# TP Session Report: Existence and Uniqueness of the Minimum of a Function (Without Constraints)

Mathematics Department

September 21, 2025

## Objective of the Session

The goal of this session is to study the existence and uniqueness of minima for real-valued functions without constraints. Students will use MATLAB to compute gradients, Hessians, and visualize functions in order to confirm theoretical results.

## Theoretical Background

A function  $f: \mathbb{R}^n \to \mathbb{R}$  has a local minimum at  $x^*$  if:

$$\nabla f(x^*) = 0$$
, and  $H_f(x^*) \succeq 0$ ,

where  $\nabla f$  is the gradient and  $H_f$  is the Hessian.

- If the Hessian is **positive definite**, the critical point is a strict local minimum.
- If f is convex, the local minimum is also a global minimum.
- If f is strictly convex, the minimum is unique.

#### MATLAB Commands

```
Gradient and Hessian

syms x y

f = x^2 + y^2 + 2*x + 3*y;

gradf = gradient(f, [x y]) % Gradient

Hf = hessian(f, [x y]) % Hessian
```

```
Visualization

f = @(x,y) x.^2 + y.^2 + 2*x + 3*y;

fsurf(f, [-5 5 -5 5]) % 3D plot

contourf(-5:0.1:5, -5:0.1:5, ...

(meshgrid(-5:0.1:5))) % for level sets
```

### **Exercises**

- 1. Compute the gradient and Hessian of  $f(x,y) = x^2 + y^2 + 4x + 2y$ . Verify that the function has a unique global minimum.
- 2. Use fminunc in MATLAB to find the minimum point of  $f(x,y) = (x-1)^2 + (y+2)^2$ . Compare with the exact analytical solution.
- 3. Plot the surface and contour of  $f(x,y) = x^2 + y^2 + 2x + 3y$ . Locate the minimum visually.

## Conclusion

This TP session shows how theoretical conditions (gradient, Hessian, convexity) guarantee the existence and uniqueness of minima. MATLAB confirms these results numerically and graphically, giving students a complete picture of unconstrained optimization.

## **Keywords**

Minimum, Gradient, Hessian, Convex function, Uniqueness, MATLAB, Unconstrained optimization.