
Chapter 3

Existence and Uniqueness Results

In this chapter, we present assumptions under which the problem

inf
x∈Rn

f(x) (3.1)

admits at least one solution, i.e.,

f(x∗) = min
x∈Rn

f(x),

with f : Rn → R.
We define the domain of f as

dom(f) = {x ∈ Rn | f(x) < +∞}.

We say that f is proper if it never takes the value −∞ and dom(f) 6= ∅.

1. Extrema of a Function

A function f may have extremal values: minima (the smallest values) or maxima (the
largest values), either on its entire domain of definition or on a certain subset.

Definition 3.0.1 (Definition 3.1). Let A be a subset of Rn and f a function from A to
R (see Figure 3.1).

1. We say that f has a global minimum at the point x∗ ∈ A if

∀x ∈ A, f(x∗) ≤ f(x). (3.2)

2. We say that f has a global maximum at the point x∗ ∈ A if

∀x ∈ A, f(x∗) ≥ f(x). (3.3)

3. The minimum is called strict if

∀x ∈ A, x 6= x∗, f(x∗) < f(x). (3.4)
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4. The maximum is called strict if

∀x ∈ A, x 6= x∗, f(x∗) > f(x). (3.5)

5. We say that f has a local minimum at the point x∗ ∈ A if there exists r > 0
such that

∀x ∈ B(r, x∗) ∩ A, f(x∗) ≤ f(x). (3.6)

6. We say that f has a local maximum at the point x∗ ∈ A if there exists r > 0
such that

∀x ∈ B(r, x∗) ∩ A, f(x∗) ≥ f(x). (3.7)

7. We say that x∗ is a strict local minimum of f on A if there exists r > 0 such
that

∀x ∈ B(r, x∗) ∩ A, x 6= x∗, f(x∗) < f(x). (3.8)

8. We say that x∗ is a strict local maximum of f on A if there exists r > 0 such
that

∀x ∈ B(r, x∗) ∩ A, x 6= x∗, f(x∗) > f(x). (3.9)

Example 3.0.2 (3.1). The function f(x) = x2 admits a strict minimum at the point
x∗ = 0 on R.

Example 3.0.3 (3.2). The function f(x) = cos(x) admits global minima at the points
x∗ = kπ for k ∈ Z and k odd, and it admits global maxima at the points x∗ = kπ for
k ∈ Z and k even on R.

Example 3.0.4 (3.3). The floor function E(x) admits a non-strict local maximum at
the point x∗ = 1 on R.

The following theorem shows that a local minimum of a convex function is also a
global minimum:

Theorem 3.0.5 (3.1). Let A be a convex subset of Rn and let f be a function defined
on A. Then, if f admits a local minimum at some point x∗ ∈ A, this point is also a
global minimum of f on A.

Proof

We proceed by contradiction. Suppose that the function f admits a local minimum
at the point x? which satisfies relation (3.6) such that x? is not a global minimum,
therefore

∃x ∈ Rn : f(x) ≤ f(x?). (3.10)

It is clear that for any vector x of B(r, x?), and for a sufficiently small λ ∈]0, 1[, we
have

f(x) ≤ f
(
x? + λ(x− x?)

)
.
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Let y = x? + λ(x− x?), then y ∈ B(r, x?). Since f is convex, we have

f(y) = f
(
x? + λ(x− x?)

)
≤ (1− λ)f(x?) + λf(x).

From inequality (3.10), we obtain

f(y) ≤ (1− λ)f(x?) + λf(x?) = f(x?).

This contradicts the assumption that x? is a local minimum.

Existence of an Extremum

In order to guarantee the existence and uniqueness of a global minimum, one must
make assumptions about the objective function and the constraint set C. In fact,
the existence of extrema is not guaranteed for every function, but for a continuous
function on a compact set (closed and bounded), we have the following classical
theorem of Weierstrass:

Theorem 3.0.6 (Weierstrass Theorem [?, ?, ?]). Let C be a compact subset of Rn and
f : C → R. If f is continuous on C, then f admits a global minimum and a global
maximum on C, i.e.,

∃x? ∈ C : inf
x∈C

f(x) = min
x∈C

f(x) = f(x?),

and
∃x̂ ∈ C : sup

x∈C
f(x) = max

x∈C
f(x) = f(x̂).

Remark 3.0.7. On R, the compact sets are the closed intervals [a, b].

Example 3.0.8. Let f be a function defined on C = {x ∈ R2 : ‖x‖2 ≤ 1} by f(x) =
x1 + x2. The set C is compact, therefore by the Weierstrass theorem, the function f
is bounded (see Figure 3.2).

The search for an extremum is not limited to a closed and bounded set. In the case
where C = Rn, one cannot apply the Weierstrass theorem. Another useful concept
for the existence of a global minimum is introduced in the following definition:

Definition 3.0.9. Let f : Rn → R. The function f is said to be coercive if

lim
‖x‖→∞

f(x) = +∞,

i.e., the function f grows large when ‖x‖ is large.

Example 3.0.10. The function f(x) = x2 is coercive.

Example 3.0.11. Another example of a coercive function is the function f : Rn → R
defined by

f(x1, x2) = x21 + x22.
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Example 3.0.12. Consider the function

f(x1, x2) = x21 − x22.

The function f is not coercive, because if we consider the sequence xn = (0, n) for
n ∈ N, we have

lim
n→∞

‖xn‖ = +∞,

and
lim
n→∞

f(xn) = lim
n→∞

(−n2) = −∞.

