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Chapter one: The set of real numbers 

1 1.Algebraic structure of the set ℝ 

The set of real numbers is a set that we denote by ℝ equipped with the operation of 
addition and multiplication and an overall ordering relationship≤checki the following Axiom. 

A1) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧. 

A2) ∀𝑥, 𝑦 ∈ ℝ: 𝑥 + 𝑦 = 𝑦 + 𝑥. 

A3) ∀𝑥 ∈ ℝ: 𝑥 + 0 = 0 + 𝑥 = 𝑥. 

A4) ∀𝑥 ∈ ℝ: 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0. 

A5) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

A6) ∀𝑥, 𝑦 ∈ ℝ: 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥. 

A7) ∀𝑥 ∈ ℝ: 𝑥 ∙ 1 = 1 ∙ 𝑥 = 𝑥. 

A8) ∀𝑥 ∈ ℝ∗: 𝑥 ∙ 𝑥−1 = 𝑥−1 ∙ 𝑥 = 1. 

A9) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: 𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧. 

A10) ∀𝑥 ∈ ℝ: 𝑥 ≤ 𝑥. 

A11) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: (𝑥 ≤ 𝑦 و  𝑦 ≤ 𝑧) ⇒ (𝑥 ≤ 𝑧). 

A12) ∀𝑥, 𝑦 ∈ ℝ: (𝑥 ≤ 𝑦 و  𝑦 ≤ 𝑥) ⇒ (𝑥 = 𝑦). 

A13) ∀𝑥, 𝑦 ∈ ℝ: 𝑥 ≤ 𝑦  أو  𝑦 ≤ 𝑥. 

A14) ∀𝑥, 𝑦, 𝑧 ∈ ℝ: (𝑥 ≤ 𝑦 ) ⇔ (𝑥 + 𝑧 ≤ 𝑦 + 𝑧). 

A15) {
∀𝑥, 𝑦 ∈ ℝ; ∀𝑧 ∈ ℝ+

∗ : ( 𝑥 ≤ 𝑦 ) ⇔ ( 𝑥 ∙ 𝑧 ≤ 𝑦 ∙ 𝑧)

∀𝑥, 𝑦 ∈ ℝ; ∀𝑧 ∈ ℝ−
∗ : ( 𝑥 ≤ 𝑦 ) ⇔ ( 𝑥 ∙ 𝑧 ≥ 𝑦 ∙ 𝑧)

. 

Properties 

   1) ∀𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ: (𝑥 ≤ 𝑦و𝑥′ ≤ 𝑦′) ⇒ (𝑥 + 𝑥′ ≤ 𝑦 + 𝑦′). 

   2) ∀𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ+
∗ : (𝑥 ≤ 𝑦 و𝑥′ ≤ 𝑦′) ⇒ (𝑥 ∙ 𝑥′ ≤ 𝑦 ∙ 𝑦′). 

   4) ∀𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ+
∗ : (0 < 𝑥 < 𝑦 ) ⇒ (0 <

1

𝑦
<

1

𝑥
). 

1.2 Absolute value 

Definition 1.1 let it be 𝑥 ∈ ℝ  

The absolute value of the real number x is the positive  real number which we denote by 
|𝑥|and defined as 

|𝑥| = {
𝑥, 𝑠𝑖 𝑥 ≥ 0

−𝑥, 𝑠𝑖 𝑥 ≤ 0
 

Properties : 𝑥. 𝑦 𝑟. is a real number where 𝑟 ≥ 0 
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1) |𝑥| ≥ 0; |−𝑥| = |𝑥| ; −|𝑥| ≤ 𝑥 ≤ |𝑥| 

2)|𝑥| = 0 ⟺ 𝑥 = 0 

3) |𝑥. 𝑦| = |𝑥||𝑦| 

4) |
𝑥

𝑦
| =

|𝑥|

|𝑦|
(𝑦≠0) 

5) |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 

6) |𝑥| ≤ 𝑟 ⟺ −𝑟 ≤ 𝑥 ≤ 𝑟 

7) .|𝑥| ≥ 𝑟 ⟺ 𝑥 ≤ −𝑟 𝑜𝑟𝑥 ≥ 𝑟 

1.3.Limited parts from ℝ 

Definition 1.2 

Let A be a sub set of ℝ and non-empty . 

