Chapter 5
Gradient Method

This chapter introduces an important class of algorithms for solving unconstrained
optimization problems. The central concept is that of a descent direction.

5.1 Order of Convergence of a Sequence

In this section, we introduce the notion of the order of convergence of a numerical
sequence {ztren, which will be useful in the remainder of the course. The higher
the order of convergence, the faster the method converges and the less computational
effort is needed to determine the solution.

Definition 5.1.1 (Order of Convergence). Let {xy}ren be a convergent sequence with
limit 2*. The order of convergence of {x}} is the positive integer p (if it exists) such
that

_ *
o< 1l =l

=r < .
k—o0 ||.Z'k — 33'*Hp =0

The constant r is called the rate of convergence.
We distinguish the following cases:

e If p=1and 0 <r <1, then the convergence is linear.
e If p=1and r =0, then the convergence is superlinear.
o If p=1and r =1, then the convergence is sublinear.

o If p =2, then the convergence is quadratic.

o [f p = 3, then the convergence is cubic.

Example 5.1.2. Let 2, = 27%. Then

| *| 07 p:OJ
TN S e D O
k—o0 |:L‘k —{L‘*|p

400, p>2.

Thus, the convergence is sublinear of order 1.
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Example 5.1.3. Let z; = 3 Then

i TR =2 ko1
k—o0 |Ik — x*|P

Therefore,
| *| 07 p = 07
lim AL T L p=1,
k—o0 ’J}k — x*|P 3
400, p>2.

1

Hence, the convergence is linear of order 1 with rate r = 3

5.2 Descent Method

To define descent methods, we need the notion of a descent direction.

Definition 5.2.1 (Descent Direction). Let f : R® — R. A vector d € R" is called a
descent direction at z € R” if there exists a* > 0 such that

flx+ad) < f(z), Yae(0,a].
Example 5.2.2. Consider the function f(z,y) = 2® +¢y*. Let a* =3, & =1, 9 =1,
and d") = (=1, —1)". Then
f({g] +ad(1)) =(1-a)l+(1—-a)?*< f(2,9) =2, Vac(0,a.

Thus, dV) is a descent direction at (2, 7).
On the other hand, the vector d® =
since for any o > 0,

(1,1)T is not a descent direction at (Z,),

f({g] +Ozd(2)) = (1 +a)2 + (1 —l—a)Q > f(a%,ﬂ) _ 2’ Vo € (0,0é*].

The following result gives an important characterization of descent directions at
a point x:

Proposition 5.2.3. Let f be continuously differentiable on R”, and let x,d € R"™.
Then:

1. If d is a descent direction at x, then

(Vf(x),d) <0.

2. If (Vf(x),d) <0, then d is a descent direction at .
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Proof. (1) Suppose d is a descent direction at x. By definition, there exists a* > 0

such that
flx+ad) < f(x), Vae (0,a"].

Define (o) = f(x + ad). For a € (0, a*], we have p(a) < ¢(0). Hence,

Taking the limit as a — 07, we obtain

¢'(0) = (Vf(z),d) <0.

(2) Exercise: Show that if (V f(z),d) < 0, then d is a descent direction at x.

Example 5.2.4. We return to Example 5.3. We have
Vi9) = (2.2)".

Thus,

which shows that d) is a descent direction at (%, 7).
For the other direction d®, we have

(Vf(#,9),d?) =4>0,

which implies that d® is not a descent direction at (%, 7).

]

In fact, the set of descent directions at (Z,y) is the set of vectors that form an

obtuse angle with the gradient vector V f(Z,y), as illustrated in Figure 5.1.

Remark 5.2.5. Descent methods differ according to the choice of d and o. The general

algorithm for a descent method is the following:
[H] Descent Method
1. Step I: Set k = 0, choose a tolerance ¢ and an initial point z(®.
2. Step II:

e Find the descent direction d®.

e Find the step size ay.

Remark 5.1. Descent methods differ by the choice of d and «. The general algorithm

for a descent method is the following:
Algorithm 5.1. Descent Method
Step I: k£ = 0, € and z(?.
Step II:

e Find the descent direction d*).
e Find the step size ay.

e Compute 2zt = z(*) 4 o, d*).

Step IIL: If |V f(x**)|| < € then stop, z* = z**1) otherwise set k = k + 1 and

go to Step II.

