
Chapter 4

Optimality Conditions

The objective of this chapter is to give the necessary or sufficient conditions for a point
x? to be a local minimum, for the following unconstrained optimization problem:

min
x∈Rn

f(x). (4.1)

Definition 4.0.1 (Critical Point). Let f ∈ C1. A critical point (or stationary point)
is a point that satisfies

∇f(x?) = 0Rn .

Example 4.0.2. Let the function f be defined on R2 by

f(x, y) = 2x3 + xy2 + 5x2 + y2.

The critical points of f are the solutions of the following equation:

∇f(x, y) = 0R2 ,

which implies (
6x2 + y2 + 10x

2xy + 2y

)
= 0R2 .

Thus,
S =

{
(0, 0),

(
−5

3
, 0
)
, (−1, 2), (−1,−2)

}
.

Definition 4.0.3 (Saddle Point). A critical point x? is a saddle point if for all r > 0,
there exist a, b ∈ B(x?, r) such that

f(a) ≤ f(x?) ≤ f(b).

Example 4.0.4. Consider the function f(x) = x3. We have

f ′(x) = 3x2,

so f ′(x) vanishes at x = 0. For any r > 0, take B(0, r) =] − r, r[. For a = − r
2

and
b = r

2
, we obtain

f(a) = −r
3

8
≤ f(0) = 0 ≤ f(b) =

r3

8
.

Thus, x = 0 is a saddle point.
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4.1 First-Order Optimality Conditions

Our first result states that the first derivative must vanish whenever we have an
unconstrained optimization problem.

Theorem 4.1.1 (First-Order Necessary Condition). If x? is a local minimum of the
function f on Rn, then

∇f(x?) = 0Rn .

Proof. Let x? be a local minimum of f on Rn. By definition of a local minimum,
there exists an open ball such that

f(x?) ≤ f(x), ∀x ∈ B(x?, r).

For any vector d ∈ Rn and for a scalar t ≥ 0 sufficiently small, the point

x = x? + td

belongs to B(x?, r), and therefore

f(x?) ≤ f(x? + td).

This implies that

lim
t→0+

f(x? + td)− f(x?)

t
= ∇f(x?)Td ≥ 0.

This result holds for any d ∈ Rn, hence it also holds for −d, i.e.

∇f(x?)Td ≤ 0.

Thus,
∇f(x?)Td = 0, ∀d ∈ Rn,

which implies
∇f(x?) = 0.

Example 4.1.2. Let

f(x) = x21 + 1
2
x22 + 3x2 + 92, Ω = R2.

We have

∇f(x) =

(
2x1
x2 + 3

)
.

1. For x? =

(
1
3

)
, we get

∇f(x?) =

(
2
6

)
6= 0R2 .

Therefore, x? does not satisfy the first-order necessary condition.

35



2. For x? =

(
0
−3

)
, we obtain

∇f(x?) =

(
0
0

)
.

Hence, x? satisfies the first-order necessary condition.

Remark 4.1.3. When the function f is not convex, we can only provide a necessary
condition for local optimality, but not a sufficient one. Indeed, it is possible that the
differential vanishes at some point x?, while this point is not a local minimum.

Example 4.1.4. For f(x) = x3, the derivative vanishes at x? = 0, but this point is a
saddle point (hence neither a minimum nor a maximum).

The above condition involves the gradient vector, and is therefore called a first-
order condition.

4.2 Second-Order Optimality Conditions

If the objective function is neither convex nor concave, the first-order conditions do
not allow us to distinguish between a minimum and a maximum. To obtain such a
distinction, one must study the behavior of the second derivative at x?. We then have
the following optimality condition:

Theorem 4.2.1 (Second-Order Necessary Condition). If x? is a local minimum (resp.
local maximum) of the function f on Rn, then

∇f(x?) = 0 and dT∇2f(x?)d ≥ 0, ∀d ∈ Rn

(resp. dT∇2f(x?)d ≤ 0, ∀d ∈ Rn).

Proof. Using the second-order Taylor expansion of f around the local minimum x?,
we obtain for all d ∈ Rn and for t ≥ 0 sufficiently small:

f(x?) ≤ f(x? + td) = f(x?) + t∇f(x?)Td+ 1
2
t2dT∇2f(x?)d+ t2‖d‖2ε(td).

