Chapter 4

Optimality Conditions

The objective of this chapter is to give the necessary or sufficient conditions for a point x^* to be a local minimum, for the following unconstrained optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x). \tag{4.1}$$

Definition 4.0.1 (Critical Point). Let $f \in C^1$. A **critical point** (or stationary point) is a point that satisfies

$$\nabla f(x^{\star}) = 0_{\mathbb{R}^n}.$$

Example 4.0.2. Let the function f be defined on \mathbb{R}^2 by

$$f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2.$$

The critical points of f are the solutions of the following equation:

$$\nabla f(x,y) = 0_{\mathbb{R}^2},$$

which implies

$$\binom{6x^2 + y^2 + 10x}{2xy + 2y} = 0_{\mathbb{R}^2}.$$

Thus,

$$S = \{(0,0), (-\frac{5}{3},0), (-1,2), (-1,-2)\}.$$

Definition 4.0.3 (Saddle Point). A critical point x^* is a **saddle point** if for all r > 0, there exist $a, b \in B(x^*, r)$ such that

$$f(a) \le f(x^*) \le f(b).$$

Example 4.0.4. Consider the function $f(x) = x^3$. We have

$$f'(x) = 3x^2,$$

so f'(x) vanishes at x = 0. For any r > 0, take B(0, r) =]-r, r[. For $a = -\frac{r}{2}$ and $b = \frac{r}{2}$, we obtain

$$f(a) = -\frac{r^3}{8} \le f(0) = 0 \le f(b) = \frac{r^3}{8}.$$

Thus, x = 0 is a saddle point.

4.1 First-Order Optimality Conditions

Our first result states that the first derivative must vanish whenever we have an unconstrained optimization problem.

Theorem 4.1.1 (First-Order Necessary Condition). If x^* is a local minimum of the function f on \mathbb{R}^n , then

$$\nabla f(x^{\star}) = 0_{\mathbb{R}^n}.$$

Proof. Let x^* be a local minimum of f on \mathbb{R}^n . By definition of a local minimum, there exists an open ball such that

$$f(x^*) \le f(x), \quad \forall x \in B(x^*, r).$$

For any vector $d \in \mathbb{R}^n$ and for a scalar $t \geq 0$ sufficiently small, the point

$$x = x^* + td$$

belongs to $B(x^*, r)$, and therefore

$$f(x^*) \le f(x^* + td).$$

This implies that

$$\lim_{t \to 0^+} \frac{f(x^* + td) - f(x^*)}{t} = \nabla f(x^*)^T d \ge 0.$$

This result holds for any $d \in \mathbb{R}^n$, hence it also holds for -d, i.e.

$$\nabla f(x^\star)^T d \le 0.$$

Thus,

$$\nabla f(x^*)^T d = 0, \quad \forall d \in \mathbb{R}^n,$$

which implies

$$\nabla f(x^{\star}) = 0.$$

Example 4.1.2. Let

$$f(x) = x_1^2 + \frac{1}{2}x_2^2 + 3x_2 + 92, \quad \Omega = \mathbb{R}^2.$$

We have

$$\nabla f(x) = \begin{pmatrix} 2x_1 \\ x_2 + 3 \end{pmatrix}.$$

1. For
$$x^* = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, we get

$$\nabla f(x^*) = \begin{pmatrix} 2 \\ 6 \end{pmatrix} \neq 0_{\mathbb{R}^2}.$$

Therefore, x^* does not satisfy the first-order necessary condition.

2. For
$$x^* = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$
, we obtain

$$\nabla f(x^{\star}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Hence, x^* satisfies the first-order necessary condition.

Remark 4.1.3. When the function f is not convex, we can only provide a necessary condition for local optimality, but not a sufficient one. Indeed, it is possible that the differential vanishes at some point x^* , while this point is not a local minimum.

Example 4.1.4. For $f(x) = x^3$, the derivative vanishes at $x^* = 0$, but this point is a saddle point (hence neither a minimum nor a maximum).

The above condition involves the gradient vector, and is therefore called a **first-order condition**.

4.2 Second-Order Optimality Conditions

If the objective function is neither convex nor concave, the first-order conditions do not allow us to distinguish between a minimum and a maximum. To obtain such a distinction, one must study the behavior of the second derivative at x^* . We then have the following optimality condition:

Theorem 4.2.1 (Second-Order Necessary Condition). If x^* is a local minimum (resp. local maximum) of the function f on \mathbb{R}^n , then

$$\nabla f(x^*) = 0$$
 and $d^T \nabla^2 f(x^*) d \ge 0, \ \forall d \in \mathbb{R}^n$

(resp.
$$d^T \nabla^2 f(x^*) d \leq 0, \ \forall d \in \mathbb{R}^n$$
).

