Chapter 2

Convex Analysis

This chapter presents the elements of convex analysis that will be useful for studying optimization problems and the algorithms that solve them.

2.1 Convex Sets

Definition 2.1.1 (Segment). Let $x, y \in \mathbb{R}^n$. The segment in \mathbb{R}^n is the set denoted and defined by

$$[x, y] = \{(1 - \lambda)x + \lambda y : \lambda \in [0, 1]\}.$$

Definition 2.1.2 (Convex Set). Let $C \subset \mathbb{R}^n$. The set C is said to be convex if

$$\forall \lambda \in [0, 1], \ \forall x, y \in C: \ (1 - \lambda)x + \lambda y \in C, \tag{2.1}$$

or equivalently,

$$\forall \alpha, \beta \in \mathbb{R}^+, \ \alpha + \beta = 1, \ \forall x, y \in C: \ \alpha x + \beta y \in C,$$

or also,

$$\forall x, y \in C, \quad [x, y] \subset C.$$

Example 2.1.3. \emptyset and \mathbb{R}^n are two convex sets.

Example 2.1.4. A vector subspace is obviously convex, as well as an affine subspace which is nothing but the translation of a vector subspace.

Example 2.1.5. Let the set

$$S = \{x \in \mathbb{R}^3 : x_1 + 2x_2 - x_3 = 4\},\$$

which can also be written as

$$S = \{x \in \mathbb{R}^3 : x^{\mathsf{T}}p = 4\},$$

with $p = (1, 2, -1)^{\mathsf{T}}$. The set S is called a hyperplane, and the vector p is called the normal vector.

Is S convex? Let $\lambda \in [0,1]$ and $x,y \in S$. We show that $(1-\lambda)x + \lambda y \in S$, i.e.

$$p^{\top} ((1 - \lambda)x + \lambda y) \stackrel{?}{=} 4.$$

We have

$$\langle p, (1-\lambda)x + \lambda y \rangle = (1-\lambda)\langle p, x \rangle + \lambda \langle p, y \rangle = (1-\lambda)4 + \lambda 4 = 4.$$

Thus, $(1 - \lambda)x + \lambda y \in S$. The convexity of S follows.

In general, a hyperplane $H \subset \mathbb{R}^n$ is defined from a normal vector p and a constant α , that is

$$H = \{ x \in \mathbb{R}^n : x^\top p = \alpha \}.$$

Example 2.1.6. The set

$$H^- = \{ x \in \mathbb{R}^n : x^\top p \le \alpha \}$$

is called the negative half-space. Equivalently, one defines the positive half-space

$$H^+ = \{ x \in \mathbb{R}^n : x^\top p \ge \alpha \}$$

associated with the hyperplane H. The reader can check that H^+ and H^- are also convex sets.

Proposition 2.1.7. • If C is a convex set and $\beta \in \mathbb{R}$, then

$$\beta C = \{y : y = \beta x, \ x \in C\}$$

is also convex.

• If C_1 and C_2 are two convex sets, then

$$C_1 + C_2 = \{x + y : x \in C_1, y \in C_2\}$$

is convex.

• Let $\{C_i\}_{i\in I}$ be a family of convex sets (where I is any index set, finite or infinite). Then

$$\bigcap_{i \in I} C_i$$

is convex.

2.2 Convex Functions

Definition 2.2.1. Let $C \subset \mathbb{R}^n$ be a convex set and let $f: C \to \mathbb{R}$.

• f is said to be **convex** if

$$\forall \lambda \in [0, 1], \ \forall x, y \in C: \ f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y), \tag{2.2}$$

or equivalently,

$$\forall \lambda \in [0,1], \ \forall x, y \in C: \ f(x + \lambda(y - x)) \le f(x) + \lambda(f(y) - f(x)),$$

or also,

$$\forall p, q \ge 0, \ p+q = 1, \quad f(px+qy) \le pf(x) + qf(y).$$

• f is said to be **strictly convex** if

$$\forall \lambda \in (0,1), \ \forall x,y \in C, \ x \neq y: \ f((1-\lambda)x + \lambda y) < (1-\lambda)f(x) + \lambda f(y).$$

Example 2.2.2. Let $L: \mathbb{R}^n \to \mathbb{R}$ be a linear mapping and let $\alpha \in \mathbb{R}$. Define an affine function h by

$$h(x) = L(x) + \alpha$$
.

For $\lambda \in [0,1]$ and $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$, we have

$$h((1-\lambda)x)$$

Remark 2.2.3. Any affine mapping is both convex and concave. The following notion of set clearly shows the link between a function and a convex set.

