Chapter 2

Convex Analysis

This chapter presents the elements of convex analysis that will be useful for studying
optimization problems and the algorithms that solve them.

2.1 Convex Sets

Definition 2.1.1 (Segment). Let x,y € R™. The segment in R™ is the set denoted and
defined by
] = {(1— Na+ My s A e [0, 1]},

Definition 2.1.2 (Convex Set). Let C' C R™. The set C is said to be convex if
VA e[0,1], Ve,ye C: (1=Nx+ X yeC, (2.1)
or equivalently,
Va,BER", a+p =1, Vo,yc C: ax+ By € C,

or also,

Ve,y € C, [x,y] C C.
Example 2.1.3. ) and R" are two convex sets.

Example 2.1.4. A vector subspace is obviously convex, as well as an affine subspace
which is nothing but the translation of a vector subspace.

Example 2.1.5. Let the set
S={reR®: x4+ 22y — x5 = 4},
which can also be written as
S={zcR®: z"p=4},

with p = (1,2, —1)". The set S is called a hyperplane, and the vector p is called the
normal vector.
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Is S convex? Let A € [0,1] and z,y € S. We show that (1 — Nz + Ay € S, i.e.
p (1= Nz + Ay) Z 4,
We have
P, =Nz +Ay) =1 =N(p,z) + \(p,y) = (1 = N4+ =4.
Thus, (1 — X))z + Ay € S. The convexity of S follows.

In general, a hyperplane H C R" is defined from a normal vector p and a constant
a, that is
H={zcR":2"p=a}

Example 2.1.6. The set
H ={recR":2"p<a}

is called the negative half-space. Equivalently, one defines the positive half-space
HY"={zcR":2"p>a}

associated with the hyperplane H. The reader can check that H+ and H~ are also
convex sets.

Proposition 2.1.7. e If C is a convex set and € R, then
BC ={y:y=pr, z€C}
is also convex.
e If C; and (5 are two convex sets, then
Ci+Co={z+y:zeC, ye(Cy}
is convex.

e Let {C;}icr be a family of convex sets (where I is any index set, finite or infinite).

Then
ne
i€l

1S convex.

2.2 Convex Functions

Definition 2.2.1. Let C' C R" be a convex set and let f: C' — R.
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e f is said to be convex if
YA€ [0,1], Va,y e C: f((1 =Nz +Ay) < (1= N)f(z)+Af(y), (2.2)
or equivalently,

VA E[0,1], Yo,y € C: flo+ Ay — ) < f(z) + A(fy) — f(2)),

or also,
Vp,g>0, p+q=1, flpz+qy) <pflx)+af(y).

e f is said to be strictly convex if
YA€ (0,1), Va,y € C, z#£y: f(1=Nz+Ay) < (1= f(z)+ Af(y).

Example 2.2.2. Let L : R” — R be a linear mapping and let o € R. Define an affine
function h by
h(z) = L(z) + a.

For A € [0,1] and (z,y) € R™ x R™, we have
h((1— Nz

Remark 2.2.3. Any affine mapping is both convex and concave. The following notion
of set clearly shows the link between a function and a convex set.

Definition 2.2.4 (Epigraph and Hypograph). The epigraph of f is the subset of C'x R
that lies above its graph. It is denoted by epi f and defined as

epi f = {(z, ) : f(x) < a}.

The hypograph of f is the subset of C' x R that lies below its graph. It is denoted
by hyp f and defined as

hyp f = {(z,a) : f(z) > a}.

Proposition 2.2.5. Let f : C C R" — R, with C' convex. Then f is convex (resp.
concave) if and only if its epigraph (resp. hypograph) is convex.

Proof. Suppose that f is convex and let us show that epi f is convex, i.e.,
(1= X)(z1,0q) + A(z2,0) € epi f,
which is equivalent to
(A=N)z1+ Az, (1=Nar+Aaz) €epif < f((1=Nz1+Az2) < (1—A)oy + A,
Let (z1,01), (2, 2) € epi f. Since f is convex, we have
FU(1=XN)ay 4+ Azg) < (1= XN f(x1) + Af(xe) < (1 = Nag + Aag,
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where the last inequality holds because (x1, 1), (2, a2) € epi f. Thus epi f is convex.
Conversely, suppose that epi f is convex and let us show the convexity of f. Let
x1,x9 € C' and X € [0, 1]. Then

(1, f(21)) €epl f, (x2, f(x2)) € epif.
By convexity of the epigraph, we deduce that
(1= A) (21, f(21)) + A2, f(22)) € epi f.
This means
(1= N)z1 + Aza, (1 = A) f(21) + Af(22)) € epi f,

hence
U= XNz 4+ Axg) < (1= N)f(z1) + Af(x2).

Therefore, f is convex. O

Example 2.2.6. The following functions are convex or concave according to the con-
vexity of their epigraph or hypograph:

e 1 — 22 is convex,
e 1 — /x is concave,
e 1 — exp(x) is convex,

o (z1,22) — 3 (2} + 23) is convex.

2.3 Properties of Convex Functions

Proposition 2.3.1. Let f,g: C' C R*" — R, with C' convex, and f and g two convex
functions.