Since ∇f(x?) = 0, we have

f(x? + td) = f(x?) + 1
2
t2dT∇2f(x?)d+ t2‖d‖2ε(td).

Dividing by t2 and taking the limit, we find

lim
t→0+

f(x? + td)− f(x?)

t2
= 1

2
dT∇2f(x?)d ≥ 0.
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Example 4.2.2. Let f(x) = x21 − x22 with Ω = R2. For x? =

(
0
0

)
we have

∇f(x?) = 0R2 , ∇2f(x?) =

(
2 0
0 −2

)
.

We observe that ∇2f(x?) is not positive semidefinite. Thus x? is neither a local
minimum nor a local maximum.

Moreover, if the second-order condition is strictly satisfied, we obtain the following
sufficient condition:

Theorem 4.2.3 (Second-Order Sufficient Condition). Let x? ∈ Rn. If x? satisfies

∇f(x?) = 0Rn and dT∇2f(x?)d > 0, ∀d 6= 0 ∈ Rn,

then x? is a strict local minimum of the function f on Rn.

The proof of this theorem relies on the following lemma:

Lemma 4.2.4. Let f be a twice continuously differentiable function on Rn, and let
x? ∈ Rn be such that ∇2f(x?) is positive definite. Then there exists δ > 0 such that

∇2f(x) � 0, ∀x ∈ B(x?, δ).

Proof. From Lemma 4.1, there exists δ > 0 such that ∇2f(x) � 0 for all x ∈ B(x?, δ).
Let x ∈ B(x?, δ) with x 6= x?. Define

Φ(t) = f
(
x? + t(x− x?)

)
, t ∈ [0, 1].

It is clear that Φ is twice continuously differentiable on [0, 1]. Moreover, we have

Φ(0) = f(x?), (4.2)

and
Φ(1) = f(x). (4.3)

By Taylors theorem, there exists t̂ ∈ [0, 1] such that

Φ(t) = Φ(0) + Φ′(0)t+ 1
2
Φ′′(t̂)t2, (4.4)

with
Φ′(0) = ∇f(x?)T (x− x?) = 0,

and
Φ′′(t̂) = (x− x?)T∇2f

(
x? + t̂(x− x?)

)
(x− x?) ≥ 0.

For t = 1, we obtain

Φ(1)− Φ(0) = f(x)− f(x?) = 1
2
Φ′′(t̂) ≥ 0.

Thus, x? is a strict local minimum.
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Example 4.2.5. Let f(x) = x21 + x22 with Ω = R2. For x? =

(
0
0

)
, we have

∇f(x?) = 0R2 , ∇2f(x?) =

(
2 0
0 2

)
� 0.

Thus, x? is a strict local minimum of f on R2.

Example 4.2.6. Consider the function f from Example 4.2. Its Hessian is

∇2f(x, y) =

(
12x+ 10 2y

2y 2x+ 2

)
.

At (0, 0), we have

∇2f(0, 0) =

(
10 0
0 2

)
� 0,

so (0, 0) is a strict local minimum.
At
(
−5

3
, 0
)
, we have

∇2f
(
−5

3
, 0
)

=

(
−10 0

0 −4
3

)
� 0,

hence this point is not a local minimum. Thus, the point(
−5

3
, 0
)

is a strict local maximum.
For the point (−1, 2), we have

∇2f(−1, 2) =

[
−2 4
4 0

]
.

The sign of the Hessian matrix ∇2f(−1, 2) is indefinite, therefore (−1, 2) is a
saddle point.

∇2f(−1,−2) =

[
−2 −4
−4 0

]
.

The sign of the Hessian matrix ∇2f(−1,−2) is indefinite, therefore (−1,−2) is a
saddle point.
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Exercises

Exercise 4.1 We consider the optimization problem

min
(x1,x2)∈R2

f(x) = x21 + x22 − 2x2 + 5.

Is the first-order necessary condition for a local minimum satisfied at the points

[1, 1]>, [−1,−1]>, [0, 1]>, [0,−1]> ?
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