynamically typed,
S0 you can assign a different type to the same variable.

Example:
Python Code
Reassigning variables
x =100
print("x =", X)

Changing the type of a variable
x ="Hello"
print("x =", X)
Output:
x =100
x = Hello

3. Multiple Variable Assignment il el Basalia s

You can assign values to multiple variables in a single line using multiple assignment.

Example:
Python Code
Multiple assignment
a, b, c=5,10,15
Print the values
print("a =", a)
print("b =", b)
print("c =", c)
Output:
a=>5
b=10
c=15

4. Global and Local Variables — 4slaal) ¢ jiiall g dalad) il pial)

« Local variables are defined inside a function and are only accessible within that function.
o Global variables are defined outside of functions and are accessible throughout the entire
program.

Example:
Python Code
Global variable
x = "global"

def my_function():
Local variable
x = "local"

print("Inside function:", x)

Calling the function
my_function()

Outside the function
print("Outside function:", x)
Output:
Inside function: local
Outside function: global
Example with Global Keyword:

You can use the global keyword to modify a global variable inside a function.

Python Code
x = "global"

def my_function():
global x
X ="maodified global"
print("Inside function:", x)

Calling the function
my_function()

Outside the function

print("Outside function:™, x)
Output:

Inside function: modified global

Outside function: modified global

5. Variable Types <l dal) £ i)
6.1. Integer Variables
python
Code
a=10
b=-5
print("a =", a, "b =", b)
Output:
a=10b=-5
6.2. Float Variables
Python Code
x=3.14
y =-0.001
print("x =", X, "y =", y)
Output:

x=3.14y=-0.001
6.3. String Variables
Python Code

first_name = "John"
last_name = "Doe"
full_name = first_name + " " + last_name
print("Full Name:", full_name)
Output:
Full Name: John Doe

6. Constants gAY

Python doesn’t have a built-in constant type, but by convention, you can define constants using all
capital letters. Constants are variables whose values should not be changed during the execution of
the program.

Example:
Python Code
Pl =3.1416
GRAVITY =9.8

print("P1 =", PI)

print("Gravity =", GRAVITY)
Output:

Pl =3.1416

Gravity = 9.8

6. Type Checking with type() il danba (pe (38ail

You can check the data type of a variable using the type() function.

Example:
Python Code
x =10
y=3.14

name = "Alice"

print("Type of x:", type(x))

print("Type of y:", type(y))

print("Type of name:", type(name))
Output:

Type of x: <class 'int">

Type of y: <class 'float">

Type of name: <class 'str'>

7. Deleting Variables <l _siall cida
You can delete a variable using the del keyword.

Example:
Python Code
x=10
print("x =", X)

Deleting variable x
del x

Trying to access the deleted variable will raise an error
print(x) # Uncommenting this line will raise a NameError

Output:
x =10

8. Dynamic Typing in Python

Python is dynamically typed, meaning you don't need to declare a variable’s type explicitly. The
type of the variable is determined based on the value assigned to it.

Example:
Python Code
x =10 #xis an integer
print("x =", X)

x=3.14 # Now X is a float
print("x =", X)

x ="Hello" # Now x is a string
print("x =", X)

Output:
x=10
x=3.14
x = Hello

9. Variable Naming Rules

&) yrial) drand o) g8

There are certain rules and conventions to follow when naming variables:

e Variable names must start with a letter or an underscore _.
e The rest of the variable name can contain letters, numbers, or underscores.
o Variable names are case-sensitive (myVariable and myvariable are different).

Example of Valid and Invalid Variable Names:

Valid variable names
age =25

2name =" Alice "
My-variable = 10

Invalid variable names (will cause syntax errors)
2name = "Alice" # Cannot start with a number
my-variable = 10 # Hyphens are not allowed

10-Display Variables: <l piial) (& o
username=Alice

age=25
& main py
print(username + " is " + str(age) + " years old")

print(f"Hello, {username}")
print(f"{username} is {age} years old")

replaced with
value

Hello, Alice
Alice is 25 years old
Hello, Alice
Alice is 25 years old

-) V!

Process finished with exit code ©

2 main py
username = "Alice"
o
prlnt(usenqepe)
~

+ Usernane) | plus (+) Used for Concate

Run main I

b
iHello, Alice !

o Process finished with exit code ©

2 mainpy

username = "Alice"

priM¢ (username)
\
print(ello, " + username)
\
ag$\= 25 \ ,
nrxnt(heuame + " is " + str(age) + " years old")
~

print(f”HeI*,} name}")
i print(f"{username} is {}ge} years old")
H

5

n i Lalice

/7 /

Alice / V4
Hello, flice g
Alice fis 25 ygfars old

Process finished with exit code 0

2 main.py

username = "Alice"
2 print(username)

print("Hello, " + username)

7

Run main
@& :
Alice

Hello, Alice
[Fiice s 25 years oid_]
=
o] Process finished with exit code ©

= main.py

username = "Alice"
print(username)

print("Hello, " + username)

‘rage)

