

Larbi Ben M'hidi University

Faculty of Exact Sciences, Natural Sciences and Life Sciences

Department of Mathematics and Computer Science

Physics 1

Mechanics of the material point

Dr. Souheyla Gagui souheyla.gagui@univ-oeb.dz

Mechanics of the material point

Chapter 1: Kinematics of a material point

- ✓ Movement Characteristics
- ✓ Rectilinear Motion
- ✓ Plane Motion
- ✓ Movement in Space
- ✓ Relative Motion

1.Introduction

- ✓ Kinematics analyzes the movement of "points" without considering the causes of motion.
- ✓ No discussion of forces or Newton's laws (purely mathematical).
- ✓ Material point: A body with negligible dimensions compared to distance traveled.

Kinematic Magnitudes → Movement Characteristics

Reference System: Essential for analyzing movement two approaches:

- 1. Algebraic: Equation of motion along a trajectory
- 2. Vector: Vector analysis of motion

Ch# 1: kinematic

2. Position of the particle and reference frames

- √ To study motion we choose a reference frame (origin and axes).
- \checkmark The position of a particle at time (t) is given by the position vector $\mathbf{r}(t)$.
- ✓ In Cartesian coordinates:

$$r(t) = x(t)i + y(t)j + z(t)k$$

The particle is in motion if at least one of x(t), y(t), z(t) depends on t. If all are constant, the particle is at rest.

2. Mobile position

The position of a material point at time represented in a orthonormal reference system R $(0, \vec{\imath}, \vec{j}, \vec{k})$ by a position vector \overrightarrow{OM} (See figure 1).

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

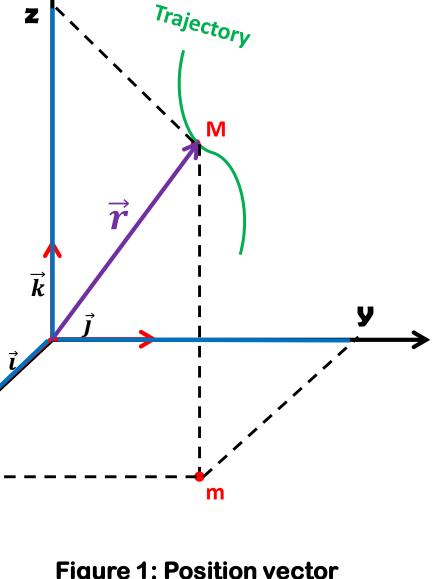


Figure 1: Position vector

The formula that expresses the position vector in Cartesian coordinates.

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

$$\overrightarrow{OM} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Where (x, y, z) (Cartesian coordinates) are the components of the vector \overrightarrow{OM} in the basis $(\vec{i}, \vec{j}, \vec{k})$

3. Time equations

Equations of Motion

Time (parametric) equations of motion

•The time equations (parametric form) are:

$$x = x(t), y = y(t), z = z(t)$$

- •These describe the coordinates of the particle as functions of time.
- •The set (x, (t), y(t), z(t)) fully determines the motion.

These functions are called the time equations of motion. They can be expressed in the form:

$$x = f(t), y = g(t), z = h(t)$$

4- Trajectory

- •The trajectory is the geometric locus of points occupied by the particle over time.
- •To find the Cartesian equation of the trajectory, eliminate the parameter "t" between x(t), y(t), z(t).

Example (method): If x = f(t) and y = g(t), solve $t = f^{-1}(x)$) or express t from one equation and substitute into the other to get $y = \Phi(x)$.

Example 1

We consider a material point M moving in space R $(0, \vec{\iota}, \vec{\jmath}, \vec{k})$. The time equations of this movement describe the coordinates x(t), y(t) and z(t) of the point M as a function of time t . These equations are:

$$x=t+1$$
; $z=0$; $y=t^2+1$

- 1/ Find the Cartesian equation of the trajectory, what is its form?
 - 2/ Write the expression of the position vector at time t= 1s.