43



5.3 Gradient Method

In the gradient method, we choose d¥) = —V f(x(*)) as the descent direction, because
if Vf(x®) #£ 0, then

(—=V (™), Vf®)) = -V fa®))* <o.

There are many ways to use this descent direction. If we use a fixed step, i.e.
ap = a, we obtain the gradient method with fixed step size:

In the case of a quadratic function

fx) = %(:L“,AI) + (x,b) + ¢,

with A € M,, symmetric positive definite, b € R™ and ¢ € R, we have the following

convergence result:

Theorem 5.3.1 (5.1). Let A be the smallest eigenvalue of A and L the largest eigenvalue
of A. If a € }0, % [, then the convergence of the gradient method with fixed step size
18 linear with a rate bounded above by

max (|1 — aL|, |1 — a|).
Proof. We have
2D = 20— (Az® 4 p), (5.1)

and

z® k=1 — o (Az*Y 1 ). (5.2)

=
Subtracting relations (5.1)(5.2), we obtain

)

which implies
pEHD) (k) — (I, — QA)(x(k) . x(k:—l))‘

Hence,

2 — 2O = |[(1, = ad)(@® — 2* V)| < max [Ai(L, — ad)| - [la® — 2*V].

..... n

In this case,
1 —al < NI, —aA) <1-—a,

and therefore,
max INi(L, — aA)| = max(|1 — aLl,|1 — all|).

..... n

Consequently, the sequence {z(},en converges if max(|]1 — oL, |1 — aA|) < 1,
which corresponds to
a€]0,2[N]o, 3.

44



Example 5.3.2 (5.5). Let the quadratic function
f(z,y) = 22* + 3y* — 2xy + 52 — 6.

The Hessian matrix of f is

4 =2
2 _
The eigenvalues are: L=+/5+5and A =5— /5. According to Theorem 5.1, for
a € }O, s [ the sequence generated by the gradient method with fixed step size
converges linearly to

e

(:E*, y*)T = (_

oo

with a rate at most

)|, |1—a(5—\/5)]>.

The results obtained by the method for o = 0.1382 and initial point (zo,y0) =
(1,2) are shown in Figure 5.2.

Theorem 5.3.3 (5 2). Let f be a continuously differentiable function on R"™, bounded
below, and let © € R*. If Vf(x) is L-Lipschitz continuous and 0 < o < 2, then

the sequence
(k) _ (k)
{1@V —avia™)}

converges to a finite limit. Moreover, the sequence

{vr®}

max (

converges to zero in R™.
To prove this result, we need the following lemma:

Lemma 5.3.4 (5.1, [?]). Let f be a continuously differentiable function on R™. If
V f(x) is L-Lipschitz continuous, then for all x,y € R",

F(w) < F@) 4 (VF()y — ) + 2y

Proof. Let 2% € Sy = {x ¢ R™: f(z) < f(#@)}. Applying Lemma 5.1 with 2 = 2
and y = 2™ — aV f(z®), we obtain

F(a) = aV ) ~ (o) < —a(1 - ) 97O

For a € [0, %], this inequality becomes

F® = aVf(a®)) - f) < (1 - _> V@) 2 <0,  (5.3)

Hence, the sequence { f(2¥))} ey is strictly decreasing. Since it is bounded below,
it converges to a finite limit. Taking the limit in inequality (5.3), we conclude that

lim Vf(2®) = Ogn.
k—o0
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We now consider the case where the step size oy, is chosen optimally, in the sense
that the function

Op(a) = f(x(k) + ozd(k))
decreases as much as possible with respect to a.
Definition 5.3.5 (5.3, Gradient method with optimal step size). Let f be a continu-
ously differentiable function on R” and z(®) € R". The gradient method with optimal

step size is defined by
2D — 20 0 7 (),
where

_ ; (k) _ (k)
o, = argmin f(z aV f(z7)).

The function ®( has a single critical point at ag = %, which is a global minimum
since
Py () =64 > 0.

oo (3-4()-()

Computing the gradient of f at the point ™, we find

Thus,

VW) = (—4,4)T # Oge.
At iteration k = 1, we have
Dy () = f(2 —aVf(zV)) = f4a, 1 — 4a).

The derivative of this function is

() = (V7 -av ). V) = - ( (40 L L) (3)) = 3201001

1

Thus, the function ®; has a single critical point at a; = 15,

minimum since

which is a global

®" () = 320 > 0.

