
Chapter 5

Gradient Method

This chapter introduces an important class of algorithms for solving unconstrained
optimization problems. The central concept is that of a descent direction.

5.1 Order of Convergence of a Sequence

In this section, we introduce the notion of the order of convergence of a numerical
sequence {xk}k∈N, which will be useful in the remainder of the course. The higher
the order of convergence, the faster the method converges and the less computational
effort is needed to determine the solution.

Definition 5.1.1 (Order of Convergence). Let {xk}k∈N be a convergent sequence with
limit x∗. The order of convergence of {xk} is the positive integer p (if it exists) such
that

0 ≤ lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= r ≤ ∞.

The constant r is called the rate of convergence.

We distinguish the following cases:

• If p = 1 and 0 ≤ r < 1, then the convergence is linear.

• If p = 1 and r = 0, then the convergence is superlinear.

• If p = 1 and r = 1, then the convergence is sublinear.

• If p = 2, then the convergence is quadratic.

• If p = 3, then the convergence is cubic.

Example 5.1.2. Let xk = 2−k. Then

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

=


0, p = 0,

1, p = 1,

+∞, p ≥ 2.

Thus, the convergence is sublinear of order 1.
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Example 5.1.3. Let xk =
1

3k
. Then

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

= 3 k(p−1)−1.

Therefore,

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

=


0, p = 0,
1
3
, p = 1,

+∞, p ≥ 2.

Hence, the convergence is linear of order 1 with rate r = 1
3
.

5.2 Descent Method

To define descent methods, we need the notion of a descent direction.

Definition 5.2.1 (Descent Direction). Let f : Rn → R. A vector d ∈ Rn is called a
descent direction at x ∈ Rn if there exists α∗ > 0 such that

f(x+ αd) ≤ f(x), ∀α ∈ (0, α∗].

Example 5.2.2. Consider the function f(x, y) = x2 + y2. Let α∗ = 1
2
, x̂ = 1, ŷ = 1,

and d(1) = (−1,−1)T . Then

f

([
x̂
ŷ

]
+ αd(1)

)
= (1− α)2 + (1− α)2 ≤ f(x̂, ŷ) = 2, ∀α ∈ (0, α∗].

Thus, d(1) is a descent direction at (x̂, ŷ).
On the other hand, the vector d(2) = (1, 1)T is not a descent direction at (x̂, ŷ),

since for any α > 0,

f

([
x̂
ŷ

]
+ αd(2)

)
= (1 + α)2 + (1 + α)2 ≥ f(x̂, ŷ) = 2, ∀α ∈ (0, α∗].

The following result gives an important characterization of descent directions at
a point x:

Proposition 5.2.3. Let f be continuously differentiable on Rn, and let x, d ∈ Rn.
Then:

1. If d is a descent direction at x, then

〈∇f(x), d〉 ≤ 0.

2. If 〈∇f(x), d〉 < 0, then d is a descent direction at x.
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Proof. (1) Suppose d is a descent direction at x. By definition, there exists α∗ > 0
such that

f(x+ αd) ≤ f(x), ∀α ∈ (0, α∗].

Define ϕ(α) = f(x+ αd). For α ∈ (0, α∗], we have ϕ(α) ≤ ϕ(0). Hence,

ϕ(α)− ϕ(0)

α
≤ 0.

Taking the limit as α→ 0+, we obtain

ϕ′(0) = 〈∇f(x), d〉 ≤ 0.

(2) Exercise: Show that if 〈∇f(x), d〉 < 0, then d is a descent direction at x.

Example 5.2.4. We return to Example 5.3. We have

∇f(x̂, ŷ) = (2, 2)T .

Thus,
〈∇f(x̂, ŷ), d(1)〉 = −4 ≤ 0,

which shows that d(1) is a descent direction at (x̂, ŷ).
For the other direction d(2), we have

〈∇f(x̂, ŷ), d(2)〉 = 4 ≥ 0,

which implies that d(2) is not a descent direction at (x̂, ŷ).
In fact, the set of descent directions at (x̂, ŷ) is the set of vectors that form an

obtuse angle with the gradient vector ∇f(x̂, ŷ), as illustrated in Figure 5.1.