Solution:

$$y=t^2+1$$
(3)

1/ We take t from the equation x, which we replace by y:

$$(1) \rightarrow x=t+1 \qquad \qquad t=x-1 \qquad (*)$$

$$(*) \rightarrow (3)$$

$$y = (x - 1)^2 + 1$$

$$\Rightarrow$$

(*)
$$\Rightarrow$$
 (3) $y = (x-1)^2 + 1 \Rightarrow y = x^2 - 2x + 2$

so the trajectory described by point M is a parabolic trajectories.

Notes

The general equation of a parabola is:

$$y = ax^2 + bx + c$$

2. Expression of the position vector \overrightarrow{OM} at time t= 1s

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$
 with x= t+1; z=0; y= t²+1

$$\overrightarrow{OM} = \overrightarrow{r} = (t+1)\overrightarrow{i} + (t^2+1)\overrightarrow{j} + 0\overrightarrow{k}$$
 With t=1s

$$\overrightarrow{OM} = \overrightarrow{r} = (1+1)\overrightarrow{i} + (1^2+1)\overrightarrow{j} + 0\overrightarrow{k}$$

$$\overrightarrow{OM} = \overrightarrow{r} = 2\overrightarrow{i} + 2\overrightarrow{j} + 0\overrightarrow{k} \qquad \overrightarrow{OM} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

Example 1:

- Find the Cartesian equation of the trajectory and r(1 s).

Given:

$$x(t) = 2t,$$
 $y(t) = t^2,$ $z(t) = 0$

Solution:

1. From
$$x(t) = 2t$$
, we get $t = \frac{x}{2}$

2. Substitute into y(t):

$$y = \left(\frac{x}{2}\right)^2 = \frac{x^2}{4}$$

So the trajectory in the xy- plane is the parabola $y = \frac{x^2}{4}$

3 .Position vector at t = 1s:

$$\mathbf{r}(1) = x(1)\mathbf{i} + y(1)\mathbf{j} + z(1)\mathbf{k} = 2\mathbf{i} + 1\mathbf{j} + 0\mathbf{k}.$$

Example 2

The time equations of the material point M moving in space R $(0, \vec{\imath}, \vec{j}, \vec{k})$ are:

$$x=t$$
; $y=0$; $z=-2t^2+2t$

-what is the trajectory followed?

Solution

$$x=t$$
(1); $y=0$ (2); $z=-2t^2+2t$ (3)

- We take t from the equation x, which we replace by z:

$$(1) \rightarrow t=x \qquad \qquad (3) \qquad \qquad z=-2x^2+2x$$

so the trajectory described by point M is a parabolic trajectories.

Example 3

— Determine trajectory Given:

$$x(t) = t$$
, $z(t) = -2t^2 + 2t$

Solution:

Eliminate t: since x = t, substitute into z:

$$z = -2x^2 + 2x,$$

so the trajectory is the parabola $z=-2x^2+2x$ (in the xz-plane).

5-The velocity vector

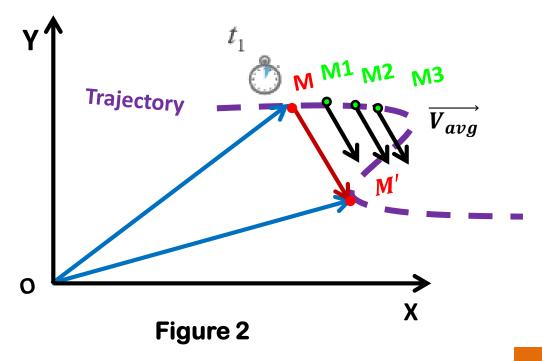
Velocity is considered to be the distance traveled per unit of time.