We say that A is bounded from above if and only if  : 

∃𝑏 ∈ ℝ ; ∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑏  
We say that A is bounded from below if and only if 

∃𝑎 ∈ ℝ ;  ∀𝑥 ∈ 𝐴 ∶ 𝑥 ≥ 𝑎 
A is bounded if and only if it is bounded from above and  

 

Proposition 1.1 The three following  conditions are equivalent 

1).A is bounded 

2) ∃𝑎 ∈ ℝ ; ∃𝑏 ∈ ℝ ∶ ∀𝑥 ∈ 𝐴 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏. 

3) ∃𝑀 ∈ ℝ+
∗  ;  ∀𝑥 ∈ 𝐴 ∶ |𝑥| ≤ 𝑀 

1.3.1 sup and inf.max and min  

 The smallest upper limit from A  is called sup A 

The biggest lower limit from A  is called inf A 

If 𝑠𝑢𝑝𝐴 ∈ 𝐴 𝑖𝑡 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 max 𝐴 

If 𝑖𝑛𝑓𝐴 ∈ 𝐴 𝑖𝑡 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 min 𝐴 

Note 

If  A is infinite from above (from lowest, respectively) in ℝ we write 𝑠𝑢𝑝𝐴 = +∞  

(𝑖𝑛𝑓𝐴 = −∞, respectively). 

proposition 1.2 

1)Let 𝐴 be bounded from above, then 
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𝑀 = 𝑠𝑢𝑝 𝐴 ⟺ {
∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑀 

and
∀𝜀 > 0 ; ∃𝑎 ∈ 𝐴 ∶ 𝑀 − 𝜀 < 𝑎

 

2)Let 𝐴 be bounded from below, then 

𝑚 = 𝑖𝑛𝑓 𝐴 ⟺ {
∀𝑥 ∈ 𝐴 ∶ 𝑥 ≥ 𝑚

and
∀𝜀 > 0 ; ∃𝑏 ∈ 𝐴 ∶ 𝑚 + 𝜀 > 𝑏

 

Proof 

1) M is the smallest of the upper bounds if and only if the following proposition is false . 

∃𝑀′ < 𝑀; ∀𝑥 ∈ 𝐴 ∶ 𝑥 ≤ 𝑀′ 

Is true. So, if the proposition ∀𝑀′ < 𝑀; ∃𝑥 ∈ 𝐴 ∶ 𝑥 > 𝑀′. 

By putting ε = 𝑀 − 𝑀′(𝜀 > 0) so, the last proposition is written in the form: 

∀𝜀 > 0 ; ∃𝑥 ∈ 𝐴 ∶ 𝑀 − 𝜀 < 𝑥. 

2) In the same way we prove the second case 

Examples 

 1) 𝐴 = [1,2[ ;   𝑚𝑎𝑥𝐴 = unvailable ;𝑠𝑢𝑝𝐴 =2 ; inf A=1 𝑚𝑖𝑛𝐴 = 1 

2) A =  { 
1

𝑛
 ; 𝑛 ∈ ℕ∗}  

∀𝑛 ∈ ℕ∗: 𝑛 ≥ 1 ⇒  0 <
1

𝑛
≤ 1 then1 ∈ 𝐴 فإن𝑠𝑢𝑝 𝐴 = 𝑚𝑎𝑥 𝐴 = 1 . 

Let we proof that 𝑖𝑛𝑓𝐴 = 0 

0 = 𝑖𝑛𝑓𝐴 ⟺ {
∀𝑥 ∈ 𝐴 ∶ 𝑥 ≥ 0

and
∀𝜀 > 0 ;  ∃𝑏 ∈ 𝐴 ∶ 0 + 𝜀 > 𝑏

 

On the other side we have ∀𝜀 > 0 ; ∃𝑏 ∈ 𝐴 ∶ 0 + 𝜀 > 𝑏 ⟺ ∀𝜀 > 0 ; ∃𝑛 ∈ ℕ∗ ∶
1

𝑛
< 𝜀. 

𝑎𝑛𝑑 𝑡ℎ𝑖𝑠 𝑙𝑎𝑠𝑡 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑎𝑟𝑐ℎ𝑖𝑚𝑒𝑑′𝑠 𝑎𝑥𝑖𝑜𝑚 

∀𝜀 > 0 ; ∃𝑛 ∈ ℕ∗ ∶ n𝜀 > 1 

min 𝐴 = 𝑢𝑛𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, because 0 ∉ A. 