Remark 5.2.5. Descent methods differ according to the choice of d and α. The general
algorithm for a descent method is the following:

[H] Descent Method

1. Step I: Set k = 0, choose a tolerance ε and an initial point x(0).

2. Step II:

• Find the descent direction d(k).

• Find the step size αk.

Remark 5.1. Descent methods differ by the choice of d and α. The general algorithm
for a descent method is the following:

Algorithm 5.1. Descent Method
Step I: k = 0, ε and x(0).
Step II:

• Find the descent direction d(k).

• Find the step size αk.

• Compute x(k+1) = x(k) + αkd
(k).

Step III: If ‖∇f(x(k+1))‖ ≤ ε then stop, x∗ = x(k+1), otherwise set k = k + 1 and
go to Step II.
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5.3 Gradient Method

In the gradient method, we choose d(k) = −∇f(x(k)) as the descent direction, because
if ∇f(x(k)) 6= 0, then

〈−∇f(x(k)),∇f(x(k))〉 = −‖∇f(x(k))‖2 ≤ 0.

There are many ways to use this descent direction. If we use a fixed step, i.e.
αk = α, we obtain the gradient method with fixed step size:

d(k) = −∇f(x(k)), x(k+1) = x(k) + αd(k).

In the case of a quadratic function

f(x) =
1

2
〈x,Ax〉+ 〈x, b〉+ c,

with A ∈ Mn symmetric positive definite, b ∈ Rn and c ∈ R, we have the following
convergence result:

Theorem 5.3.1 (5.1). Let λ be the smallest eigenvalue of A and L the largest eigenvalue
of A. If α ∈

]
0, 2

L

[
, then the convergence of the gradient method with fixed step size

is linear with a rate bounded above by

max
(
|1− αL|, |1− αλ|

)
.

Proof. We have
x(k+1) = x(k) − α(Ax(k) + b), (5.1)

and
x(k) = x(k−1) − α(Ax(k−1) + b). (5.2)

Subtracting relations (5.1)(5.2), we obtain

x(k+1) − x(k) = x(k) − x(k−1) − αA(x(k) − x(k−1)),

which implies
x(k+1) − x(k) = (In − αA)(x(k) − x(k−1)).

Hence,

‖x(k+1) − x(k)‖ = ‖(In − αA)(x(k) − x(k−1))‖ ≤ max
i=1,...,n

|λi(In − αA)| · ‖x(k) − x(k−1)‖.

In this case,
1− αL ≤ λi(In − αA) ≤ 1− αλ,

and therefore,
max
i=1,...,n

|λi(In − αA)| = max(|1− αL|, |1− αλ|).

Consequently, the sequence {x(k)}k∈N converges if max(|1 − αL|, |1 − αλ|) < 1,
which corresponds to

α ∈ ]0, 2
L

[∩ ]0, 2
λ
[.
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Example 5.3.2 (5.5). Let the quadratic function

f(x, y) = 2x2 + 3y2 − 2xy + 5x− 6.

The Hessian matrix of f is

D2f(x, y) =

(
4 −2
−2 6

)
.

The eigenvalues are: L =
√

5 + 5 and λ = 5−
√

5. According to Theorem 5.1, for

α ∈
]
0, 2√

5+5

[
, the sequence generated by the gradient method with fixed step size

converges linearly to

(x∗, y∗)T =
(
−3

2
,−1

2

)T
,

with a rate at most

max
( ∣∣1− α(

√
5 + 5)

∣∣, ∣∣1− α(5−
√

5)
∣∣) .

The results obtained by the method for α = 0.1382 and initial point (x0, y0) =
(1, 5

2
) are shown in Figure 5.2.

Theorem 5.3.3 (5.2). Let f be a continuously differentiable function on Rn, bounded
below, and let x(0) ∈ Rn. If ∇f(x) is L-Lipschitz continuous and 0 ≤ α ≤ 2

L
, then

the sequence {
f
(
x(k) − α∇f(x(k))

)}
k∈N

converges to a finite limit. Moreover, the sequence{
∇f(x(k))

}
k∈N

converges to zero in Rn.