Example 3.0.13. The function f(x) = x3 is not coercive (since f(x) → −∞ as x →
−∞).

Example 3.0.14. The function f(x) = exp(x) is not coercive (since f(x) → 0 as
x→ −∞).

In the case where C = Rn, we have the following result:

Theorem 3.0.15. Let f : Rn → R be a proper, continuous, and coercive function.
Then problem (3.1) admits at least one solution.

Proof. Let d = infx∈Rn f(x). Since f is proper, we have

d > −∞. (3.11)

From the definition of the infimum, we have

∀ ε > 0, ∃x(ε) : f(x(ε))− ε ≤ d.

For εn = 1
n
, we find

∀n ≥ 0, ∃xn : f(xn)− 1
n
≤ d,

which gives
d ≤ f(xn) ≤ d+ 1

n
.

The sequence (xn)n∈N is called a minimizing sequence and it satisfies

lim
n→∞

f(xn) = d.

Now, we want to show that the sequence (xn)n∈N is bounded. Indeed, we argue
by contradiction: suppose that (xn)n∈N is not bounded, then

lim
n→∞

‖xn‖ = +∞.

The coercivity of f implies that

lim
n→∞

f(xn) = +∞,

which contradicts (3.11). Therefore, (xn)n∈N is bounded. Thus, we can extract from
(xn)n∈N a convergent subsequence

(
xnk

)
k

such that

lim
k→∞

xnk
= x∗.

Hence,
lim
k→∞

f(xnk
) = f(x∗) = d.

Therefore, the problem admits a solution.

31



Example 3.0.16. The function f(x) = x2 is coercive and continuous on R, therefore
it admits a minimum at the point x∗ = 0.

Example 3.0.17. The function f(x) = x3 is not coercive and it does not admit a
minimum on R.

Example 3.0.18. The function

f(x) = − exp

(
−x

2

4

)
cos(x)

is not coercive but it admits a minimum at the point x∗ = 0. Therefore, coercivity is
a sufficient condition but not a necessary one in Theorem 3.3.

3.0.1 Uniqueness of an Extremum

An important concept for uniqueness is strict convexity.

Theorem 3.0.19. Let f : Rn → R. If f is strictly convex, then problem (3.1) admits
at most one solution.

Proof. We prove by contradiction. Suppose there exist two global solutions x1, x2
with x1 6= x2 (here f(x1) = f(x2)) for (3.1). Since f is strictly convex, for λ = 1

2
, we

obtain
f
(
1
2
x1 + 1

2
x2
)
< 1

2
f(x1) + 1

2
f(x2) = f(x2),

which contradicts the fact that f(x2) is the smallest value.

Example 3.0.20. Let f be a function defined from R2 to R, with

x = (x1, x2) 7→ f(x) = x21 + x22.

By computing its Hessian matrix, we find

∇2f(x) =

[
2 0
0 2

]
� 0,

which shows that f is strictly convex. Thus, f is strictly convex. From the results
seen in the previous section, f is also proper and coercive, and therefore it admits a
unique global minimum at the point x? = (0, 0).

Definition 3.0.21. Let f : Rn → R, with f ∈ C1. We say that f is an elliptic function
with constant α ≥ 0 if

∀x, y ∈ Rn : 〈∇f(x)−∇f(y), x− y〉 ≥ α ‖x− y‖2.

Theorem 3.0.22. If the objective function f of problem (3.1) is elliptic and coercive,
then f is strictly convex. In particular, problem (3.1) admits a unique optimal solu-
tion.
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3.1 Exercises

Exercise 3.1 Consider the following optimization problem:

min
x∈A

f(x). (3.12)

Study existence and uniqueness of solutions of problem (3.12) under the following
cases:

1. f(x) = x2 and

a) A = {x ∈ R : |x| ≤ 1}.
b) A = {x ∈ R : |x| ≥ 1}.
c) A = {x ∈ R : |x| = 1}.
d) A = {x ∈ R : |x| > 1}.

2. f(x) = x1 − x2 and

a) A = {x ∈ R2 : ‖x‖2 ≤ 1}.
b) A = {x ∈ R2 : ‖x‖2 ≥ 1}.
c) A = {x ∈ R2 : x21 ≤ 1− x2}.
d) A = {x ∈ R2 : ‖x‖2 = 1}.

Exercise 3.2 (Rayleigh inequality) Denote by Sn(R) the set of real symmetric n×n
matrices.

1. Show that if H ∈ Sn(R) is positive definite then there exists a constant α > 0
such that

〈x,Hx〉 ≥ α‖x‖2, ∀x ∈ Rn.

2. Let H ∈ Sn(R) be positive definite. Deduce that the quadratic function

f(x) = 1
2
〈x,Hx〉 − 〈b, x〉+ c

is coercive.

3. Deduce that the optimization problem minx∈Rn f(x) admits a unique solution.

Hint 3.1. For H ∈ Sn(R) recall that there exists an orthogonal matrix O whose
columns are eigenvectors of H such that

H = O>DO,

where D is diagonal with the eigenvalues of H on the diagonal.

Exercise 3.3 Suppose x? is a local minimum of f on A, and let A0 ⊂ A with A0 6= ∅.

1. Show that if x? is an interior point of A (relative to Rn), then x? is also a local
minimum of f on A0.

2. Show that the same conclusion need not hold if x? is not an interior point of A.
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