Chapter one: The set of real numbers
1 1.Algebraic structure of the set R

The set of real numbers is a set that we denote by R equipped with the operation of
addition and multiplication and an overall ordering relationship<checki the following Axiom.

A Vx,y,zER:x+(y+2z)=(x+y)+z
A2)Vx,yERx+y=y+x.
A)VxeR:ix+0=0+x =x.

Ad)Vx E Rix + (—x) = (—x) + x = 0.
A5)Vx,y,zER:x-(y-z)=(x"y)-z.
A6)Vx,yER:ixy=y"x.

A7) VxER:x-1=1-x =x.

A8)Vx ER*:x-x1=x"1-x=1.
A)Vx,y,zER:x-(y+z)=x"y+x-z
Al0)Vx € R:x < x.

Al Vx,y,zER: (x<ysy<z)= (x <2).
ALR)Vx,yER: (x <ysy <x)= (x=y).
A13)Vx,yER:x <y s y <x.
Ald)Vx,y,zER: (x<y)o (x+z<y+2).

Vx,yERVZERL:(x<y)e(x-z<y-2)
Vx,yER;VZER:(x<y)o(x'z=y-z)

A15){

Properties
YVx,y,x,y €R:(x Sy’ <y') = (x+x' <y +y).
2)vx,y,x',y" € Ri: (x <ysx' < y’) = (x-x' <y-y).
4 Vx,y,x,y ERL:(0<x<y)= (0 < % < %)

1.2 Absolute value

Definition 1.1 let it be x € R

The absolute value of the real number x is the positive real number which we denote by
|x|and defined as
Ix| :{x,sixz 0
—x,5ix<0

Properties : x. y r.is a real number wherer > 0




D x| = 0; [—x| = [x|;—]x] < x < |x]
2Q)x|=0 x=0

3) Ix.yl = |x||yl

x

4)y

5)1x +yl < x| + |yl

_ =

= E(WO)

6)|x|<re-r<x<r

7).x|>rex< —rorx=>r

1.3.Limited parts from R

Definition 1.2

Let A be a sub set of R and non-empty .

We say that A is bounded from above if and only if :

AbeR; Vxe€A:x<bh
We say that A is bounded from below if and only if

JaeR;VxeA:x=>a
A is bounded if and only if it is bounded from above and

Proposition 1.1 The three following conditions are equivalent
1).Ais bounded
2)da€ER; IbER:VxEA:a<x<h.
3)AIMER, ; VxEA: |x| <M
1.3.1 sup and inf.max and min
The smallest upper limit from A is called sup A e
The biggest lower limit from A is called inf A
If supA € Aitis called max A
IfinfA € Aitis called min A
Note
If Ais infinite from above (from lowest, respectively) in R we write supA = 400
(infA = —oo, respectively).

proposition 1.2

1)Let A be bounded from above, then




VxEA:x <M
M=supA<:){ and
Ve>0;da€eA - M—¢c<a

2) Let A be bounded from below, then
VxXEA:x=>m
m=ian<=>{ and
Ve>0;3dbedA:m+e>b

Proof
1) M is the smallest of the upper bounds if and only if the following proposition is false .
IM' < M;Vx€EA:x <M

Is true. So, if the proposition VM' < M;Ax € A:x > M'.

By puttinge = M — M' (e > 0) so, the last proposition is written in the form:
Ve>0;3d3x €A :M—¢e<x.

2) In the same way we prove the second case

Examples

1) A = [1,2[; maxA = unvailable ;supA =2 ; inf A=1 minA = 1

2)A= {;neN}

Ssup A =max A =1 Jthenl e AVvneEN":n>1= 0<%S 1

Let we proof that infA =0

VxeA:x=0
0=infAe and
Ve>0;3ab€eA:04+e>b

On the othersidewehaveVe > 0;3b€A:04+e>b =S Ve>0; EInEN*:%<e.

and this last proposition is true and its according to archimed's axiom
Ve>0;3I3neN*:ne>1

min A = unvailable, because 0 & A.

1.3.2 Axiom of supermum and infimum:

Any non-empty subset A of the real's R which is bounded above has a supermum in R.
Any non-empty subset A of the real's R which is bounded below has a infimum in R.
1.4 Archimedean axiom

Theorem 1.1:¥x > 0; Vy € R;3In € N*: y < nx.
Proof:

We suppose that:




Ax > 0; 3y eR;VvneEN:y >nxordx >0; Iy e R;Vn € N:n < X,

X

that's mean the set N*is limited from above it accepts an upper limit in R called M.
SoVe>0;3dny EN": M —e < ny

by putting € = 1, we get the following : 3nyg € N* : M — 1 < n,

or IngEN": M <ny+1

butny+1 € N*

this is a contradiction because supA = M.

1.5 The integer part of a real number

For every real number x there is only one integer which we denote as E(x) or [x] it achives
E(x) <x<E(Xx)+1

E(x) is called the integer part of the real x.