To prove this result, we need the following lemma:

Lemma 5.3.4 (5.1, [?]). Let f be a continuously differentiable function on Rn. If
∇f(x) is L-Lipschitz continuous, then for all x, y ∈ Rn,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2.

Proof. Let x(k) ∈ S0 = {x ∈ Rn : f(x) ≤ f(x(0))}. Applying Lemma 5.1 with x = x(k)

and y = x(k) − α∇f(x(k)), we obtain

f
(
x(k) − α∇f(x(k))

)
− f(x(k)) ≤ −α

(
1− αL

2

)
‖∇f(x(k))‖2.

For α ∈
[
0, 2

L

]
, this inequality becomes

f
(
x(k) − α∇f(x(k))

)
− f(x(k)) ≤ −α

(
1− αL

2

)
‖∇f(x(k))‖2 ≤ 0. (5.3)

Hence, the sequence {f(x(k))}k∈N is strictly decreasing. Since it is bounded below,
it converges to a finite limit. Taking the limit in inequality (5.3), we conclude that

lim
k→∞
∇f(x(k)) = 0Rn .
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We now consider the case where the step size αk is chosen optimally, in the sense
that the function

Φk(α) = f
(
x(k) + αd(k)

)
decreases as much as possible with respect to α.

Definition 5.3.5 (5.3, Gradient method with optimal step size). Let f be a continu-
ously differentiable function on Rn and x(0) ∈ Rn. The gradient method with optimal
step size is defined by

x(k+1) = x(k) − αk∇f(x(k)),

where
αk = arg min

α≥0
f
(
x(k) − α∇f(x(k))

)
.

The function Φ0 has a single critical point at α0 = 1
2
, which is a global minimum

since
Φ′′0(α) = 64 ≥ 0.

Thus,

x(1) = x(0) − α0∇f(x(0)) =

(
2
3

)
− 1

2

(
4
4

)
=

(
0
1

)
.

Computing the gradient of f at the point x(1), we find

∇f(x(1)) = (−4, 4)T 6= 0R2 .

At iteration k = 1, we have

Φ1(α) = f
(
x(1) − α∇f(x(1))

)
= f(4α, 1− 4α).

The derivative of this function is

Φ′1(α) = −
〈
∇f(x(1)−α∇f(x(1))),∇f(x(1))

〉
= −

〈(
8(4α)− 4(1− 4α)
4(1− 4α)− 4(4α)

)
,

(
−4
4

)〉
= 32(10α−1).

Thus, the function Φ1 has a single critical point at α1 = 1
10

, which is a global
minimum since

Φ′′1(α) = 320 ≥ 0.

Therefore,

x(2) = x(1) − α1∇f(x(1)) =

(
0
1

)
− 1

10

(
−4
4

)
=

(
4
10
6
10

)
.

In the same way, we obtain

x(3) =

(
0
2
10

)
.

Indeed, the function f has a global minimum at the point

x? = (0, 0)T .
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If we plot the sequence {x(k)}k∈N, we see that this method follows a zigzag trajec-
tory at right angles towards x? (see Figure 5.3). In the gradient method with optimal
step size, the successive directions are orthogonal, as shown by the following result:

Proposition 5.2. If αk is optimal, then ∇f(x(k+1)) and ∇f(x(k)) are orthogonal.
Proof. If αk is optimal, then

φ′k(αk) = 0,

that is,
〈∇f(x(k) − αk∇f(x(k))),∇f(x(k))〉 = 0.

1. ‖∇f(x(k+1))‖ ≤ ε

2. ‖x(k+1) − x(k)‖ ≤ ε

3.
‖x(k+1) − x(k)‖
‖x(k)‖

≤ ε

4.
∣∣f(x(k+1))− f(x(k))

∣∣ ≤ ε

5.