1.3.2 Axiom of supermum and infimum: 

Any non-empty subset 𝐴 of the real's ℝ which is bounded above has a supermum in ℝ. 
Any non-empty subset 𝐴 of the real's ℝ which is bounded below has a infimum in ℝ. 
1.4 Archimedean axiom  

Theorem 1.1:∀𝑥 > 0; ∀𝑦 ∈ ℝ ; ∃𝑛 ∈ ℕ∗: 𝑦 < 𝑛𝑥. 

Proof: 

We suppose that: 
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∃𝑥 > 0; ∃𝑦 ∈ ℝ ; ∀𝑛 ∈ ℕ∗: 𝑦 ≥ 𝑛𝑥 or ∃𝑥 > 0; ∃𝑦 ∈ ℝ ; ∀𝑛 ∈ ℕ∗: 𝑛 ≤  
𝑦

𝑥
, 

that's mean the set ℕ∗is limited from above it accepts an upper limit in ℝ called M. 

 So ∀𝜀 > 0 ; ∃𝑛0 ∈ ℕ∗ ∶ 𝑀 − 𝜀 < 𝑛0  

by putting 𝜀 = 1, 𝑤𝑒 𝑔𝑒𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 ∶ ∃𝑛0 ∈ ℕ∗ ∶ 𝑀 − 1 < 𝑛0 

or  ∃𝑛0 ∈ ℕ∗ ∶ 𝑀 < 𝑛0 + 1 

but 𝑛0 + 1 ∈ ℕ∗ 

this is a contradiction because 𝑠𝑢𝑝𝐴 = 𝑀. 

1.5 The integer part of a real number 

For every real number 𝑥 there is only one integer which we denote as E(𝑥) or [𝑥] it achives  

𝐸(𝑥) ≤ 𝑥 < 𝐸(𝑥) + 1  

𝐸(𝑥) is called the integer part of the real 𝑥. 

In other words 𝐸(𝑥) is The largest integer less than or equal to 𝑥. 

Examples 

1) 𝐸(0 , 1) = 0 since  0 ≤ 0,1 < 0 + 1. 

2) 𝐸(−0 , 1) = −1 since−1 ≤ −0,1 < −1 + 1. 

3) ∀𝑛 ∈ ℕ∗: 𝐸 (
1

𝑛+1
) = 0 since  ∀𝑛 ∈ ℕ∗: 0 ≤

1

𝑛+1
< 0 + 1. 

1.6  dense groups in ℝ 

Theorem 1.2  between every two different real numbers there is at least one rational 
number. 

Proof  

.Let 𝑦 and 𝑥 be two real numbers where 𝑥 < 𝑦  

According to Archimedean axiom ∃𝑛 ∈ ℕ∗: 1 < 𝑛(𝑦 −  𝑥) or 𝑛𝑥 + 1 < 𝑛𝑦. 

𝑂𝑛 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 ℎ𝑎𝑛𝑑 𝑤𝑒 ℎ𝑎𝑣𝑒  𝐸(𝑛𝑥) ≤ 𝑛𝑥 < 𝐸(𝑛𝑥) + 1 or 

𝑛𝑥 < 𝐸(𝑛𝑥) + 1 ≤ 𝑛𝑥 + 1 < 𝑛𝑦. 

So 𝑛𝑥 < 𝐸(𝑛𝑥) + 1 < 𝑛𝑦 then 𝑥 <
𝐸(𝑛𝑥)+1

𝑛
< 𝑦. 

Well the rational number 
(𝑛𝑥)+1

𝑛
 is bounded between the two real numbers 𝑥, 𝑦.  

definition 1.3 

we denote the set of irrational numbers with 𝐼 or 𝑄𝑐 

Theorem 1.3  between every two different real numbers there is at least one irrational 
number. 

To prove this theory we need the following two propositions  
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proposition1.3  the number √2 is an irrational number 

proposition1.4 if 𝑥 ∈ I and r ∈ Q ∗   then r𝑥 ∈ I. 