Therefore,

2@ — 2 _ 0,V f(2V)

o (1)
10

Indeed, the function f has a global minimum at the point

Il
VR
)
~
|
sl=
/T
AN
~
Il
VRS
Sles|-
~

In the same way, we obtain

¥ = (0,0)7.
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If we plot the sequence {x(k)}kEN, we see that this method follows a zigzag trajec-
tory at right angles towards x* (see Figure 5.3). In the gradient method with optimal
step size, the successive directions are orthogonal, as shown by the following result:

Proposition 5.2. If oy is optimal, then V f(z**1) and V f(z*)) are orthogonal.

Proof. If oy, is optimal, then

¢;§<ak‘) = Oa

that is,
(Vf(@® —a,Vf(a®)), VW) =o.

L IViE*™)| <e
2. [|la*+D) — 20| < e

2+ — o ®)|

3.
[E

4 ] f@tD) — fa®)| <<

|[f (") — faW))]

5. <e
|f (@)
The general algorithm for the gradient method with optimal step size is the fol-
lowing;:

Algorithm 5.2. Algorithm for the gradient method with optimal step size.
Step I: k = 0, choose ¢ and z(©.
Step II:

o d¥) = —Vf(2R)
e ) = argmingso f(z® + ad®)
e Compute zFt1) = z(0) 1 o, q*)

Step IIL: If ||V f(z**+V)|| < e then stop, 2* = z Y. Otherwise, set k = k + 1
and go to Step II.

3.1 The Quadratic Case

In general, it is not easy to determine the exact value of the optimal step size. How-
ever, for a positive definite quadratic functional we have the following result:
Lemma 5.2. Let f be a positive definite quadratic function,

f(e) = 5l A7) + (. + ¢

where A is a symmetric positive definite matrix, b € R”, and ¢ € R. with AT = A
a symmetric square matrix of order n, positive definite (A > 0), b € R", and ¢ € R.
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Then, the optimal step size at each iteration of the steepest descent method is given
by:

(Az® + b, Az® + b) -0
(A(Az®) +b), Ax®) +b) —

ap —

Proof. We know that
Vf(z) = Az +b.

If a is optimal, then it satisfies the first-order optimality condition:

d
@f(x(k) — a(Az™ + b)) =0.

a=qy
Hence,

= —(Vf(z®™ — ap(Az™ + b)), Az +b).

a=ay

dif(x(k) — a(Az® + b))
a

= —(A(z™® — ay(Az™ + b)) + b, Az® +b)
= —(Az®™ + b — a A(Az® +b), Az® +b)
= —(Az® + b, Az® 1+ 1) + i (A(Az® +b), Az® 4 b) = 0.
Since Az +b # 0 and A = 0, we have (A(Azx® +b), Az +b) # 0, which yields

(Az® + b, Az + b) -0
(A(Az® +b), Ax®) +b) —

. —

Example 5.7. Consider the optimization problem:

min f(z) = 1 + 332 + 327 + 235 — 3.
zER?

We compute

Vif(r) = B g} > 0.

Thus, problem (5.7) admits a unique optimal solution x* satisfying

Vf(z*)=0, where z*= (_}) :

4

We can find this solution by applying the steepest descent method with optimal
step size. Starting from z(®) = (0,0)” with e = 7 x 1073, we compute |V f(z(®)| =
1.118 > e.

First iteration:

(Az® + b, Az© +b) 5

_ o ) ]
0 = A(AT0 £ p), Az gy o0 WA=V f@), b= (1,057

2 = 2@ — qy(Az® +b) = —(0.83, 0.41)7.

48



We now compute successive iterations.
First iteration:
IV (D) =0.37 >

Second iteration:
o =056, 2@ =20 - (AzW 4+ b) = (-0.93,-0.23)7,
IV f(z®)] = 0.08 > e.
Third iteration:
ay; =0.833, ¥ =2® —a,y(A2® 4 1) = (-0.983,-0.26)7

IV f(z®)] = 0.02 > e
Fourth iteration:

4)

as =05, W =20 —ay(42® +b) = (—0.9945, —0.2486)7,

IV f(z™)]| = 0.006 < e.