∣∣f(x(k+1))− f(x(k))
∣∣

|f(x(k))|
≤ ε

The general algorithm for the gradient method with optimal step size is the fol-
lowing:

Algorithm 5.2. Algorithm for the gradient method with optimal step size.
Step I: k = 0, choose ε and x(0).
Step II:

• d(k) = −∇f(x(k))

• αk = arg minα≥0 f(x(k) + αd(k))

• Compute x(k+1) = x(k) + αkd
(k)

Step III: If ‖∇f(x(k+1))‖ ≤ ε then stop, x∗ = x(k+1). Otherwise, set k = k + 1
and go to Step II.

3.1 The Quadratic Case

In general, it is not easy to determine the exact value of the optimal step size. How-
ever, for a positive definite quadratic functional we have the following result:

Lemma 5.2. Let f be a positive definite quadratic function,

f(x) =
1

2
〈x,Ax〉+ 〈x, b〉+ c,

where A is a symmetric positive definite matrix, b ∈ Rn, and c ∈ R. with AT = A
a symmetric square matrix of order n, positive definite (A � 0), b ∈ Rn, and c ∈ R.
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Then, the optimal step size at each iteration of the steepest descent method is given
by:

αk =
〈Ax(k) + b, Ax(k) + b〉
〈A(Ax(k) + b), Ax(k) + b〉

≥ 0.

Proof. We know that
∇f(x) = Ax+ b.

If αk is optimal, then it satisfies the first-order optimality condition:

d

dα
f
(
x(k) − α(Ax(k) + b)

)∣∣∣
α=αk

= 0.

Hence,

d

dα
f
(
x(k) − α(Ax(k) + b)

)∣∣∣
α=αk

= −〈∇f(x(k) − αk(Ax(k) + b)), Ax(k) + b〉.

= −〈A(x(k) − αk(Ax(k) + b)) + b, Ax(k) + b〉

= −〈Ax(k) + b− αkA(Ax(k) + b), Ax(k) + b〉

= −〈Ax(k) + b, Ax(k) + b〉+ αk〈A(Ax(k) + b), Ax(k) + b〉 = 0.

Since Ax(k) +b 6= 0 and A � 0, we have 〈A(Ax(k) +b), Ax(k) +b〉 6= 0, which yields

αk =
〈Ax(k) + b, Ax(k) + b〉
〈A(Ax(k) + b), Ax(k) + b〉

≥ 0.

Example 5.7. Consider the optimization problem:

min
x∈R2

f(x) = x1 + 1
2
x2 + 1

2
x21 + x22 − 3.

We compute

∇2f(x) =

[
1 0
0 2

]
� 0.

Thus, problem (5.7) admits a unique optimal solution x∗ satisfying

∇f(x∗) = 0, where x∗ =

(
−1
−1

4

)
.

We can find this solution by applying the steepest descent method with optimal
step size. Starting from x(0) = (0, 0)T with ε = 7 × 10−3, we compute ‖∇f(x(0))‖ =
1.118 ≥ ε.

First iteration:

α0 =
〈Ax(0) + b, Ax(0) + b〉
〈A(Ax(0) + b), Ax(0) + b〉

= 5
6
, with A = ∇2f(x), b = (1, 0.5)T .

x(1) = x(0) − α0(Ax
(0) + b) = −(0.83, 0.41)T .
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We now compute successive iterations.
First iteration:

‖∇f(x(1))‖ = 0.37 ≥ ε.

Second iteration:

α1 = 0.56, x(2) = x(1) − α1(Ax
(1) + b) = (−0.93,−0.23)T ,

‖∇f(x(2))‖ = 0.08 ≥ ε.

Third iteration:

α2 = 0.833, x(3) = x(2) − α2(Ax
(2) + b) = (−0.983,−0.26)T ,

‖∇f(x(3))‖ = 0.02 ≥ ε.

Fourth iteration:

α3 = 0.5, x(4) = x(3) − α3(Ax
(3) + b) = (−0.9945,−0.2486)T ,

‖∇f(x(4))‖ = 0.006 ≤ ε.

Hence, the algorithm stops and the approximate solution is

x∗ ≈ x(4).
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5 Exercises

Exercise 5.1. Let the function

f(x1, x2) = x21 + 2x1x2 + 3x22.

We want to minimize f on R2 using the descent method, where the main iteration is
given by

xk+1 = xk + αkd
k.

