Chapter 3

Existence and Uniqueness Results

In this chapter, we present assumptions under which the problem

inf f(z) (3.1)

zeR™

admits at least one solution, i.e.,

f(@%) = min f(z),

reR”

with f: R" — R.
We define the domain of f as

dom(f) ={z € R" | f(z) < +o0}.

We say that f is proper if it never takes the value —oo and dom(f) # @.

1. Extrema of a Function

A function f may have extremal values: minima (the smallest values) or maxima (the
largest values), either on its entire domain of definition or on a certain subset.

Definition 3.0.1 (Definition 3.1). Let A be a subset of R" and f a function from A to
R (see Figure 3.1).

1. We say that f has a global minimum at the point z* € A if

Vee A, f(z") < f(x). (3.2)

2. We say that f has a global maximum at the point x* € A if

Ve e A, f(z") > f(x). (3.3)

3. The minimum is called strict if
Vee A, x#z*, f(a¥) < f(x). (3.4)
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4. The maximum is called strict if

Vee A, x#z, f(a*) > f(x). (3.5)

5. We say that f has a local minimum at the point z* € A if there exists r > 0
such that
Ve e B(r,z" )N A, f(z*) < f(x). (3.6)

6. We say that f has a local maximum at the point z* € A if there exists r > 0
such that
Ve € B(r,x*)NA, f(z*) > f(x). (3.7)

7. We say that x* is a strict local minimum of f on A if there exists r > 0 such
that
Ve € B(r,xz*)NA, x#a*, f(z%) < f(z). (3.8)

8. We say that x* is a strict local maximum of f on A if there exists » > 0 such
that
Vo € B(ra")NA, x#a",  f(@") > f(a). (3.9)

Example 3.0.2 (3.1). The function f(z) = 2% admits a strict minimum at the point
z* =0 on R.

Example 3.0.3 (3.2). The function f(x) = cos(x) admits global minima at the points
x* = km for k € Z and k odd, and it admits global maxima at the points x* = kx for
k € Z and k even on R.

Example 3.0.4 (3.3). The floor function E(z) admits a non-strict local maximum at
the point z* =1 on R.

The following theorem shows that a local minimum of a convex function is also a
global minimum:

Theorem 3.0.5 (3.1). Let A be a convex subset of R and let f be a function defined
on A. Then, if f admits a local minimum at some point x* € A, this point is also a
global minimum of f on A.

Proof

We proceed by contradiction. Suppose that the function f admits a local minimum
at the point z* which satisfies relation (3.6) such that 2* is not a global minimum,
therefore

Jr e R": f(z) < f(z¥). (3.10)

It is clear that for any vector z of B(r,z*), and for a sufficiently small A €]0, 1], we
have

f(@) < fz" + Mz — 27)).
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Let y = 2* + A(z — x*), then y € B(r,z*). Since f is convex, we have

fl) = f(@" + Mo —2%)) < (1= N f(@") + Af(2).

From inequality (3.10), we obtain

fly) < (=N f(a") + Af(27) = f(7).

This contradicts the assumption that x* is a local minimum. O

Existence of an Extremum

In order to guarantee the existence and uniqueness of a global minimum, one must
make assumptions about the objective function and the constraint set C'. In fact,
the existence of extrema is not guaranteed for every function, but for a continuous
function on a compact set (closed and bounded), we have the following classical
theorem of Weierstrass:

Theorem 3.0.6 (Weierstrass Theorem [?, ?, ?]). Let C' be a compact subset of R" and
f:C —= R. If f is continuous on C, then f admits a global minimum and a global
mazimum on C, i.e.,

dx* e C: 1I€1£f(x) = min f(x) = f(z¥),

zeC
and
Jz € C :sup f(x) = max f(x) = f(2).
zeC xeC

Remark 3.0.7. On R, the compact sets are the closed intervals [a, b].

Example 3.0.8. Let f be a function defined on C' = {z € R?: ||z||* < 1} by f(x) =
x1 + x2. The set C' is compact, therefore by the Weierstrass theorem, the function f
is bounded (see Figure 3.2).

The search for an extremum is not limited to a closed and bounded set. In the case
where C' = R", one cannot apply the Weierstrass theorem. Another useful concept
for the existence of a global minimum is introduced in the following definition:

Definition 3.0.9. Let f : R™ — R. The function f is said to be coercive if

flw) = +oo.

llz]|—o0
i.e., the function f grows large when ||z is large.
Example 3.0.10. The function f(z) = 22 is coercive.

Example 3.0.11. Another example of a coercive function is the function f : R” — R
defined by

flzy,20) = x% + x%
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Example 3.0.12. Consider the function
f(z1,25) = 22 — 3.