5.1. Average velocity vector

The average velocity of a body that moves between two points M and M' is defined as the ratio between the displacement vector and the time interval in which the displacement takes place.

$$\overrightarrow{v}_{avg} = rac{\overrightarrow{MM'}}{t_2 - t_1}$$

$$\overrightarrow{v_{avg}}//\overrightarrow{MM'}$$



The average velocity vector is defined as follows

$$\overrightarrow{v}_{avg} = rac{\overrightarrow{MM'}}{\Delta t}$$
 With $\Delta t = t_2 - t_1$

Where:

- $\overrightarrow{v_{avg}}$: Average velocity vector in the time studied.
- $\overrightarrow{MM'}$: Displacement vector in the time studied.
- t_1 , t_2 : Time in which the body is in the initial M and final M' points respectively

$$\overrightarrow{MM'} = \overrightarrow{OM'}(t_2) - \overrightarrow{OM}(t_1) = \Delta \overrightarrow{OM}$$

$$\vec{\boldsymbol{v}}_{avg} = \frac{\Delta \overrightarrow{\boldsymbol{o}} \overrightarrow{\boldsymbol{M}}}{\Delta t}$$

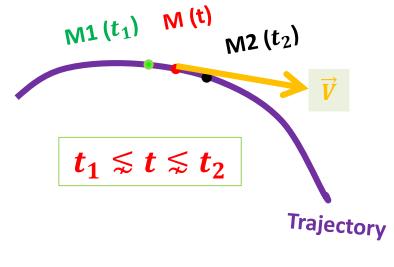
5.2. Instantaneous velocity vector

$$\vec{v}(t) = \frac{\overrightarrow{M_1 M_2}}{\Delta t} \text{ With } \Delta t = t_2 - t_1 \ll \ll$$

$$\vec{v}(t) = \frac{\Delta \overrightarrow{OM}}{\Delta t}$$
 With $\Delta t = t_2 - t_1 \ll \ll$

we replace Δt by dt

$$\vec{v} = \frac{d\vec{OM}}{dt}$$



The instantaneous velocity vector at time t is the derivative of the position vector \overrightarrow{OM} with respect to time.

In the <u>Cartesian coordinates</u> for example, we deduce the expression of the <u>instantaneous velocity vector</u> from the expression of the <u>position vector</u> by deriving:

$$\vec{v} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$

$$\vec{v} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$

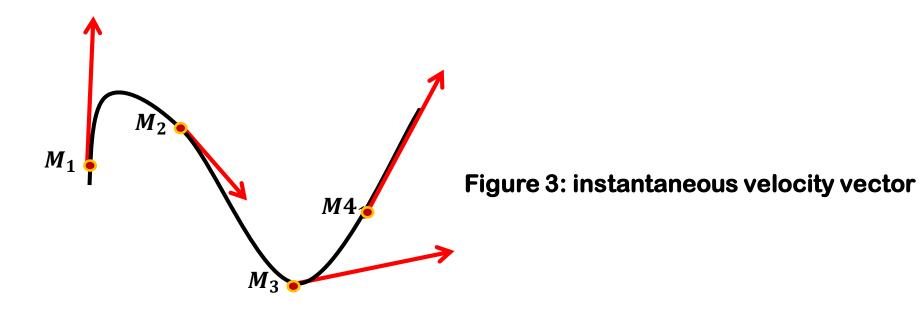
$$\vec{v} = v_x\vec{i} + v_y\vec{j} + v_z\vec{k}$$

$$\vec{v} = v_x\vec{i} + v_y\vec{j} + v_z\vec{k}$$

Where

$$\dot{x} = \frac{dx}{dt}; \ \dot{y} = \frac{dy}{dt}; \ \dot{z} = \frac{dz}{dt}$$
 \Rightarrow $\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$

The instantaneous velocity vector \vec{v} is carried by the tangent to the trajectory at point M; it is always oriented in the direction of movement.



Magnitude of the instantaneous velocity vector modulus

$$v=\sqrt{\dot{x}^2+\dot{y}^2+\dot{z}^2}$$
 The SI unit of velocity is (m/s)

Application

We consider a mobile with position vector $\overrightarrow{OM} = 3t\vec{\iota} - 2t^2\vec{J}$

- 1. Calculate $\vec{V}(t)$.
- 2. Deduce its norm (magnitude) at date "t".
- 3. Calculate velocity at date t=2s.

