

# Larbi Ben M'hidi University Faculty of Exact Sciences, Natural and Life Sciences 1st year LMD (2025-2026)



## **Series 1**

## Exercise 1

A material point M is moving along a trajectory in space R (O;  $\vec{t}, \vec{j}, \vec{k}$ ). The Cartesian coordinates of M are:

- $x(t) = 2 + 3\cos\left(\frac{\pi}{2}t\right)$ ;  $y(t) = 4 + 3\sin\left(\frac{\pi}{2}t\right)$ ; z(t) = 0
- $x(t) = 2\cos\left(\frac{\pi}{2}t\right);$   $y(t) = 4\sin\left(\frac{\pi}{2}t\right);$  z(t) = 0
- 1. Determine the equation of the trajectory of point M. What is its nature?
- **2.** Draw the trajectory of the mobile.
- 3. Give the expression of the position vector  $\overrightarrow{OM}$  in fixed base Cartesian coordinates.
- **4.** Determine the velocity vector  $\vec{v}$  and the acceleration vector  $\vec{a}$  of the mobile M in the fixed base.

#### Exercise 2

Let us consider a point M in motion whose Cartesian coordinates are at each instant:

$$x(t) = 3t + 2;$$
  $y(t) = -t^2;$   $z(t) = 3$ 

- 1. Give the expression of the position vector  $\overrightarrow{OM_1}$  at time t=1s then  $\overrightarrow{OM_2}$  at time t= 2s. Then represent these vectors and the displacement vector  $\overrightarrow{M_1M_2}$ .
- **2.** During the duration  $dt=t_2-t_1$  the position vector has varied by a value  $\overrightarrow{OM_2} \overrightarrow{OM_1} = d\overrightarrow{OM}$ . Calculate the coordinates of the position variation vector  $d\overrightarrow{OM}$ .

#### Exercise 3

**1.** Determine the trajectory of the plane motion of the mobile M which is defined by the time equations:

$$x = \ln t$$
$$y = t + \frac{1}{t}$$

**2.** Calculate the velocity vector  $\vec{\mathbf{v}}$ , the acceleration vector  $\vec{\mathbf{a}}$  and their magnitudes at t=1s.