
0.1 Introduction and Motivation

This course is an introduction to continuous mathematical optimization in finite di-
mension. It is intended for third-year undergraduate mathematics students. The
document is composed of the following chapters:

• Review of differential calculus

• Convex analysis

• Existence and uniqueness results

• Optimality conditions

• Gradient methods

• Newton’s method

The origin of the word optimization comes from the Latin word optimum, which
means “the best.” In the Larousse dictionary, the verb to optimize is defined as: To
give something, a machine, a company, etc., the optimal performance by creating the
most favorable conditions or by making the best possible use of it.

In mathematics, an optimization problem consists of minimizing (or maximizing) a
function of a single variable (or of several variables) over a given set. The formulation
of such a problem involves three steps:

Step I: Identify the decision variables, which are the parameters of the problem that
can be controlled. They are represented by a column vector

x = (x1, x2, . . . , xn)T ∈ Rn.

Step II: Identify a mathematical function (a measure) for which we seek the smallest
or largest value. This function is called the objective function or cost function,
denoted by f .

Step III: Describe the constraints on the decision variables.

0.2 Mathematical Formulation

As mentioned earlier, the mathematical formulation of an optimization problem in-
volves defining the set of decision variables that govern the situation to be modeled.
These variables may be real, integer, or binary.

Next, one identifies the objective function, which is a linear or nonlinear mathe-
matical function composed of the decision variables, representing the modeled physical
system.

Finally, one describes the set of parameters that restrict the feasible model through
equations or inequalities involving the decision variables. These are called the con-
straints.
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Mathematically, an optimization problem can be represented as follows:

Objective function: max f(x) or min f(x)

Constraints: g(x) ≤ 0, g(x) ≥ 0, or g(x) = 0

Bound constraints: l ≤ x ≤ u

Sign constraints: x ≤ 0, x ≥ 0

0.3 Application Examples

0.3.1 Example: Least Squares Problems

A common situation in biology is to have two sets of data of size n,

y1, y2, . . . , yn and x1, x2, . . . , xn,

obtained experimentally or measured from a population.
A regression problem consists of finding a function

y = g(µ, x)

such that the error
Ei = yi − g(µ, xi)

is as small as possible.
The principle of least squares consists in finding the parameters of g (an affine

function, polynomial, exponential, etc.) that minimize the sum of the squares of the
distances between yi and g(µ, xi), that is:

min
µ∈Rn

f(µ) =
m∑
i=1

Ei(µ)2, with Ei(µ) = yi − g(µ, xi).

Here, Ei is called the residual or error. The objective function (or cost function)
to be minimized is the sum of squared residuals Ei(µ)2.

As an example, the following data represent the size of an antelope population at
different times:

xi 1 2 4 5 8
yi 3 4 6 11 20

Here, time is measured in years, and the population is measured in hundreds.
It is common to model the evolution of a population using an exponential fit of

the form:

g(µ, x) = µ1 · exp(µ2 · x).

Objective: Find the parameters µ1 and µ2 that minimize the least squares crite-
rion.
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0.4 Exercises

Exercise 0.1 We want to build a box by cutting out four squares from the corners
of a rectangular sheet of cardboard and folding up the remaining flaps. The sheet
measures 22 cm in length and 18 cm in width. The volume of the constructed box
depends on the size of the squares cut out. For which value of x does the box attain
the maximum possible volume?

Exercise 0.2 We want to construct a box from a rectangular sheet of cardboard by
cutting six squares of side x at each corner and at the middle of the sides, and then
folding the sides as shown in the figure. This sheet has dimensions 45× 30 cm. The
aim of this exercise is to determine the dimensions of the closed box that yield the
maximum volume.

a) Determine the function to be optimized.
b) Justify the following relations:

p = 30− 2x, l =
45− 3x

2
.

c) Determine the set of admissible solutions for x.
d) Show that the volume expressed as a function of x can be written as

v(x) = 3x3 − 90x2 + 675x.

e) Find the value of x for which the volume is maximal.

Solutions to the Exercises

Solution 0.1 The decision variable is the side length of the cut square, denoted by
x. The objective is to determine the maximal volume of the constructed box, which
is written mathematically as

maxV (x) = x(22− 2x)(18− 2x),

with
0 ≤ x ≤ 1

2
min(22, 18) = 9.

Solution 0.2

a) The function to be optimized is the volume, given by

V (x) = 1
2
x(45− 3x)(30− 2x).

b) The box width is obtained by cutting two squares from the 30 cm side, hence

p = 30− 2x.