Proof. Using the second-order Taylor expansion of f around the local minimum x^* , we obtain for all $d \in \mathbb{R}^n$ and for $t \geq 0$ sufficiently small:

$$f(x^*) \le f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{1}{2}t^2 d^T \nabla^2 f(x^*) d + t^2 ||d||^2 \varepsilon(td).$$

Since $\nabla f(x^*) = 0$, we have

$$f(x^{\star} + td) = f(x^{\star}) + \frac{1}{2}t^2d^T\nabla^2 f(x^{\star})d + t^2||d||^2\varepsilon(td).$$

Dividing by t^2 and taking the limit, we find

$$\lim_{t \to 0^+} \frac{f(x^* + td) - f(x^*)}{t^2} = \frac{1}{2} d^T \nabla^2 f(x^*) d \ge 0.$$

Example 4.2.2. Let $f(x) = x_1^2 - x_2^2$ with $\Omega = \mathbb{R}^2$. For $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ we have

$$\nabla f(x^*) = 0_{\mathbb{R}^2}, \quad \nabla^2 f(x^*) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

We observe that $\nabla^2 f(x^*)$ is not positive semidefinite. Thus x^* is neither a local minimum nor a local maximum.

Moreover, if the second-order condition is strictly satisfied, we obtain the following sufficient condition:

Theorem 4.2.3 (Second-Order Sufficient Condition). Let $x^* \in \mathbb{R}^n$. If x^* satisfies

$$\nabla f(x^*) = 0_{\mathbb{R}^n}$$
 and $d^T \nabla^2 f(x^*) d > 0$, $\forall d \neq 0 \in \mathbb{R}^n$,

then x^* is a strict local minimum of the function f on \mathbb{R}^n .

The proof of this theorem relies on the following lemma:

Lemma 4.2.4. Let f be a twice continuously differentiable function on \mathbb{R}^n , and let $x^* \in \mathbb{R}^n$ be such that $\nabla^2 f(x^*)$ is positive definite. Then there exists $\delta > 0$ such that

$$\nabla^2 f(x) \succ 0, \quad \forall x \in B(x^*, \delta).$$

Proof. From Lemma 4.1, there exists $\delta > 0$ such that $\nabla^2 f(x) \succeq 0$ for all $x \in B(x^*, \delta)$. Let $x \in B(x^*, \delta)$ with $x \neq x^*$. Define

$$\Phi(t) = f(x^* + t(x - x^*)), \quad t \in [0, 1].$$

It is clear that Φ is twice continuously differentiable on [0,1]. Moreover, we have

$$\Phi(0) = f(x^*), \tag{4.2}$$

and

$$\Phi(1) = f(x). \tag{4.3}$$

By Taylors theorem, there exists $\hat{t} \in [0, 1]$ such that

$$\Phi(t) = \Phi(0) + \Phi'(0)t + \frac{1}{2}\Phi''(\hat{t})t^2, \tag{4.4}$$

with

$$\Phi'(0) = \nabla f(x^*)^T (x - x^*) = 0,$$

and

$$\Phi''(\hat{t}) = (x - x^*)^T \nabla^2 f(x^* + \hat{t}(x - x^*))(x - x^*) \ge 0.$$

For t = 1, we obtain

$$\Phi(1) - \Phi(0) = f(x) - f(x^*) = \frac{1}{2}\Phi''(\hat{t}) \ge 0.$$

Thus, x^* is a strict local minimum.

Example 4.2.5. Let $f(x) = x_1^2 + x_2^2$ with $\Omega = \mathbb{R}^2$. For $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we have

$$\nabla f(x^*) = 0_{\mathbb{R}^2}, \quad \nabla^2 f(x^*) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \succeq 0.$$

Thus, x^* is a strict local minimum of f on \mathbb{R}^2 .

Example 4.2.6. Consider the function f from Example 4.2. Its Hessian is

$$\nabla^2 f(x,y) = \begin{pmatrix} 12x + 10 & 2y \\ 2y & 2x + 2 \end{pmatrix}.$$

At (0,0), we have

$$\nabla^2 f(0,0) = \begin{pmatrix} 10 & 0 \\ 0 & 2 \end{pmatrix} \succeq 0,$$

so (0,0) is a strict local minimum.

At $\left(-\frac{5}{3},0\right)$, we have

$$\nabla^2 f\left(-\frac{5}{3}, 0\right) = \begin{pmatrix} -10 & 0\\ 0 & -\frac{4}{3} \end{pmatrix} \le 0,$$

hence this point is not a local minimum. Thus, the point

$$\left(-\frac{5}{3},0\right)$$

is a strict local maximum.

For the point (-1, 2), we have

$$\nabla^2 f(-1,2) = \begin{bmatrix} -2 & 4\\ 4 & 0 \end{bmatrix}.$$

The sign of the Hessian matrix $\nabla^2 f(-1,2)$ is indefinite, therefore (-1,2) is a saddle point.

$$\nabla^2 f(-1, -2) = \begin{bmatrix} -2 & -4 \\ -4 & 0 \end{bmatrix}.$$

The sign of the Hessian matrix $\nabla^2 f(-1, -2)$ is indefinite, therefore (-1, -2) is a saddle point.

Exercises

Exercise 4.1 We consider the optimization problem

$$\min_{(x_1, x_2) \in \mathbb{R}^2} f(x) = x_1^2 + x_2^2 - 2x_2 + 5.$$

Is the first-order necessary condition for a local minimum satisfied at the points

$$[1,1]^{\top}, \quad [-1,-1]^{\top}, \quad [0,1]^{\top}, \quad [0,-1]^{\top}?$$