1. Starting from the initial point x(0) = (2, 2)T , are we at the optimum? 2.
Consider d(0) = (1, 1)T and d(1) = (−1,−1)T as two possible directions. Which one
is a descent direction at x(0)? 3. After using the correct descent direction, we obtain

the point x(1) =
(
3
2
, 3
2

)T
. Is the chosen step size α an optimal step?

Exercise 5.2. We consider the gradient method with a fixed step size α applied
to minimize the functions f : R2 → R given below. In each case, find the largest
interval of α values for which the algorithm converges.

(a)
f(x) = 3x21 + 3x22 + 4x1x2 + 2x1 + 1.

(b)

f(x) = xT
(

3 3
1 3

)
x− xT

(
16
23

)
.

Exercise 5.3. Use the Conjugate Gradient Method to solve the following optimization
problem:

min
x∈R2

f(x) = 1
2
xTAx+ xT b,
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Solutions

Solution 5.1

Let
f(x1, x2) = x21 − 2x1x2 − 3x22.

Then

∇f(x) =

(
2x1 − 2x2

2x1 − 6x2

)
.

1. For the initial point x(0) = (2, 2)> we have

∇f(x(0)) =

(
2 · 2− 2 · 2
2 · 2− 6 · 2

)
=

(
0

−8

)
6= 0.

Hence x(0) is not an optimum.

2. Compute the inner products with the two directions:

〈d(0),∇f(x(0))〉 = 〈(1, 1)>, (0,−8)>〉 = 1 · 0 + 1 · (−8) = −8 < 0,

so d(0) = (1, 1)> is a descent direction at x(0).

〈d(1),∇f(x(0))〉 = 〈(−1,−1)>, (0,−8)>〉 = 0 + 8 = 8 > 0,

so d(1) = (−1,−1)> is not a descent direction.

3. After using the correct descent direction one obtains

x(1) =

(
−3

2
3
2

)
.

The step used is not optimal because

〈d(0),∇f(x(1))〉 =
〈
(1, 1)>,∇f(−3

2
, 3
2
)
〉

= −18 6= 0,

so the directional derivative along the chosen direction at x(1) is nonzero.

Solution 5.2 (a)

For
f(x) = 3x21 + 3x22 + 4x1x2 + 2x1 + 1

the Hessian is

∇2f(x) =

(
6 4

4 6

)
.

The eigenvalues are λ1 = 10 and λ2 = 2, so ∇2f � 0 (positive definite). By Theorem
5.1 (fixed-step gradient for a quadratic with eigenvalues λmin = λ2 = 2 and λmax =
λ1 = 10), the gradient method with constant step α converges provided

0 < α <
2

λmax

=
2

10
=

1

5
.
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Chapter 6

Newton’s Method

6.1 Introduction

In this chapter, we introduce a well-known and widely used second-order method:
Newton’s method. This method belongs to one of the main classes of unconstrained
optimization methods. We consider the minimization problem

min
x∈Rn

f(x), (6.1)

where f : Rn → R is a function of class C2.
At each iteration of Newton’s method, we approximate f by a quadratic form

using the first two terms of its Taylor expansion:

f(x) ≈ qk(x) = f(x(k)) + (x− x(k))T∇f(x(k)) +
1

2
(x− x(k))TH

(
x(k)
)
(x− x(k)), (6.2)

with
H
(
x(k)
)

= ∇2f
(
x(k)
)
.

A necessary condition for a minimum of the quadratic function qk is ∇qk(x) = 0,
which implies

x(k+1) = x(k) −H
(
x(k)
)−1∇f(x(k)).

This solution exists if and only if the following conditions are satisfied:

(a) The Hessian is nonsingular.

(b) The approximation in equation (6.2) is valid in the neighborhood of the point
x(k).

The general algorithm for Newton’s method is the following:
[H] Newton’s Method

1. Step I: Initialize k = 0, tolerance ε, and starting point x(0).

2. Step II: Compute

x(k+1) = x(k) −H
(
x(k)
)−1∇f(x(k)).
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3. Step III: If ‖∇f(x(k+1))‖ ≤ ε, stop and set x∗ = x(k+1). Otherwise, set k = k+1
and return to Step II.