Solution

1.
$$\overrightarrow{OM} = 3t\overrightarrow{i} - 2t^{2}\overrightarrow{J} \implies \overrightarrow{V}(t) = \frac{d\overrightarrow{OM}}{dt} \implies \overrightarrow{\overrightarrow{v}} = \frac{dx}{dt}\overrightarrow{i} + \frac{dy}{dt}\overrightarrow{J}$$

$$\checkmark \overrightarrow{\overrightarrow{v}} = \frac{dx}{dt}\overrightarrow{i} + \frac{dy}{dt}\overrightarrow{J}$$

$$\overrightarrow{V}(t) = 3\overrightarrow{i} - 4t\overrightarrow{j}$$

$$v_x = \dot{x}$$

$$v_y = \dot{y}$$
NB:
$$(f^m)' = mf^{m-1}$$

$$(f^m)'=mf^{m-1}$$

2.
$$V = \sqrt{\dot{x}^2 + \dot{y}^2}$$
 \Rightarrow $V = \sqrt{3^2 + (-4t)^2}$ \Rightarrow $V = \sqrt{9 + 16t^2}$

$$\Rightarrow$$

$$V = \sqrt{3^2 + (-4t)^2}$$

$$\Rightarrow$$

$$V = \sqrt{9 + 16t^2}$$

3.
$$V = \sqrt{9 + 16t^2}$$
 With t=2s.

$$\Rightarrow$$

$$V = \sqrt{9 + 16(2)^2}$$

$$\Rightarrow$$

$$\Rightarrow V = \sqrt{9 + 16(2)^2} \Rightarrow V = \sqrt{73} = 8.54 \, (m/s)$$

The Velocity Vector

•Average velocity between times t_1 and t_2 :

$$\mathbf{vavg} = \frac{\Delta \mathbf{r}}{\Delta t} = \frac{\mathbf{r}(t_2) - \mathbf{r}(t_1)}{t_2 - t_1}$$

•Instantaneous velocity:

$$\mathbf{v}(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} = \frac{d\mathbf{r}}{dt}$$

•In Cartesian components:

$$\mathbf{v}(t) = \dot{x}(t)\,\mathbf{i} + \dot{y}(t)\,\mathbf{j} + \dot{z}(t)\,\mathbf{k}$$

where $\dot{x} = \frac{dx}{dt}$, etc.

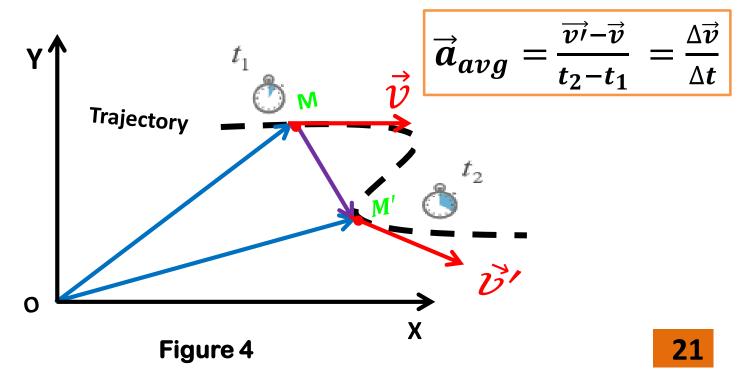
•Speed (magnitude): $v(t) = ||v(t)|| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$.Units: m/s.

6. The acceleration vector

We consider acceleration to be the change in velocity per unit time. The SI unit of acceleration is (m/s²)

6.1. Average acceleration vector

Considering two different times t_1 and t_1 corresponding to the position vectors \overrightarrow{OM} and $\overrightarrow{OM'}$ and the instantaneous velocity vectors \overrightarrow{v} and $\overrightarrow{v'}$ (see Figure 4)



The average acceleration vector is defined by the expression:

$$\vec{a}_{avg} = \frac{\vec{v'} - \vec{v}}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

6.2. Instantaneous acceleration vector

The instantaneous acceleration vector of a motion is defined as the derivative of the instantaneous velocity vector with respect to time.