The box length is obtained by cutting three squares from the 45 cm side and
folding the remaining length in two, hence

l =
45− 3x

2
.
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c) The admissible set D for x is

D =
{

0 ≤ x ≤ 1
2

min(45, 30)
}

= { 0 ≤ x ≤ 15 }.

d) The volume expressed as a function of x is

V (x) = 3x3 − 90x2 + 675x.
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Chapter 1

Differential Calculus

In this chapter, we recall the main results of differential calculus, essentially the
definition of the first-order and second-order differential.

What is Differential Calculus?

Differential calculus is a branch of mathematics that studies how functions change
when their inputs change. It focuses on the concept of the derivative, which measures
the rate of change of a function at a given point.

Definition of the Derivative

Let f(x) be a real-valued function. The derivative of f at a point x is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

if this limit exists.

Geometric Meaning

The derivative represents the slope of the tangent line to the curve y = f(x) at a
point.

• If f ′(x) > 0, the function is increasing at x.

• If f ′(x) < 0, the function is decreasing at x.
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Example

Consider the function f(x) = x2. Then

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

x2 + 2xh+ h2 − x2

h
= lim

h→0

2xh+ h2

h
= 2x.

Thus, the slope of the curve y = x2 at a point x is 2x.

Applications of Derivatives

Differential calculus has many applications:

• Finding maxima and minima (optimization problems).

• Studying concavity and inflection points.

• In physics: velocity and acceleration are derivatives of position.

• In economics: marginal cost and marginal revenue are derivatives of cost and
revenue functions.

1.1 First-Order Differential

Let U ⊂ Rn be an open set and f : U → Rm, such that for x = (x1, x2, . . . , xn)> we
have

f(x) =


f1(x)
f2(x)

...
fm(x)

 .

Before giving the definition of differentiability, it is important to recall that of
continuity:

Definition 1.1.1. A function f is said to be continuous at the point x0 if

∀ ε > 0, ∃ δ > 0 : ‖x− x0‖Rn ≤ δ ⇒ ‖f(x)− f(x0)‖Rm ≤ ε.

In dimension 1, a function f : R → R is differentiable at x0 ∈ R if there exists a
real number f ′(x0) such that:

lim
h→0

|f(x0 + h)− f(x0)− f ′(x0)h|
|h|

= 0.

In strictly higher dimensions, this definition is expressed as f
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Example 1.1.2. Let f(x) = Ax+b, with A ∈ L(Rn,Rm) and b ∈ Rm, and let x0 ∈ Rn.
Then

f(x0 + h) = A(x0 + h) + b = f(x0) + A(h),

hence
Df(x0) = A.

Exercise 1.1.3. Show that if f is differentiable at a point x0, then f is necessarily
continuous at x0.

Definition 1.1.4. Let U be an open subset of Rn and let f be a function defined from
U into Rm. We say that f is differentiable on U if f is differentiable at every point
x0 ∈ U . In this case, we call the differential of f the function

Df : U → L(Rn,Rm), x 7→ Df(x).

If, in addition, the differential Df is a continuous function on U , then we say that f
is continuously differentiable, or that f is of class C1.

The partial derivatives of f are the functions denoted

∂fi
∂xj

defined by

∂fi(x)

∂xj
= lim

t→0

fi(x1, . . . , xj + t, xj+1, . . . , xn)− fi(x1, . . . , xn)

t
.

We define the Jacobian matrix at the point x as the matrix of the linear map
Df(x) in the canonical bases of Rn and Rm. It is given by

[Df(x)]i,j =
∂fi
∂xj

(x), i = 1, . . . ,m, j = 1, . . . , n.

If m = 1, we denote by ∇f(x) the transpose of Df(x), called the gradient of f at
the point x.

Remark 1.1.5. A function f may have partial derivatives without being differentiable.
For example, let f : R2 → R be defined by

f(x, y) =


xy√
x2 + y2

, if x2 + y2 6= 0,

0, if (x, y) = (0, 0).

The function f is zero at the point (0, 0), and its partial derivatives exist and are
zero, although f is not differentiable at this point.

Indeed, by the previous theorem we should have

f(h1, h2) = f(0, 0) +Df(0, 0)(h) + ‖h‖ε(h) = ‖h‖ε(h),

where ‖h‖ =
√
h21 + h22. For h = (3t, 4t) we get

f(3t, 4t)

‖h‖
=

12

25
,

which does not tend to zero as t→ 0. Hence f is not differentiable at (0, 0).
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Lemma 1.1.6. Let f be a function from Rn to Rm differentiable at the point x. Then

lim
t→0

f(x+ th)− f(x)

t
= Df(x)(h).