Example 6.1 Consider the function

f(x1, x2) = (x1 − 2)4 + (x1 − 2)2x22 + (x1 + 1)2,

∇f(x) =

(
4(x1 − 2)3 + 2(x1 − 2)x22 + 2(x1 + 1)

2(x1 − 2)2x2

)
,

∇2f(x) =

(
12(x1 − 2)2 + 2x22 + 2 4(x1 − 2)x2

4(x1 − 2)x2 2(x1 − 2)2

)
.

Let
x(0) = (1, 1)T , x∗ = (2,−1)T .

The optimal value of the problem is f(2,−1) = 0.
By applying Newton’s method, we obtain: Iterations:

k = 0:

x(1) = x(0) −
(
∇2f(x(0))

)−1∇f(x(0)) =

(
1

0.5

)
, f(x(0)) = 6.

k = 1:

x(2) = x(1) −
(
∇2f(x(1))

)−1∇f(x(1)) =

(
1

0.5

)
, f(x(1)) = 1.5.

k = 2:

x(3) = x(2) −
(
∇2f(x(2))

)−1∇f(x(2)) =

(
1.39
−0.696

)
, f(x(2)) = 4.09× 10−1.

k = 3:

x(4) = x(3) −
(
∇2f(x(3))

)−1∇f(x(3)) =

(
1.746
−0.949

)
, f(x(3)) = 6.49× 10−2.

For the case of positive definite quadratic functions, we have the following result:

Theorem 6.1.1. If f is a positive definite quadratic form, then Newton’s method con-
verges to the optimal solution in a single iteration, for any starting point x(0) ∈ Rn.

Proof. Let
f(x) = 1

2
xTHx+ xT b+ c,

with H = HT , H � 0. Then

∇f(x) = Hx+ b, ∇2f(x) = H.

In this case,

x(1) = x(0) −H−1∇f(x(0)) = x(0) −H−1(Hx(0) + b) = −H−1b.
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Newton’s Method: Convergence Analysis

As we have seen previously, in the case of a positive definite quadratic function,
Newton’s method reaches the minimum in a single iteration. However, for the general
case where the function to minimize is not quadratic, there is no guarantee that
Newton’s method will converge. One of the advantages of this method is that if
the starting point is close to the optimal solution x?, then the method will converge
rapidly.

The following theorem shows the local convergence and gives the convergence rate
of Newton’s method.

Theorem 6.1.2 ([, 6]). Let f ∈ C3, x? ∈ Rn such that ∇f(x?) = 0 and H(x?) is
invertible. Then, for any x(0) sufficiently close to x?, Newton’s method converges to
x? with order p > 2.

Example 6.1.3. Consider the optimization problem

min
x∈R2

(x1 − 2)4 + (x1 − 2x2)
2. (6.3)

It is easy to see that the optimal solution of problem (6.3) is x? = (2, 1)T . The results
are presented in the following tables with a tolerance ε = 10−4. In the first table, we
start from an initial point close to the solution, while in the second table, we start
from a point farther away from the solution.

Case 1: Initial point close to the solution

k x(k) ‖∇f(x(k))‖
0 (1, 0)T 4.4721
1 (1.3333, 0.6667)T 1.1852
2 (1.5556, 0.7778)T 0.3512
3 (1.7037, 0.8519)T 0.1040
4 (1.8025, 0.9012)T 0.0308
5 (1.8683, 0.9342)T 0.0091
6 (1.9122, 0.9561)T 0.0027
7 (1.9415, 0.9707)T 0.0008
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Case 2: Initial point far from the solution

k x(k) ‖∇f(x(k))‖
0 (−10, 60)T 7190.8264
1 (−6, −3)T 2048606.8148
2 (−3.3333, −1.6667)T 179.7970
3 (−1.5556, −0.7778)T 53.2732
4 (−0.3704, −0.1852)T 15.7846
5 (0.4198, 0.2099)T 4.6769
6 (0.9465, 0.4733)T 1.3858
7 (1.2977, 0.6488)T 0.4106
8 (1.5318, 0.7659)T 0.1217
9 (1.6879, 0.8439)T 0.0360
10 (1.7919, 0.8960)T 0.0107
11 (1.8613, 0.9306)T 0.0032
12 (1.9075, 0.9538)T 0.0009

If the Hessian matrix is positive definite at each point x(k), then Newton’s method is
a descent method.