Hence, the algorithm stops and the approximate solution is
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5 Exercises
Exercise 5.1. Let the function
f(zy,m0) = 2% + 22129 + 325,

We want to minimize f on R? using the descent method, where the main iteration is
given by
oF = 2F + apdt.
1. Starting from the initial point #(® = (2,2)7, are we at the optimum? 2.
Consider d© = (1,1) and d¥) = (—1,—1)T as two possible directions. Which one
is a descent direction at z(®? 3. After using the correct descent direction, we obtain

the point z(V) = (%, %)T Is the chosen step size a an optimal step?

Exercise 5.2. We consider the gradient method with a fixed step size o applied
to minimize the functions f : R?> — R given below. In each case, find the largest
interval of o values for which the algorithm converges.

()

f(z) = 327 + 323 + day29 + 22 + 1.

Flz) = 27 G’ g) v — " Gg) .

Exercise 5.3. Use the Conjugate Gradient Method to solve the following optimization
problem:

: _ 1,7 T
?é%g%f(x)_ix Ax + 27,

20



Solutions

Solution 5.1

Let
f(zy,20) = xf — 211X — 3953.

v . 23}'1 — 2.1'2
f(x) B 21’1 - 61‘2 ‘

1. For the initial point 2(® = (2,2)" we have

o [2:2-2-2 0
VI =199 6.2) "\ 5] 7"

is not an optimum.

Then

Hence z(©

2. Compute the inner products with the two directions:
(d V@) =((1,1)7,0,-8)") =1-0+1-(-8) = -8 <0,
so d® = (1,1)7 is a descent direction at (%),
(dD, VD) =((-1,-1)7,(0,—-8)T) =0+8 =8> 0,
so dV) = (—1,—1)T is not a descent direction.

3. After using the correct descent direction one obtains

_3
- ().
2

The step used is not optimal because

so the directional derivative along the chosen direction at =" is nonzero.

Solution 5.2 (a)

For
f(x) = 327 + 323 + 4oym9 + 271 + 1

V2f(x) = (i é) :

The eigenvalues are A\; = 10 and Ay = 2, so V2f = 0 (positive definite). By Theorem
5.1 (fixed-step gradient for a quadratic with eigenvalues Ay, = Ao = 2 and A\pax =
A1 = 10), the gradient method with constant step a converges provided

2 2 1

Ao 10 5

the Hessian is

I<a<

o1



Chapter 6

Newton’s Method

6.1 Introduction

In this chapter, we introduce a well-known and widely used second-order method:
Newton’s method. This method belongs to one of the main classes of unconstrained
optimization methods. We consider the minimization problem

min f(x), (6.1)

zeR™

where f : R® — R is a function of class C?.
At each iteration of Newton’s method, we approximate f by a quadratic form
using the first two terms of its Taylor expansion:

F(&) = aelo) = £+ (= )T F@) 4L — o) H (o) (2 — ), (6.2)

with
H([E(k)> = V2f(:v(k)).

A necessary condition for a minimum of the quadratic function g is Vgi(x) = 0,
which implies
gD — (k) _ H(m(k))*lvf(x(k))_

This solution exists if and only if the following conditions are satisfied:
(a) The Hessian is nonsingular.

(b) The approximation in equation (6.2) is valid in the neighborhood of the point

z®),

The general algorithm for Newton’s method is the following:
[H] Newton’s Method

1. Step I: Initialize k = 0, tolerance ¢, and starting point z(?.
2. Step II: Compute
pETD — (k) _ H(x(k))_IVf(x(k)).
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3. Step III: If |V f (2 *+1D)|| < ¢, stop and set 2* = 2**+1D_ Otherwise, set k = k+1
and return to Step II.

Example 6.1 Consider the function

flxy,29) = (w1 — 2)* + (21 — 2)%22 + (2, + 1)%

4(xy — 2> 4+ 2(x1 — 2)23 +2(21 + 1)
Vi) = ( S ).
5 12(xg —2)2 + 222+ 2 4z — 2)12

Let
20 =1, 1), =2, -1

The optimal value of the problem is f(2,—1) = 0.
By applying Newton’s method, we obtain: Iterations:

k=0 2 = 20 _ (T2f(20)) 'V () = (0%5> L f(@9) =6
k=1
2@ =20 — (V2 f(aD)) 'V () = (;5) , faW) =15
k=2
2 = 2 (V2f(2?)) V() = (_3%996) L J@®) =400 x 107,
k=3
2@ = 2® _ (V27(2®)) V(@) = (_107329> L f(2®) = 6.49 x 1072,

For the case of positive definite quadratic functions, we have the following result:

Theorem 6.1.1. If f is a positive definite quadratic form, then Newton’s method con-
verges to the optimal solution in a single iteration, for any starting point (®) € R™.