Proof  of the proposition 1.3 

We suppose that √2 ∈ ℚ then there is only one duality of natural numbers (p,q) then 
𝑝

𝑞
=

√2 𝑎𝑛𝑑 𝑔𝑐𝑑(𝑝. 𝑞) = 1, then:: 

𝑝

𝑞
= √2 ⇔ 𝑝 = 𝑞√2 ⇔ 𝑝2 = 2𝑞2we conclude that 𝑞2 divide 𝑝2 since 𝑞2and 𝑝2prime 

among themselves then 𝑞2 𝑑𝑒𝑣𝑖𝑑𝑒 1 𝑡ℎ𝑎𝑡𝑠 𝑚𝑒𝑎𝑛 𝑞 = 1 substitung in the previous 
equality we get  𝑝2 = 2 and this is a contradiction because there is no natural number 
squared equal 2 . 

Proof  of the proposition1.4 We assume 𝑥 ∈ 𝐼 𝑎𝑛𝑑 𝑟 ∈ ℚ∗and that 𝑟𝑥 ∈ ℚ  and from him: 

(
1

𝑟
∈ ℚ∗𝑜𝑟 𝑟𝑥 ∈ ℚ ) ⇒

1

𝑟
𝑟𝑥 ∈ ℚ ⇒ 𝑥 ∈ ℚ  

This is a contradiction because 𝑥 ∈ 𝐼. 

Proof  of the theorem 1.3 

Let 𝑦, 𝑥 be a real numbers, where 𝑥 < 𝑦, according to the theorem 1.2, there sexist a 
rational number 𝑟 (𝑟 ≠ 0) such that: 

𝑥

√2
< 𝑟 <

𝑦

√2
 or 𝑥 < 𝑟√2 < 𝑦 and according to 

propositions 1.3 and 1.4 we conclude that 𝑟√2 is a irrational number. 

Corollary 1.1 The two sets ℚ and 𝐼 is dense in ℝ. 

1.7 Intervals in ℝ 

Let 𝑎, 𝑏 a real numbers, where 𝑎 < 𝑏, we define 

    [𝑎, 𝑏] = {𝑥 ∈ ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏} is called closed interval. 

    ]𝑎, 𝑏[ = {𝑥 ∈ ℝ: 𝑎 < 𝑥 < 𝑏} is called open interval. 

    [𝑎, 𝑏[ = {𝑥 ∈ ℝ: 𝑎 ≤ 𝑥 < 𝑏} is called half open interval. 

    ]𝑎, 𝑏] = {𝑥 ∈ ℝ: 𝑎 < 𝑥 ≤ 𝑏} " " " " " " " " " " " " " " " " " " 

    [𝑎, +∞[ = {𝑥 ∈ ℝ: 𝑥 ≥ 𝑎}  unbounded closed interval. 

    ]−∞, 𝑏] = {𝑥 ∈ ℝ: 𝑥 ≤ 𝑏} " " " " " " " " " " " " " " " " " " 

    ]𝑎, +∞[ = {𝑥 ∈ ℝ: 𝑥 > 𝑎} unbounded open interval. 

    ]−∞, 𝑏[ = {𝑥 ∈ ℝ: 𝑥 < 𝑏} " " " " " " " " " " " " " " " " " " "  

    ℝ = ]−∞, +∞[                  " " " " " " " " " " " " " " " " " " " "  

Theorem 1.4 

The non-empty subset 𝐼 of ℝ is an interval if and only if the following property is 
satisfied: 

∀𝑎, 𝑏 ∈ 𝐼 (𝑎 ≤ 𝑏); ∀𝑥 ∈ ℝ: 𝑎 ≤ 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ 𝐼 
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Proof 

(⇐)Necessary condition: It is a clear that: if the set 𝐼 is a interval, then the property is true. 

(⇒)Sufficient condition: If the property is true, then the set 𝐼 is a interval. 

We have four possible cases, case 1: 𝐼 is bounded, case 2: 𝐼 is bounded from above and not 

bounded from below, case 3: 𝐼 is bounded from below and not bounded from above, case 4: 𝐼 

is neither bounded from above nor from below. 

Let us prove that in the first case: either 𝐼 = [𝑎, 𝑏] or 𝐼 = [𝑎, 𝑏[ or 𝐼 = ]𝑎, 𝑏] or 𝐼 = ]𝑎, 𝑏[ 

where 𝑎 = 𝑖𝑛𝑓 𝐼 and 𝑏 = 𝑠𝑢𝑝 𝐼. 