Theorem 6.3

Let (x(k)) be the sequence generated by Newton’s method for the problem

min
x∈Rn

f(x).

If ∀k ∈ N, H(x(k)) � 0 and ∇f(x(k)) 6= 0, then

d(k) = −H(x(k))−1∇f(x(k)) = x(k+1) − x(k)

is a descent direction at x(k).

Proof. Since
H(x(k)) � 0,

we also have
H(x(k))−1 � 0.

Therefore,
〈d(k),∇f(x(k))〉 = −〈H(x(k))−1∇f(x(k)),∇f(x(k))〉 ≤ 0.

Thus, d(k) is indeed a descent direction.

Example 6.1.4 (Example 6.3). Let the function f be defined as

f(x) = 2x31 + 3x21 + 12x1x2 + 3x22 − 6x2 + 6.
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We compute

∇f(x) =

(
6x21 + 6x1 + 12x2
12x1 + 6x2 − 6

)
, ∇2f(x) =

(
12x1 + 6 12

12 6

)
.

Applying Newton’s method, we obtain the following results:

k x(k) ∇f(x(k)) ∇2f(x(k))
∥∥∇f(x(k))

∥∥
0

(
1
−4

) (
−36
−18

) (
18 12
12 12

)
40.2492

1

(
4
−5.5

) (
54
9

) (
54 12
12 12

)
54.7449

2

(
2.9286
−5.1786

) (
6.8878
−1.9286

) (
41.1429 12

12 12

)
7.1527

3

(
2.2661
−4.7153

) (
0.5491
−2.7794

) (
37.5126 12

12 12

)
2.8331

4

(
2.4956
−4.3533

) (
0.1021
−2.1725

) (
35.947 12

12 12

)
2.1749

Advantages of Newton’s Method.

1. If the initial point x(0) is close to the solution x?, then Newton’s method con-
verges quadratically to x?, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.

Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose x(0) sufficiently close to the solution; hence global convergence is not
assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N2

second derivatives.

Theorem 6.3

Let (x(k)) be the sequence generated by Newton’s method for the problem

min
x∈Rn

f(x).

If ∀k ∈ N, H(x(k)) � 0 and ∇f(x(k)) 6= 0, then

d(k) = −H(x(k))−1∇f(x(k)) = x(k+1) − x(k)

is a descent direction at x(k).
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Proof. Since
H(x(k)) � 0,

we also have
H(x(k))−1 � 0.

Therefore,
〈d(k),∇f(x(k))〉 = −〈H(x(k))−1∇f(x(k)),∇f(x(k))〉 ≤ 0.

Thus, d(k) is indeed a descent direction.

Example 6.1.5 (Example 6.3). Let the function f be defined as

f(x) = 2x31 + 3x21 + 12x1x2 + 3x22 − 6x2 + 6.

We compute

∇f(x) =

(
6x21 + 6x1 + 12x2
12x1 + 6x2 − 6

)
, ∇2f(x) =

(
12x1 + 6 12

12 6

)
.

Applying Newton’s method, we obtain the following results:

k x(k) ∇f(x(k)) ∇2f(x(k))
∥∥∇f(x(k))

∥∥
0

(
1
−4

) (
−36
−18

) (
18 12
12 12

)
40.2492

1

(
4
−5.5

) (
54
9

) (
54 12
12 12

)
54.7449

2

(
2.9286
−5.1786

) (
6.8878
−1.9286

) (
41.1429 12

12 12

)
7.1527

3

(
2.2661
−4.7153

) (
0.5491
−2.7794

) (
37.5126 12

12 12

)
2.8331

4

(
2.4956
−4.3533

) (
0.1021
−2.1725

) (
35.947 12

12 12

)
2.1749

Advantages of Newton’s Method.

1. If the initial point x(0) is close to the solution x?, then Newton’s method con-
verges quadratically to x?, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.

Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose x(0) sufficiently close to the solution; hence global convergence is not
assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N2

second derivatives.
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Theorem 6.3

Let (x(k)) be the sequence generated by Newton’s method for the problem

min
x∈Rn

f(x).

If ∀k ∈ N, H(x(k)) � 0 and ∇f(x(k)) 6= 0, then

d(k) = −H(x(k))−1∇f(x(k)) = x(k+1) − x(k)

is a descent direction at x(k).

Proof. Since
H(x(k)) � 0,

we also have
H(x(k))−1 � 0.

Therefore,
〈d(k),∇f(x(k))〉 = −〈H(x(k))−1∇f(x(k)),∇f(x(k))〉 ≤ 0.

Thus, d(k) is indeed a descent direction.

Example 6.1.6 (Example 6.3). Let the function f be defined as

f(x) = 2x31 + 3x21 + 12x1x2 + 3x22 − 6x2 + 6.

We compute

∇f(x) =

(
6x21 + 6x1 + 12x2
12x1 + 6x2 − 6

)
, ∇2f(x) =

(
12x1 + 6 12

12 6

)
.

Applying Newton’s method, we obtain the following results:

k x(k) ∇f(x(k)) ∇2f(x(k))
∥∥∇f(x(k))

∥∥
0

(
1
−4

) (
−36
−18

) (
18 12
12 12

)
40.2492

1

(
4
−5.5

) (
54
9

) (
54 12
12 12

)
54.7449

2

(
2.9286
−5.1786

) (
6.8878
−1.9286

) (
41.1429 12

12 12

)
7.1527

3

(
2.2661
−4.7153

) (
0.5491
−2.7794

) (
37.5126 12

12 12

)
2.8331

4

(
2.4956
−4.3533

) (
0.1021
−2.1725

) (
35.947 12

12 12

)
2.1749

Advantages of Newton’s Method.

1. If the initial point x(0) is close to the solution x?, then Newton’s method con-
verges quadratically to x?, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.
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Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose x(0) sufficiently close to the solution; hence global convergence is not
assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N2

second derivatives.

Theorem 6.3

Let (x(k)) be the sequence generated by Newton’s method for the problem

min
x∈Rn

f(x).

If ∀k ∈ N, H(x(k)) � 0 and ∇f(x(k)) 6= 0, then

d(k) = −H(x(k))−1∇f(x(k)) = x(k+1) − x(k)

is a descent direction at x(k).

Proof. Since
H(x(k)) � 0,

we also have
H(x(k))−1 � 0.

Therefore,
〈d(k),∇f(x(k))〉 = −〈H(x(k))−1∇f(x(k)),∇f(x(k))〉 ≤ 0.

Thus, d(k) is indeed a descent direction.

Example 6.1.7 (Example 6.3). Let the function f be defined as

f(x) = 2x31 + 3x21 + 12x1x2 + 3x22 − 6x2 + 6.

We compute

∇f(x) =

(
6x21 + 6x1 + 12x2
12x1 + 6x2 − 6

)
, ∇2f(x) =

(
12x1 + 6 12

12 6

)
.

Applying Newton’s method, we obtain the following results:

k x(k) ∇f(x(k)) ∇2f(x(k))
∥∥∇f(x(k))

∥∥
0

(
1
−4

) (
−36
−18

) (
18 12
12 12

)
40.2492

1

(
4
−5.5

) (
54
9

) (
54 12
12 12

)
54.7449

2

(
2.9286
−5.1786

) (
6.8878
−1.9286

) (
41.1429 12

12 12

)
7.1527

3

(
2.2661
−4.7153

) (
0.5491
−2.7794

) (
37.5126 12

12 12

)
2.8331

4

(
2.4956
−4.3533

) (
0.1021
−2.1725

) (
35.947 12

12 12

)
2.1749
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Advantages of Newton’s Method.

1. If the initial point x(0) is close to the solution x?, then Newton’s method con-
verges quadratically to x?, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.

Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose x(0) sufficiently close to the solution; hence global convergence is not
assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N2

second derivatives.
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