Proof. Let
f(z)=Lta"Hx + 270 + ¢,

2
with H = H”, H = 0. Then
Vi) = Ho+b, Vf(x) = H.

In this case,

2V =20 - gFVF(2©) =20 - AV H2O +b) = —H b,
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Newton’s Method: Convergence Analysis

As we have seen previously, in the case of a positive definite quadratic function,
Newton’s method reaches the minimum in a single iteration. However, for the general
case where the function to minimize is not quadratic, there is no guarantee that
Newton’s method will converge. One of the advantages of this method is that if
the starting point is close to the optimal solution x*, then the method will converge
rapidly.

The following theorem shows the local convergence and gives the convergence rate
of Newton’s method.

Theorem 6.1.2 ([, 6]). Let f € C3, z* € R™ such that Vf(z*) = 0 and H(x*) is
invertible. Then, for any =9 sufficiently close to x*, Newton’s method converges to
x* with order p > 2.

Example 6.1.3. Consider the optimization problem

min (77 — 2)* + (21 — 219)% (6.3)
z€R2
It is easy to see that the optimal solution of problem (6.3) is z* = (2,1)?. The results
are presented in the following tables with a tolerance e = 10~*. In the first table, we
start from an initial point close to the solution, while in the second table, we start
from a point farther away from the solution.

Case 1: Initial point close to the solution

z® IV f (z®)]]
(1,0)T 4.4721

(1.3333, 0.6667)T |  1.1852
(1.5556, 0.7778)T | 0.3512
(1.7037, 0.8519)T | 0.1040
(1.8025, 0.9012)T |  0.0308
( )
( )
( )

1.8683, 0.9342)" | 0.0091
1.9122, 0.9561)7 | 0.0027
1.9415, 0.9707)7 | 0.0008

N O Ol W N~ O
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Case 2: Initial point far from the solution

k z® IV £ (™)
0 (=10, 60)T 7190.8264
1 (=6, —3)T 2048606.8148
2 | (—3.3333, —1.6667)7 | 179.7970
3 | (—1.5556, —0.7778)T |  53.2732
4| (—0.3704, —0.1852)T |  15.7846
5| (0.4198, 0.2099)7 4.6769
6 | (0.9465, 0.4733)7 1.3858
7| (1.2977, 0.6488)7 0.4106
8 | (1.5318, 0.7659)7 0.1217
0 | (1.6879, 0.8439)7 0.0360
10| (17919, 0.8960)7 0.0107
11| (1.8613, 0.9306)" 0.0032
12| (1.9075, 0.9538)7 0.0009

If the Hessian matrix is positive definite at each point ), then Newton’s method is
a descent method.

Theorem 6.3

Let (z*)) be the sequence generated by Newton’s method for the problem

min f(z).

If VkeN, H(z®) =0 and Vf(z®) # 0, then
d® = —H(z®) IV f(2®)) = o+ — g®

is a descent direction at z(®).

Proof. Since
we also have

Therefore,
(@9, 9 F(o)) = —~(H(@) 97 ®), V) <o,

Thus, d* is indeed a descent direction.

Example 6.1.4 (Example 6.3). Let the function f be defined as

f(z) = 22% + 322 + 122,29 + 325 — 625 + 6.
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We compute

Urta) - (50 ) gy - (0 12,
Applying Newton’s method, we obtain the following results:
k 2(F) V f(a™) V2 f(z™®) va(x(k))ll
ol (1) T ED T (B n) | e
! —§.5 594 ?;L g 54.7449
2 (_2;)12?56) (ff9827886) <41'11§29 E) 7.1527
G GRIES
4 (34439553) <_021E$215) <35ig47 g) 2.1749

Advantages of Newton’s Method.

1. If the initial point (¥ is close to the solution z*, then Newton’s method con-
verges quadratically to z*, as stated in Theorem 6.2. In this case, the conver-

gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a

single iteration.

Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose () sufficiently close to the solution; hence global convergence is not

assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N?

second derivatives.