1. f+ g is convex.
2. If a >0, then af is convex.
3. The function h(x) = max{f(z),g(x)} is convex.

Convex functions can only have points of discontinuity at the boundary of their
domains, as shown in the following theorem.

Theorem 2.3.2 ([?, Theorem 2.1]). Let C be a convex set in R™ with nonempty interior,
and let f: C' — R be a convex function. Then f is continuous on int(C).

Theorem 2.3.3 (Characterization of convexity via the gradient). Let C' C R"™ be a
convex open set and f : C — R a differentiable function. Then f is convex on C if
and only if

Ve,ye O fly) =2 f(z) +(Vf(z),y — ). (2.3)
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Proof. Suppose f is convex, i.e.

Ve,ye C, A€ [0,1]: fla+ Ay — ) < fz) + AM(f(y) — f(2)).
Subtracting f(z) from both sides and dividing by A, we obtain

fla+ Ay —=)) — f(x)
A

< fly) — f(x).
Taking the limit as A — 0 and applying Lemma 1.1, we get

(Vf(z),y—x) < fly) — f(z),

which yields (?7?).
Conversely, let x,y € C' and A € [0, 1]. Setting ) = x + A(y — x), one finds

m—r=Ay—2), m-y=1-N-y)

Applying (?7?) to f at the points (x,z)) and (y, z)), we obtain
f(@) = f(zx) = MV f(22),y — 2),

f(y) = f(xn) + (L= AV f(zr),y — ).

Multiplying the first inequality by (1 — A) and the second by A, then summing, yields
exactly the convexity condition for f. n

Theorem 2.3.4 (Characterization of convexity via the Hessian). Let C' C R" be a
convex open set and f: C — R a C? function. Then:

o [ is conver on C if and only if for all x € C, the Hessian matriz V2 f(z) is
positive semidefinite,

o [ is strictly convex on C if and only if V2 f(x) is positive definite for all z € C.

That 1s,
Yy eR":  (y, V*f(z)y) > 0. (2.4)

Proof. Suppose f is convex and let x € C. We want to show (??). Since C' is open,
for any y € R", there exists A small enough with A # 0 such that z + Ay € C. From
the previous theorem and the second-order differentiability of f, we have

fla+xy) = f(@) + MV f(z),9), (2.5)
and the Taylor expansion gives
fla+Xy) = f(2) + MV f(2),y) + 33 (V[ (2)y, y) + o(X?). (2.6)
Substituting (??) into (??), we obtain
N (V2 f(@)y.y) +o(X*) > 0.

22



Dividing by A\? and letting A — 0 gives (7).
Conversely, assume the Hessian is positive semidefinite at every point in C. For
x,y € C, Taylor’s theorem with remainder gives

fy) = flx) +(Vf(x),y —x) + 5(V* [y —z), (y — x)),

for some £ = Az + (1 —\)y € C with A € (0,1). Since V2 () is positive semidefinite,
the last term is nonnegative, and thus

fly) = f(z) +(Vf(z),y — ).

Therefore, f is convex. O
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2.4 Exercises

Exercise 2.1 A hyperplane H C R”™ is the set of points satisfying the equation
(a,r) =, i.e.
H={xeR": (a,z) = a}.

1. Prove that H is closed.

2. Prove that H is convex.

Exercise 2.2 Plot the following sets in an orthonormal plane and indicate which of
them are convex:

L {(z,y) e R?: 2* + ¢y* < 1}.
r,y) €ER*: (z —1)* + (y — 3)® < 3}

eR?: (z—1)*+y*> 5}

(z,y)

(z,y)

(z,y)

4. {(z,y) e R?: 0 < 22 +9? < 11}
(z,y) e R2:2 < 2% + 2 < 4}.
(,y) € R? 1 y > 22},

7. {(z,y) eR®: |y < [z| < 1}

1

1 — 22

8. {(r,y) eR*:y > .

Exercise 2.3 Let the sets
Sl :{IE: («Tl,fﬂg) :2§x1 S 5, To :4},

Sy = {x = (21, 9, x5 — 29 <5, —w1 —xy —x3 <7, 21,292,235 > 0},

) ]
2 2 2

Ss = {x = (x1,20,03) 1 2] — a5 — 25 <9, 1 —x3 = 2}.

1. Are these sets convex?

2. Find the interior and the closure of each set. Are those (interior/closure) sets
convex”?

Exercise 2.4 Show that C' is convex if and only if

k k
C:{Z/\ixi:kEN, meC e, i=1,... .k ZAZ-:1}.
i=1 i=1

Hint: Prove the result by induction on k.
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Exercise 2.5 Let (f;);c; be a family of convex functions with index set I (arbitrary).
Define
J =sup fi.
iel
1. Show that epi f = (,c; epi f;.

2. Deduce that f is convex.

Exercise 2.6 Let C' C R™ be a convex set and f : ' = R a convex function. If
x1, %9, ..., o, € C and \; € [0, 1] satisfy Zle A; = 1, prove that

f(i Nii) < Zf: Nf ().
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