1.1.1 Proof of Lemma 1.1

Proof. Assume f is differentiable at the point x. For all t in some open interval I ⊂ R
containing 0, we have

f(x+ th) = f(x) + tDf(x)(h) + ‖th‖ ε(th),

with lim
t→0

ε(th) = 0. Dividing by t and passing to the limit yields

lim
t→0

f(x+ th)− f(x)

t
= Df(x)(h).

Example 1.1.7 (Example 1.3). Let f be the quadratic function

f(x) = 1
2
〈x,Ax〉 − 〈b, x〉,

where A ∈ Mn(R) is a symmetric matrix and b ∈ Rn. Compute the differential of f
at the point x.

We compute

Df(x)(h) = lim
t→0

f(x+ th)− f(x)

t
.

First expand:

f(x+ th) = 1
2
〈x+ th, A(x+ th)〉 − 〈b, x+ th〉

= f(x) + 1
2

(
t〈h,Ah〉+ 2t〈h,Ax〉

)
− t〈b, h〉+ 1

2
t2〈h,Ah〉

= f(x) + t〈Ax− b, h〉+ 1
2
t2〈h,Ah〉.

Thus
f(x+ th)− f(x)

t
= 〈Ax− b, h〉+ 1

2
t〈h,Ah〉,

and letting t→ 0 gives

Df(x)(h) = 〈Ax− b, h〉, ∀h ∈ Rn.

Therefore, in matrix form,
Df(x) = (Ax− b)>.

Exercise 1.1.8 (Exercise 1.2). Show that the following functions are differentiable and
compute their differentials:

1. f(x) = 〈x,Ax〉, x ∈ Rn, with A ∈Mn(R).

2. f(x, y) = x2 − y2, (x, y) ∈ R2.

3. f(x) = ‖x‖2, x ∈ Rn.
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1.2 Second-Order Differential

Definition 1.2.1. Let f be a function defined on an open set U ⊂ Rn with values in R.
Assume f is differentiable at every point of U , so that Df : U → L(Rn,R) is defined.
If moreover Df is differentiable at a point x ∈ U , we say that f is twice differentiable
at x. The second-order differential at x is denoted by ∇2f(x).

Theorem 1.2.2. Let U be an open subset of Rn and f : U → R. If f is twice
differentiable at x, then there exists a symmetric matrix ∇2f(x) and a continuous
function ε(·) with ε(‖h‖)→ 0 as h→ 0, such that

f(x+ h) = f(x) +Df(x) · h+ 1
2
h>∇2f(x)h+ ‖h‖2ε(h).

The matrix ∇2f(x) is called the Hessian of f at x and is given by

∇2f(x) =

(
∂2f

∂xi∂xj
(x)

)
i,j=1,...,n

,

i.e.

[∇2f(x)]i,j =
∂2f

∂xi∂xj
(x).

Example 1.2.3. Consider the quadratic form

q(x) = 1
2
〈x,Hx〉 − 〈b, x〉, (1.1)

where H is a symmetric n× n matrix. We have already seen that

Dq(x) = (Hx− b)>,

and therefore
∇2q(x) = H.

1. First-Order Derivative

Example: Find the first derivative of

f(x) = 3x3 − 5x2 + 2x− 7.

Solution:

f ′(x) =
d

dx
(3x3)− d

dx
(5x2) +

d

dx
(2x)− d

dx
(7).

f ′(x) = 9x2 − 10x+ 2.

2. Second-Order Derivative

Example: Find the second derivative of

f(x) = sin(x).

Solution:
f ′(x) = cos(x), f ′′(x) = − sin(x).
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3. Gradient of a Scalar Function

Example: Let
f(x, y) = x2y + 3y2.

Find ∇f(x, y).
Solution:

∇f(x, y) =

∂f∂x∂f
∂y

 .
Compute each derivative:

∂f

∂x
= 2xy,

∂f

∂y
= x2 + 6y.

Thus,

∇f(x, y) =

[
2xy

x2 + 6y

]
.

4. Jacobian of a Vector Function

Example: Let F : R2 → R2 be defined by

F(x, y) =

[
f1(x, y)
f2(x, y)

]
=

[
x2y

ex + y2

]
.

Find the Jacobian matrix JF(x, y).
Solution: The Jacobian is

JF(x, y) =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 .
Compute each partial derivative:

∂f1
∂x

= 2xy,
∂f1
∂y

= x2,

∂f2
∂x

= ex,
∂f2
∂y

= 2y.

Thus,

JF(x, y) =

[
2xy x2

ex 2y

]
.
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5. Second-Order Partial Derivatives (Hessian Matrix)

Example: Let
f(x, y) = x3 + xy2.