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{OM}}{dt^2}$$

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} \implies \overrightarrow{v} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} \implies \overrightarrow{a} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

$$\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k} \implies \vec{a} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2z}{dt^2}\vec{k}$$

$$a_x \qquad a_y \qquad a_z$$

Magnitude of the instantaneous acceleration vector

The magnitude of the acceleration is

$$a = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$$

The acceleration vector is always directed towards the inside of the curvature of the trajectory.

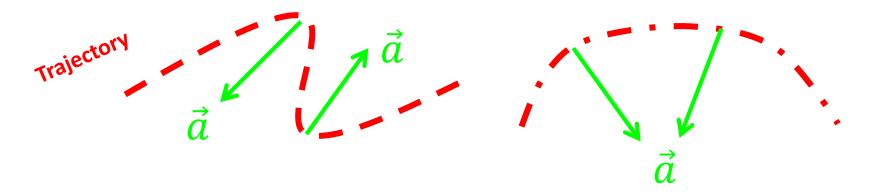


Figure 5: Acceleration vector

Notes

- The movement is <u>accelerated</u> (\overrightarrow{v}) if ; $\overrightarrow{a}\cdot\overrightarrow{v}>0$,
- The movement $\underline{\text{decelerated}}$ or $\underline{\text{retarded}}$ (\underline{v}) if ; $\overline{a}\cdot\overline{v}<0$.

Example 3

The position vector is $\overrightarrow{OM}\begin{pmatrix} 3t \\ 2t^3 + 1 \\ t^2 - 3 \end{pmatrix}$, deduce the instantaneous velocity vector and the acceleration vector, then calculate the magnitude of each of them.

Solution

$$\overrightarrow{OM} = 3t\overrightarrow{i} + (2t^3 + 1)\overrightarrow{J} + (t^2 - 3)\overrightarrow{k}$$

$$\vec{v} = 3\vec{i} + 6t^2\vec{J} + 2t\vec{k}$$
 $\Rightarrow v = \sqrt{3^2 + (6t^2)^2 + (2t)^2}$ $\Rightarrow v = \sqrt{9 + 36t^4 + 4t^2}$

$$v = \sqrt{9 + 36t^4 + 4t^2}$$

$$\vec{a} = 0\vec{i} + 12t\vec{J} + 2\vec{k} \implies a = \sqrt{0^2 + (12t)^2 + 2^2} \implies a = \sqrt{144t^2 + 4}$$

Acceleration (average & instantaneous)

6. The Acceleration Vector

Average acceleration:

$$\mathbf{a_{avg}} = \frac{\Delta \mathbf{v}}{\Delta t}$$

•Instantaneous acceleration:

$$\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \ddot{x}\,\mathbf{i} + \ddot{y}\,\mathbf{j} + \ddot{z}\,\mathbf{k}$$

•Units: m/s².

•Note: acceleration points towards the center of curvature for curved motion components (centripetal component).

Magnitude of acceleration:
$$||a(t)|| = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$$
.

Remark: For planar motion, acceleration can be decomposed into tangential ($a_t=\dot{v}$) and normal ($a_n=\frac{v^2}{\rho}$) components, where ρ is radius of curvature.

Example 4

Original slide had "Example 3" but solution incomplete.

Example 3

- Given:

$$\mathbf{r}(t) = (3t^2)\mathbf{i} + (2t)\mathbf{j} + (t^3)\mathbf{k}$$

- Find $\mathbf{v}(t)$, $\mathbf{a}(t)$, and v(t) at t=1.

Solution:

$$\mathbf{v}(t) = \dot{\mathbf{r}}(t) = 6t \,\mathbf{i} + 2 \,\mathbf{j} + 3t^2 \,\mathbf{k}.$$
$$\mathbf{a}(t) = \ddot{\mathbf{r}}(t) = 6 \,\mathbf{i} + 0 \,\mathbf{j} + 6t \,\mathbf{k}.$$

At t = 1:

$$\mathbf{v}(1) = 6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}.$$

Speed at t = 1:

$$v(1) = \sqrt{6^2 + 2^2 + 3^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7$$
 (units).