We have:              𝑏 = 𝑠𝑢𝑝 𝐼 ⟺ {

∀𝑥 ∈ 𝐼 ∶ 𝑥 ≤ 𝑏 

و

∀𝜀 > 0 ; ∃𝑏′ ∈ 𝐼 ∶ 𝑏 − 𝜀 < 𝑏′ … … (1)
. 

and 

𝑎 = 𝑖𝑛𝑓 𝐼 ⟺ {

∀𝑥 ∈ 𝐼 ∶ 𝑥 ≥ 𝑎

و

∀𝛿 > 0 ; ∃𝑎′ ∈ 𝐼 ∶ 𝑎 + 𝛿 > 𝑎′ … … (2)
. 

case 1: If 𝑎 ∈ 𝐼 and 𝑏 ∈ 𝐼, then: 

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 ≤ 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ [𝑎, 𝑏] ⇒ 𝐼 ⊂ [𝑎, 𝑏] 

∀𝑥 ∈ ℝ: 𝑥 ∈ [𝑎, 𝑏] ⇒ 𝑎 ≤ 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ 𝐼 ⇒ [𝑎, 𝑏] ⊂ 𝐼 

So 

𝐼 = [𝑎, 𝑏]. 

case 2: If 𝑎 ∈ 𝐼 and 𝑏 ∉ 𝐼, then: 

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 ≤ 𝑥 < 𝑏 ⇒ 𝑥 ∈ [𝑎, 𝑏[ ⇒ 𝐼 ⊂ [𝑎, 𝑏[ 

∀𝑥 ∈ ℝ: 𝑥 ∈ [𝑎, 𝑏[ ⇒ 𝑎 ≤ 𝑥 < 𝑏 ⇒ 𝑏 − 𝑥 > 0 

putting 𝜀 = 𝑏 − 𝑥 in (1)  we get 𝑥 < 𝑏′  and since 𝑎, 𝑏′ ∈ 𝐼, then: 

𝑎 ≤ 𝑥 < 𝑏′ ⇒ 𝑥 ∈ 𝐼 ⇒ [𝑎, 𝑏[ ⊂ 𝐼 

so 

𝐼 = [𝑎, 𝑏[. 

case 3: If 𝑎 ∉ 𝐼 and 𝑏 ∈ 𝐼, then: 

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 < 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ ]𝑎, 𝑏] ⇒ 𝐼 ⊂ ]𝑎, 𝑏] 

∀𝑥 ∈ ℝ: 𝑥 ∈ ]𝑎, 𝑏] ⇒ 𝑎 < 𝑥 ≤ 𝑏 ⇒ 𝑥 − 𝑎 > 0 

By putting 𝛿 = 𝑥 − 𝑎 in (2)we get 𝑥 > 𝑎′and since 𝑎, 𝑎′ ∈ 𝐼, then: 

𝑎′ < 𝑥 ≤ 𝑏 ⇒ 𝑥 ∈ 𝐼 ⇒ ]𝑎, 𝑏] ⊂ 𝐼 

So 
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𝐼 = ]𝑎, 𝑏] 

case 4: If  𝑎 ∉ 𝐼 and 𝑏 ∉ 𝐼, Then:  

∀𝑥 ∈ ℝ: 𝑥 ∈ 𝐼 ⇒ 𝑎 < 𝑥 < 𝑏 ⇒ 𝑥 ∈ ]𝑎, 𝑏[ ⇒ 𝐼 ⊂ ]𝑎, 𝑏[ 

∀𝑥 ∈ ℝ: 𝑥 ∈ ]𝑎, 𝑏[ ⇒ 𝑎 < 𝑥 < 𝑏 ⇒ 𝑥 − 𝑎 > 0 and 𝑏 − 𝑥 > 0. 

By putting 𝜀 = 𝑏 − 𝑥 in (1) and 𝛿 = 𝑥 − 𝑎 in (2) we get 𝑥 < 𝑏′  and 𝑎′ < 𝑥,  since 𝑎′, 𝑏′ ∈
𝐼, then: 

𝑎′ < 𝑥 ≤ 𝑏′ ⇒ 𝑥 ∈ 𝐼 ⇒ ]𝑎, 𝑏[ ⊂ 𝐼. 

So 

 𝐼 = ]𝑎, 𝑏[. 

In the same way we prove that 𝐼is a interval in the other cases. 