Find the Hessian matrix Hf (x, y).
Solution: First-order derivatives:

∂f

∂x
= 3x2 + y2,

∂f

∂y
= 2xy.

Second-order derivatives:

∂2f

∂x2
= 6x,

∂2f

∂x∂y
= 2y,

∂2f

∂y∂x
= 2y,

∂2f

∂y2
= 2x.

Thus the Hessian is

Hf (x, y) =

[
6x 2y
2y 2x

]
.
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1.3 Exercises

Exercise 1.3 Let the following functions be defined on Rn (or R2 where indicated):

1. f1(x) = 3
2
x21 − 2x22 − 3

2
x23 + x1x2 − 2x2x3 − 3x1 − x3,

2. f2(x) = (x1 − 1)2 − 10(x1 − x2)2,

3. f3(x) = 5x21 − 5x22 − x1x2 − 11x1 − 11x2 − 11.

For each i = 1, 2, 3:

1. Calculate ∇fi(x) (the gradient or the transpose of Dfi(x)).

2. Calculate ∇2fi(x) (the Hessian matrix).

2. Among these functions, which ones are quadratic? Justify your answer.

Exercise 1.4 Determine Df(x) and ∇2f(x) for the quadratic function

f(x) = 1
2
〈x,Ax〉 − 〈b, x〉+ c,

where A ∈Mn(R) (an n× n matrix), b ∈ Rn and c ∈ R.

Exercise 1.5 Give the second-order Taylor expansion of the function f in a neigh-
borhood of the point x0 for the following cases:

a) f(x) = x1e
−x2 − x2 − 1, x0 = (1, 0)>.

b) f(x) = x41 − 2x21x
2
2 − x42, x0 = (1, 1)>.

Exercise 1.6 Let x(t) = (t, et, t2)>, t ∈ R, and let f(x) = x1x
3
2 − x1x2 − x3 for

x = (x1, x2, x3)
> ∈ R3. Find

d

dt
f(x(t)) in terms of t.

Exercise 1.7 The goal of this exercise is to recover the Taylor formula for a function
f : Rn → R. Let f ∈ C2, let x and x0 ∈ Rn, and define

z(α) = x0 − α
(x− x0)
‖x− x0‖

, α ∈ R,

and the function Φ(α) = f(z(α)).

1. Compute Φ′(α) and Φ′′(α).

2. Noting that f(x) = Φ(‖x− x0‖), deduce that

f(x) = f(x0) +Df(x0)(x− x0) + 1
2
(x− x0)>∇2f(x0)(x− x0) + o

(
‖x− x0‖2

)
.
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Exercise 1.8 Let ϕ be a continuous function ϕ : R → R, and define f, g : R2 → R
by

f(x, y) =

∫ x−y

0

ϕ(t) dt, g(x, y) =

∫ x+y

0

ϕ(t) dt.

1. Show that f and g are of class C1 on R2.

2. Denote by Df(x, y) and Dg(x, y) the differentials of f and g at the point (x, y).
Compute

Df(x, y)(h, k) and Dg(x, y)(h, k)

for every (h, k) ∈ R2.

Exercise 1.9 Let f : Rn → R and x : R → Rn be two C2 functions. Define the
real-valued function g(t) = f(x(t)).

1. Compute g′′(t) in the case x(t) = u+ tv, where u and v are two vectors in Rn.

2. Compute g′′(t) for a general C2 curve x(t).

Solutions to the Exercises

Solution 1.1 Let the functions be

f1(x) = 3
2
x21 − 2x22 − 3

2
x23 + x1x2 − 2x2x3 − 3x1 − x3,

f2(x) = (x1 − 1)2 − 10(x1 − x2)2,

f3(x) = 5x21 − 5x22 − x1x2 − 11x1 − 11x2 − 11.

1. Calculate ∇fi(x) and ∇2fi(x) for i = 1, 2, 3.

∇f1(x) =

 3x1 − x2 − 3

4x2 − x1 − 2x3

3x3 − 2x2 − 1

 , ∇2f1(x) =

3 1 0

1 4 2

0 2 3

 .

∇f2(x) =

(
22x1 − 20x2 − 2

−20x1 − 20x2

)
, ∇2f2(x) =

(
22 −20

−20 20

)
.

∇f3(x) =

(
10x1 − x2 − 11

−x1 − 10x2 − 11

)
, ∇2f3(x) =

(
10 −1

−1 10

)
.

2. Since each ∇2fi(x) is constant and symmetric, the functions fi are quadratic for
i = 1, 2, 3.
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