Theorem 6.3

Let (z*)) be the sequence generated by Newton’s method for the problem

min f(z).

If Vke N, H(z®) =0 and Vf(z®) # 0, then

is a descent direction at z(®).
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Proof. Since
we also have

Therefore,
(d®,Vf(zW)) = —=(H @)V f(2W), V(1)) <o0.

Thus, d* is indeed a descent direction.

Example 6.1.5 (Example 6.3). Let the function f be defined as
f(z) =223 + 327 + 12729 + 315 — 625 + 6.
We compute
B Gx% + 621 + 1229 9 (122, +6 12
vf(m)_(12x1+6932—6 - V@ =" )

Applying Newton’s method, we obtain the following results:

k[ a® V(™) V™) [V
| —14 :?g Gi 1;) 40.2492
: —;l.5 594 ?;l 1; 54.7449
2 _2;1255?6 fi§§27886 e R AT
() () (T )| s
T () (a7 ) | 2

Advantages of Newton’s Method.

1.

2.

If the initial point z(*) is close to the solution z*, then Newton’s method con-

verges quadratically to x*, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.

Disadvantages of Newton’s Method.

1.

For many problems, convergence is not guaranteed. In particular, one must
choose z(® sufficiently close to the solution; hence global convergence is not
assured.

The cost of each iteration is high: one must evaluate N first derivatives and N2
second derivatives.
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Theorem 6.3

Let (x(k)) be the sequence generated by Newton’s method for the problem
min f(z).

zeR”
If VkeN, H(z®) =0 and Vf(z®) # 0, then
d*) — _H(x(k))flvf(x(k)) — kD) (k)

is a descent direction at z(*).

Proof. Since
we also have

Therefore,

(d®, Vf(zW)) = —(H@") 7'V f(2W), V(1)) <0.
Thus, d* is indeed a descent direction.
Example 6.1.6 (Example 6.3). Let the function f be defined as
f(x) = 22% + 322 + 122129 + 325 — 625 + 6.

We compute

~(62F + 621 + 1215 9 (122,46 12
vf(x)_(12x1—|—6x2—6 V@ =" 6 )

Applying Newton’s method, we obtain the following results:

k (k) Vf(x(k)) V2f(gg(k)) va(x(k))ll
’ —14 :?g Gi g) 40.2492
(G |G [ () | e
’ —25912;356 f189827886 41'11;129 ﬁ 7.1527
&N NGRS
4 (_24%3955??3) <_021E$215) (3519247 E) 2.1749

Advantages of Newton’s Method.

1. If the initial point (¥ is close to the solution z*, then Newton’s method con-
verges quadratically to x*, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.
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Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose z(® sufficiently close to the solution; hence global convergence is not
assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N?
second derivatives.

Theorem 6.3

Let (z*)) be the sequence generated by Newton’s method for the problem
min f(z).

rER”
If Ve N, H(z®) =0 and Vf(z®) # 0, then
d® = —H (@)1 () = 20+ 0

is a descent direction at 2.

Proof. Since
we also have

Therefore,
(@, Vf(@®)) = ~(HW)'V (™), V(=) <.

Thus, d® is indeed a descent direction.
Example 6.1.7 (Example 6.3). Let the function f be defined as
f(x) = 223 + 327 + 122129 + 325 — 629 + 6.

We compute

_ (62F + 621 + 1215 9 (122,46 12
vf(x)_(12a:1+6:c2—6 V@ =" 6)

Applying Newton’s method, we obtain the following results:

k z® V f(z®) V™) V)]
’ (—14> ::fg oo 40.2492
' (—§.5> (594> L 54.7449
2 (35?123866) (fi§9827886) (41'115129 g) 7.1527
’ —24?553513 —0;;%4 37{52126 }3 2.8331
o () | (Sms) | (P57 1) | 2ame

29




Advantages of Newton’s Method.

1. If the initial point 2(© is close to the solution z*, then Newton’s method con-
verges quadratically to x*, as stated in Theorem 6.2. In this case, the conver-
gence is said to be local.

2. If the optimization problem is quadratic, then Newton’s method converges in a
single iteration.

Disadvantages of Newton’s Method.

1. For many problems, convergence is not guaranteed. In particular, one must
choose z(® sufficiently close to the solution; hence global convergence is not
assured.

2. The cost of each iteration is high: one must evaluate N first derivatives and N?
second derivatives.
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