In other words E(x) is The largest integer less than or equal to x.

Examples

1)E(0,1)=0since 0<0,1<0+1.
2)E(—0,1) = —1since—1<-0,1< —-1+1.

3)VnEN*:E(L) = 0 since VnEN*:OSL< 0+1.
n+1 n+1
1.6 densegroups in R

Theorem 1.2 between every two different real numbers there is at least one rational
number.

Proof

Lety and x be two real numbers wherex <y .

According to Archimedean axiom3an € N*:1 < n(y — x) ornx + 1 < ny.
On the other hand we have E(nx) < nx < E(nx) + 1 or

nx<Enx)+1<nx+1<ny.

Sonx < E(nx) +1 <ny tbenx<%<y

Well the rational number% is bounded between the two real numbersx,y.

definition 1.3
we denote the set of irrational numbers with I or Q¢

Theorem 1.3_between every two different real numbers there is at least one irrational
number,

To prove this theory we need the following two propositions




proposition 2.3 the number V2 is an irrational number
.JpropositionZ.4ifx e landr € Q * thenrx € I

Proof of the proposition 1.3

We suppose that\2 € Q then there is only one duality of natural numbers (p,q) thens =
V2 and gcd(p. q) = 1, then::

we conclude that q* divide p* Sinceqzandpzprimeg =V2 o p=qV2 © p?=2q¢?

among themselves then q* devide 1 thats mean q = 1 substitung in the previous
equality we get p?> = 2 and this is a contradiction because there is no natural number
squared equal 2 .

Proof of the proposition1.4 We assumex € | and r € Q*and thatrx € Q and from him:

1 1
(;EQ*OTTXEQ>=>;TXEQ=>XEQ

This is a contradiction becausex € I.
Proof of the theorem 1.3
Lety, x be a real numbers, where x < y, according to the theorem 1.2, there sexist a

rational numberr (r # 0) such that: \7_? <r< j—i or x < V2 < y and according to

propositions 1.3 and 1.4 we conclude that /2 is a irrational number.
Corollary 1.1 The two sets Q and [ is dense in R.
1.7 Intervals in R
Leta, b a real numbers, where a < b, we define

[a,b] = {x € R:a < x < b} is called closed interval.
la,b[ = {x € R: a < x < b} is called open interval.
[a,b] = {x € R: a < x < b} is called half open interval.
la,pl ={x e Rea<x < p} """"rrrrrrrrmmmmmn
[a,+o[ = {x € R: x = a} unbounded closed interval.
] ={xeRix b} oy
la, +oo[ = {x € R: x > a} unbounded open interval.

Irorrorrorrorrorrorrorr oy orrorronrororrorrororrourn
]—o0,b[ = {x € R: x < b}
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Theorem 1.4

The non-empty subset | of R is an interval if and only if the following property is
satistied:

Vabel(a<bh);VxeRa<x<b=>x€l




Proof

(&)Necessary condition: It is a clear that: if the set I is a interval, then the property is true.
(=)Sufficient condition: If the property is true, then the set [ is a interval.

We have four possible cases, case 1: I is bounded, case 2: I is bounded from above and not
bounded from below, case 3: I is bounded from below and not bounded from above, case 4: I
is neither bounded from above nor from below.

Let us prove that in the first case: either I = [a,b] or I = [a,b[ or I =]a,b] or I = ]a, b[

where a =inf I and b = sup I.
Vx€e€l:x<b
We have: b=supl & g .
Ve>0;3Ib €l:b—e<b.... (D
and

VxEl:x=a
a=infl & 5) .
V6 >0;3a" €l:a+6>a ... (2)

case 1: Ifa € I andb € I, then:
VxERix€El=>a<x<b=>x€lab]l=>1c]ab]
Vx ER:x €Ela,bl]>a<x<b>=>x€l=][ablcl
So
I = [a,b].
case 2: Ifa € I andb & 1, then:
VxERix€El>a<x<b=>x€lab[=>Ic]ab|
VxER:x€[a,b[2a<x<b=>b—-x>0
puttinge = b — x in(1) wegetx < b' and sincea, b’ € I, then:
a<x<b =>x€l=ablcl
S0
I =a,bl.
case 3: Ifa &€ I andb € I, then:
VxERix€El=>a<x<b>x€lab]l=1c]a,b]
Vx ER:x €Ela,b]2a<x<b=>x—a>0

By putting$ = x — a in (2)we getx > a'and sincea,a’ € I, then:

ad<x<b=>x€el=>]ablcl




I =]a, b]
case 4: If a ¢l andb & I, Then:
VxeERixEl>a<x<b>=>x€labl=>1c]ab|
VxER:xEla,bp[2a<x<b=>x—a>0andb—x>0.

By puttinge = b —x in (1) andé = x —a in (2) wegetx < b" anda’' < x, sincea',b’ €
I, then:

a <x<b'>x€l>]ab[cl
So
I =]a, b|.

In the same way we prove thatlis a interval in the other cases.