The function f is not coercive, because if we consider the sequence z,, = (0,n) for
n € N, we have

lim ||z, || = +oo,
n—00
and
. R T o 2 _
2, F(n) = lig (=m) = —oo

Example 3.0.13. The function f(x) = 22 is not coercive (since f(r) — —oo as z —
—00).

Example 3.0.14. The function f(z) = exp(z) is not coercive (since f(z) — 0 as
T — —00).

In the case where C' = R", we have the following result:

Theorem 3.0.15. Let f : R® — R be a proper, continuous, and coercive function.
Then problem (3.1) admits at least one solution.

Proof. Let d = inf cgn f(x). Since f is proper, we have
d> —oc. (3.11)
From the definition of the infimum, we have
Ve >0, 3x(e): flz(e)) —e <d.

For ¢, = %, we find
Vn >0, 3z, ¢ flz,) — L <d,

which gives
d< flz,) <d+ L

The sequence (z,)nen is called a minimizing sequence and it satisfies
lim f(z,) =d.
n—oo
Now, we want to show that the sequence (x,),en is bounded. Indeed, we argue
by contradiction: suppose that (z,)nen is not bounded, then
lim [|z,| = +oo.
n—oo
The coercivity of f implies that
lim f(z,) = +oo,
n—oQ

which contradicts (3.11). Therefore, (x,,)nen is bounded. Thus, we can extract from
(n)nen a convergent subsequence (xnk)k such that

lim z,, ="

k—o00
Hence,
lim f(z,,) = f(a) = d.
Therefore, the problem admits a solution. O
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Example 3.0.16. The function f(z) = z? is coercive and continuous on R, therefore
it admits a minimum at the point x* = 0.

Example 3.0.17. The function f(z) = 2% is not coercive and it does not admit a
minimum on R.

Example 3.0.18. The function

X

o) = —exp (= ) coste)

is not coercive but it admits a minimum at the point * = 0. Therefore, coercivity is
a sufficient condition but not a necessary one in Theorem 3.3.

3.0.1 Uniqueness of an Extremum

An important concept for uniqueness is strict convexity.

Theorem 3.0.19. Let [ : R" — R. If f is strictly convez, then problem (3.1) admits
at most one solution.

Proof. We prove by contradiction. Suppose there exist two global solutions x1,
with zy # x5 (here f(z1) = f(x2)) for (3.1). Since f is strictly convex, for A = 1, we
obtain

FGor + 322) < 3f(x1) + 5 f(22) = f(x2),

which contradicts the fact that f(z9) is the smallest value. O

Example 3.0.20. Let f be a function defined from R? to R, with
r = (21, 2) > f(x) = 23 + 22
By computing its Hessian matrix, we find

Vs = g 5] =0

which shows that f is strictly convex. Thus, f is strictly convex. From the results
seen in the previous section, f is also proper and coercive, and therefore it admits a
unique global minimum at the point z* = (0, 0).

Definition 3.0.21. Let f : R® — R, with f € C'. We say that f is an elliptic function
with constant o > 0 if

Vz,y eR": (Vf(z) = V[(y), z—y) > alz -yl

Theorem 3.0.22. [f the objective function f of problem (3.1) is elliptic and coercive,
then f is strictly convex. In particular, problem (3.1) admits a unique optimal solu-
tion.
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3.1 Exercises

Exercise 3.1 Consider the following optimization problem:

min f(x). (3.12)

T€EA

Study existence and uniqueness of solutions of problem (3.12) under the following
cases:

1. f(x) =2* and

) A={zeR:|z| <1}
b) A={rx eR:|z| > 1}.

)

)

S

c) A={z eR:|z| =1}

d) A={x eR:|z| > 1}.
2. f(z) =21 — 29 and
A={z eR?: ||z[; < 1}.

a)
) A={z € R?: |jz]|s > 1}.
)
)

o

c) A={z eR?*: 22 <1—mxy}.

d) A={z eR?: ||z|, = 1}.
Exercise 3.2 (Rayleigh inequality) Denote by S,,(R) the set of real symmetric n x n
matrices.

1. Show that if H € S,(R) is positive definite then there exists a constant o > 0
such that
(x, Hz) > a|z|?, Vo € R".

2. Let H € S,(R) be positive definite. Deduce that the quadratic function
f(x) = 3(z, Hz) — (b,z) + ¢
Is coercive.
3. Deduce that the optimization problem min,cg» f(x) admits a unique solution.

Hint 3.1. For H € S,(R) recall that there exists an orthogonal matrix O whose
columns are eigenvectors of H such that

H=0"DoO,

where D is diagonal with the eigenvalues of H on the diagonal.

Exercise 3.3 Suppose x* is a local minimum of f on A, and let Ag C A with Ay # @.

1. Show that if 2* is an interior point of A (relative to R™), then z* is also a local
minimum of f on Aj.

2. Show that the same conclusion need not hold if z* is not an interior point of A.
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