Definition 2.2.4 (Epigraph and Hypograph). The **epigraph** of f is the subset of $C \times \mathbb{R}$ that lies above its graph. It is denoted by epi f and defined as

$$epi f = \{(x, \alpha) : f(x) \le \alpha\}.$$

The **hypograph** of f is the subset of $C \times \mathbb{R}$ that lies below its graph. It is denoted by hyp f and defined as

$$\mathrm{hyp}\, f = \{(x,\alpha) : f(x) \ge \alpha\}.$$

Proposition 2.2.5. Let $f: C \subseteq \mathbb{R}^n \to \mathbb{R}$, with C convex. Then f is convex (resp. concave) if and only if its epigraph (resp. hypograph) is convex.

Proof. Suppose that f is convex and let us show that epi f is convex, i.e.,

$$(1 - \lambda)(x_1, \alpha_1) + \lambda(x_2, \alpha_2) \in \operatorname{epi} f,$$

which is equivalent to

$$((1-\lambda)x_1 + \lambda x_2, (1-\lambda)\alpha_1 + \lambda \alpha_2) \in \operatorname{epi} f \quad \Leftrightarrow \quad f((1-\lambda)x_1 + \lambda x_2) \leq (1-\lambda)\alpha_1 + \lambda \alpha_2.$$

Let $(x_1, \alpha_1), (x_2, \alpha_2) \in \text{epi } f$. Since f is convex, we have

$$f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)f(x_1) + \lambda f(x_2) \le (1-\lambda)\alpha_1 + \lambda \alpha_2,$$

where the last inequality holds because $(x_1, \alpha_1), (x_2, \alpha_2) \in \text{epi } f$. Thus epi f is convex. Conversely, suppose that epi f is convex and let us show the convexity of f. Let $x_1, x_2 \in C$ and $\lambda \in [0, 1]$. Then

$$(x_1, f(x_1)) \in \text{epi } f, \quad (x_2, f(x_2)) \in \text{epi } f.$$

By convexity of the epigraph, we deduce that

$$(1 - \lambda)(x_1, f(x_1)) + \lambda(x_2, f(x_2)) \in \text{epi } f.$$

This means

$$((1-\lambda)x_1 + \lambda x_2, (1-\lambda)f(x_1) + \lambda f(x_2)) \in \operatorname{epi} f,$$

hence

$$f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)f(x_1) + \lambda f(x_2).$$

Therefore, f is convex.

Example 2.2.6. The following functions are convex or concave according to the convexity of their epigraph or hypograph:

- $x \mapsto x^2$ is convex,
- $x \mapsto \sqrt{x}$ is concave,
- $x \mapsto \exp(x)$ is convex,
- $(x_1, x_2) \mapsto \frac{1}{2}(x_1^2 + x_2^2)$ is convex.

2.3 Properties of Convex Functions

Proposition 2.3.1. Let $f, g : C \subset \mathbb{R}^n \to \mathbb{R}$, with C convex, and f and g two convex functions.

- 1. f + g is convex.
- 2. If $\alpha > 0$, then αf is convex.
- 3. The function $h(x) = \max\{f(x), g(x)\}\$ is convex.

Convex functions can only have points of discontinuity at the boundary of their domains, as shown in the following theorem.

Theorem 2.3.2 ([?, Theorem 2.1]). Let C be a convex set in \mathbb{R}^n with nonempty interior, and let $f: C \to \mathbb{R}$ be a convex function. Then f is continuous on int(C).

Theorem 2.3.3 (Characterization of convexity via the gradient). Let $C \subset \mathbb{R}^n$ be a convex open set and $f: C \to \mathbb{R}$ a differentiable function. Then f is convex on C if and only if

$$\forall x, y \in C: \quad f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$
 (2.3)

Proof. Suppose f is convex, i.e.

$$\forall x, y \in C, \ \lambda \in [0, 1]: \quad f(x + \lambda(y - x)) < f(x) + \lambda(f(y) - f(x)).$$

Subtracting f(x) from both sides and dividing by λ , we obtain

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \le f(y)-f(x).$$

Taking the limit as $\lambda \to 0$ and applying Lemma 1.1, we get

$$\langle \nabla f(x), y - x \rangle \le f(y) - f(x),$$

which yields (??).

Conversely, let $x, y \in C$ and $\lambda \in [0, 1]$. Setting $x_{\lambda} = x + \lambda(y - x)$, one finds

$$x_{\lambda} - x = \lambda(y - x), \quad x_{\lambda} - y = (1 - \lambda)(x - y).$$

Applying (??) to f at the points (x, x_{λ}) and (y, x_{λ}) , we obtain

$$f(x) \ge f(x_{\lambda}) - \lambda \langle \nabla f(x_{\lambda}), y - x \rangle,$$

$$f(y) \ge f(x_{\lambda}) + (1 - \lambda) \langle \nabla f(x_{\lambda}), y - x \rangle.$$

Multiplying the first inequality by $(1 - \lambda)$ and the second by λ , then summing, yields exactly the convexity condition for f.

