Chapter 4
Optimality Conditions

The objective of this chapter is to give the necessary or sufficient conditions for a point
x* to be a local minimum, for the following unconstrained optimization problem:

min f(x). (4.1)

FASING

Definition 4.0.1 (Critical Point). Let f € C'. A critical point (or stationary point)

is a point that satisfies
V(") = Ogn.

Example 4.0.2. Let the function f be defined on R? by
flz,y) = 22° + 2y + 52* + o>
The critical points of f are the solutions of the following equation:

Vf(x,y) = Ogz,

which implies

622 + y? + 10z _0
21y + 2y - R

Thus,
S ={(0,0),(-2,0),(-1,2),(-1,-2)}.

Definition 4.0.3 (Saddle Point). A critical point z* is a saddle point if for all » > 0,
there exist a,b € B(x*,r) such that

fla) < f(a") < f(b).
(

Example 4.0.4. Consider the function f(z) = 2°. We have

f(z) = 322,
so f'(x) vanishes at x = 0. For any r > 0, take B(0,7) =] —r,r[. For a = —% and
b = 5, we obtain
3 3
fla) = —= < f)=0< ) = =

8
Thus, x = 0 is a saddle point.
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4.1 First-Order Optimality Conditions

Our first result states that the first derivative must vanish whenever we have an
unconstrained optimization problem.

Theorem 4.1.1 (First-Order Necessary Condition). If x* is a local minimum of the
function f on R™, then
Vf(z") = Ogn.

Proof. Let x* be a local minimum of f on R”. By definition of a local minimum,
there exists an open ball such that

fl@*) < f(x), Yz e B(z*r).
For any vector d € R™ and for a scalar ¢ > 0 sufficiently small, the point
r=x"+1d
belongs to B(z*,r), and therefore
f@®) < fla” +td).
This implies that

o 1 1) = )

t—0+ t

= Vf(@*)'d > 0.

This result holds for any d € R"™, hence it also holds for —d, i.e.
Vf(z*)'d <o0.

Thus,
Vf(z*)'d=0, VdecR"

which implies
Vf(z*)=0.

Example 4.1.2. Let

f(@) =a]+ 123 + 322+ 92, Q=R%

Vi) = (5? 3) ‘

We have

1. For x* = we get

Vf(at) = (é) # Oge.

Therefore, x* does not satisfy the first-order necessary condition.
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2. For o* = (_03), we obtain

Vf(z*) = (8) .

Hence, x* satisfies the first-order necessary condition.

Remark 4.1.3. When the function f is not convex, we can only provide a necessary
condition for local optimality, but not a sufficient one. Indeed, it is possible that the
differential vanishes at some point z*, while this point is not a local minimum.

Example 4.1.4. For f(z) = z®, the derivative vanishes at z* = 0, but this point is a
saddle point (hence neither a minimum nor a maximum).

The above condition involves the gradient vector, and is therefore called a first-
order condition.

4.2 Second-Order Optimality Conditions

If the objective function is neither convex nor concave, the first-order conditions do
not allow us to distinguish between a minimum and a maximum. To obtain such a
distinction, one must study the behavior of the second derivative at x*. We then have
the following optimality condition:

Theorem 4.2.1 (Second-Order Necessary Condition). If 2* is a local minimum (resp.
local maximum) of the function f on R™, then

Vf@*)=0 and d"V?f(z*)d >0, Vd € R"
(resp. dTV2f(2*)d <0, Vd € R").

Proof. Using the second-order Taylor expansion of f around the local minimum x*,
we obtain for all d € R™ and for ¢ > 0 sufficiently small:

f(@*) < f(a" 4+ td) = f(a*) + ¢tV f(2)"d + 22d" V2 f(2*)d + £ d||*e (td).
Since V f(z*) = 0, we have
f(@* +td) = f(z*) + 22d"V? f(z*)d + t*||d||*e(td).
Dividing by #? and taking the limit, we find

o 1t td) — )

t—0+ 12

= 1d"V’ f(2*)d > 0.
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Example 4.2.2. Let f(z) = 2% — 23 with Q = R?. For 2* = (0) we have

0

Vi) =0, V)= (2 2.
0 -2
We observe that V2f(z*) is not positive semidefinite. Thus z* is neither a local

minimum nor a local maximum.

Moreover, if the second-order condition is strictly satisfied, we obtain the following
sufficient condition:

Theorem 4.2.3 (Second-Order Sufficient Condition). Let z* € R™. If x* satisfies
Vf(z*) =0 and d'V2f(x*)d >0, Vd#0¢cR",
then x* is a strict local minimum of the function f on R"™.
The proof of this theorem relies on the following lemma:

Lemma 4.2.4. Let f be a twice continuously differentiable function on R™, and let
x* € R™ be such that V?f(x*) is positive definite. Then there exists § > 0 such that

V2f(z) =0, Vze B(z*,9).

Proof. From Lemma 4.1, there exists § > 0 such that V2f(z) = 0 for all x € B(x*, ).
Let x € B(z*,d) with = # x*. Define

®(t) = f(a" + t(x — ")), tel0,1].

It is clear that ® is twice continuously differentiable on [0, 1]. Moreover, we have

®(0) = f(z"), (4.2)
and
B(1) = f(2). (43)
By Taylors theorem, there exists ¢ € [0, 1] such that
D(t) = ®(0) + D'(0)t + 20" (1)1, (4.4)
with
¥'(0) = Vf(z*)" (z —2*) =0,
and

"(t) = (x — )"V f(z* + i(z — 2*)) (z — 2*) > 0.

For t = 1, we obtain

Thus, z* is a strict local minimum. O
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Example 4.2.5. Let f(z) = 2% 4+ 23 with Q = R?. For z* = <O>, we have

0

VI(a*) = Ops,  V2f(2¥) = (g g) - 0.

Thus, z* is a strict local minimum of f on R2.

Example 4.2.6. Consider the function f from Example 4.2. Its Hessian is

) _ (122410 2y
Vf(x’”‘( 2y 2w+2)

At (0,0), we have
9 (10 ©

so (0,0) is a strict local minimum.

At (—2,0), we have

9 —-10 0
w30 = (50 L) =0
hence this point is not a local minimum. Thus, the point

(=5:0)

is a strict local maximum.
For the point (—1,2), we have

V2f(—1,2) = {_42 g] .

The sign of the Hessian matrix V2f(—1,2) is indefinite, therefore (—1,2) is a
saddle point.

V2f(—1,-2) = [:i _04] .

The sign of the Hessian matrix V2 f(—1, —2) is indefinite, therefore (—1, —2) is a
saddle point.
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Exercises
Exercise 4.1 We consider the optimization problem

min _ f(r) = 27 + x5 — 225 + 5.

(z1,72)€ER2
Is the first-order necessary condition for a local minimum satisfied at the points

(1,1, [-1,-1]", [0,1]", [0,-1]"?
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