Theorem 2.3.4 (Characterization of convexity via the Hessian). Let $C \subset \mathbb{R}^n$ be a convex open set and $f: C \to \mathbb{R}$ a C^2 function. Then:

- f is convex on C if and only if for all $x \in C$, the Hessian matrix $\nabla^2 f(x)$ is positive semidefinite,
- f is strictly convex on C if and only if $\nabla^2 f(x)$ is positive definite for all $x \in C$.

That is,

$$\forall y \in \mathbb{R}^n : \quad \langle y, \nabla^2 f(x) y \rangle \ge 0. \tag{2.4}$$

Proof. Suppose f is convex and let $x \in C$. We want to show (??). Since C is open, for any $y \in \mathbb{R}^n$, there exists λ small enough with $\lambda \neq 0$ such that $x + \lambda y \in C$. From the previous theorem and the second-order differentiability of f, we have

$$f(x + \lambda y) \ge f(x) + \lambda \langle \nabla f(x), y \rangle,$$
 (2.5)

and the Taylor expansion gives

$$f(x + \lambda y) = f(x) + \lambda \langle \nabla f(x), y \rangle + \frac{1}{2} \lambda^2 \langle \nabla^2 f(x)y, y \rangle + o(\lambda^2).$$
 (2.6)

Substituting (??) into (??), we obtain

$$\frac{1}{2}\lambda^2\langle \nabla^2 f(x)y, y \rangle + o(\lambda^2) \ge 0.$$

Dividing by λ^2 and letting $\lambda \to 0$ gives (??).

Conversely, assume the Hessian is positive semidefinite at every point in C. For $x, y \in C$, Taylor's theorem with remainder gives

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(\xi)(y - x), (y - x) \rangle,$$

for some $\xi = \lambda x + (1 - \lambda)y \in C$ with $\lambda \in (0, 1)$. Since $\nabla^2 f(\xi)$ is positive semidefinite, the last term is nonnegative, and thus

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Therefore, f is convex.

2.4 Exercises

Exercise 2.1 A hyperplane $H \subset \mathbb{R}^n$ is the set of points satisfying the equation $\langle a, x \rangle = \alpha$, i.e.

$$H = \{ x \in \mathbb{R}^n : \langle a, x \rangle = \alpha \}.$$

- 1. Prove that H is closed.
- 2. Prove that H is convex.

Exercise 2.2 Plot the following sets in an orthonormal plane and indicate which of them are convex:

- 1. $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$.
- 2. $\{(x,y) \in \mathbb{R}^2 : (x-1)^2 + (y-3)^2 \le 3\}.$
- 3. $\{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 > 5\}.$
- 4. $\{(x,y) \in \mathbb{R}^2 : 0 \le x^2 + y^2 \le 11\}.$
- 5. $\{(x,y) \in \mathbb{R}^2 : 2 \le x^2 + y^2 \le 4\}.$
- 6. $\{(x,y) \in \mathbb{R}^2 : y > x^2\}.$
- 7. $\{(x,y) \in \mathbb{R}^2 : |y| \le |x| \le 1\}.$
- 8. $\{(x,y) \in \mathbb{R}^2 : y > \frac{1}{1-x^2}\}.$

Exercise 2.3 Let the sets

$$S_1 = \{x = (x_1, x_2) : 2 \le x_1 \le 5, \ x_2 = 4\},$$

$$S_2 = \{x = (x_1, x_2, x_3) : x_1 - x_2 \le 5, \ -x_1 - x_2 - x_3 \le 7, \ x_1, x_2, x_3 \ge 0\},$$

$$S_3 = \{x = (x_1, x_2, x_3) : x_1^2 - x_2^2 - x_3^2 \le 9, \ x_1 - x_3 = 2\}.$$

- 1. Are these sets convex?
- 2. Find the interior and the closure of each set. Are those (interior/closure) sets convex?

Exercise 2.4 Show that C is convex if and only if

$$C = \Big\{ \sum_{i=1}^{k} \lambda_i x_i : k \in \mathbb{N}, \ x_i \in C, \ \lambda_i \in [0,1], \ i = 1, \dots, k, \ \sum_{i=1}^{k} \lambda_i = 1 \Big\}.$$

24

Hint: Prove the result by induction on k.

Exercise 2.5 Let $(f_i)_{i \in I}$ be a family of convex functions with index set I (arbitrary). Define

$$f = \sup_{i \in I} f_i.$$

- 1. Show that epi $f = \bigcap_{i \in I} \operatorname{epi} f_i$.
- 2. Deduce that f is convex.

Exercise 2.6 Let $C \subset \mathbb{R}^n$ be a convex set and $f: C \to \mathbb{R}$ a convex function. If $x_1, x_2, \ldots, x_k \in C$ and $\lambda_i \in [0, 1]$ satisfy $\sum_{i=1}^k \lambda_i = 1$, prove that

$$f\left(\sum_{i=1}^{k} \lambda_i x_i\right) \le \sum_{i=1}^{k} \lambda_i f(x_i).$$