0.1 Introduction and Motivation

This course is an introduction to continuous mathematical optimization in finite di-
mension. It is intended for third-year undergraduate mathematics students. The
document is composed of the following chapters:

Review of differential calculus

e Convex analysis

Existence and uniqueness results

Optimality conditions

Gradient methods

e Newton’s method

The origin of the word optimization comes from the Latin word optimum, which
means “the best.” In the Larousse dictionary, the verb to optimize is defined as: To
give something, a machine, a company, etc., the optimal performance by creating the
most favorable conditions or by making the best possible use of it.

In mathematics, an optimization problem consists of minimizing (or maximizing) a
function of a single variable (or of several variables) over a given set. The formulation
of such a problem involves three steps:

Step I: Identify the decision variables, which are the parameters of the problem that
can be controlled. They are represented by a column vector

r=(21,29,...,2,)" €R"

Step II: Identify a mathematical function (a measure) for which we seek the smallest
or largest value. This function is called the objective function or cost function,

denoted by f.

Step III: Describe the constraints on the decision variables.

0.2 Mathematical Formulation

As mentioned earlier, the mathematical formulation of an optimization problem in-
volves defining the set of decision variables that govern the situation to be modeled.
These variables may be real, integer, or binary.

Next, one identifies the objective function, which is a linear or nonlinear mathe-
matical function composed of the decision variables, representing the modeled physical
system.

Finally, one describes the set of parameters that restrict the feasible model through
equations or inequalities involving the decision variables. These are called the con-
straints.



Mathematically, an optimization problem can be represented as follows:

Objective function: max f(z) or min f(x)
Constraints: g(x) <0, g¢g(x) >0, or g(z)=0
Bound constraints: [ <zx<u

Sign constraints: r<0, >0

0.3 Application Examples

0.3.1 Example: Least Squares Problems

A common situation in biology is to have two sets of data of size n,

Y1,Y2, -+ Yo and 1, T, ..., Tp,

obtained experimentally or measured from a population.
A regression problem consists of finding a function

Yy :g(ﬂ,l’)

such that the error
Ei =y — g(p, x:)
is as small as possible.
The principle of least squares consists in finding the parameters of ¢ (an affine
function, polynomial, exponential, etc.) that minimize the sum of the squares of the
distances between y; and g(u, z;), that is:

m

min f(u) = > Ei(n)’,  with Ei(p) = y; — g(p, 7).

eR”
K =1

Here, F; is called the residual or error. The objective function (or cost function)
to be minimized is the sum of squared residuals E;(ju)?.
As an example, the following data represent the size of an antelope population at

different times:

|1 24 5 8
yi|3 4 6 11 20

Here, time is measured in years, and the population is measured in hundreds.
It is common to model the evolution of a population using an exponential fit of
the form:

9(p, ) = pu - exp(p2 - ).
Objective: Find the parameters p; and po that minimize the least squares crite-
rion.



0.4 Exercises

Exercise 0.1 We want to build a box by cutting out four squares from the corners
of a rectangular sheet of cardboard and folding up the remaining flaps. The sheet
measures 22 cm in length and 18 cm in width. The volume of the constructed box
depends on the size of the squares cut out. For which value of x does the box attain
the maximum possible volume?

Exercise 0.2 We want to construct a box from a rectangular sheet of cardboard by
cutting six squares of side z at each corner and at the middle of the sides, and then
folding the sides as shown in the figure. This sheet has dimensions 45 x 30 cm. The
aim of this exercise is to determine the dimensions of the closed box that yield the
maximum volume.

a) Determine the function to be optimized.

b) Justify the following relations:

45 -3
p =30 — 2z, [ = 5 L

c¢) Determine the set of admissible solutions for x.
d) Show that the volume expressed as a function of = can be written as

v(x) = 32° — 902° + 675x.

e) Find the value of x for which the volume is maximal.

Solutions to the Exercises

Solution 0.1 The decision variable is the side length of the cut square, denoted by
x. The objective is to determine the maximal volume of the constructed box, which
is written mathematically as

max V(z) = (22 — 22)(18 — 2x),
with
0 << imin(22,18) =9.
Solution 0.2

a) The function to be optimized is the volume, given by

V(z) = 5 2(45 — 32)(30 — 2z).

b) The box width is obtained by cutting two squares from the 30 cm side, hence
p =30 — 2z.

The box length is obtained by cutting three squares from the 45 cm side and

folding the remaining length in two, hence
45 — 3z

[ = .
2




¢) The admissible set D for z is
D={0<z<imin(45,30)} ={0<z<15}.
d) The volume expressed as a function of z is

V(z) = 32 — 902° + 675x.



Chapter 1

Differential Calculus

In this chapter, we recall the main results of differential calculus, essentially the
definition of the first-order and second-order differential.

What is Differential Calculus?

Differential calculus is a branch of mathematics that studies how functions change
when their inputs change. It focuses on the concept of the derivative, which measures
the rate of change of a function at a given point.

Definition of the Derivative
Let f(z) be a real-valued function. The derivative of f at a point x is defined as

fa) — i L) = 1)

h—0 h
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if this limit exists.

Geometric Meaning

The derivative represents the slope of the tangent line to the curve y = f(x) at a
point.

o If f'(x) > 0, the function is increasing at .

o If f'(z) < 0, the function is decreasing at .



Example

Consider the function f(z) = 2?. Then

pov o (w4 h)?—a2* a4 2zh4+h* -2 20h+ R
Fo=m =~ h ST T

Thus, the slope of the curve y = 2% at a point z is 2z.

Applications of Derivatives

Differential calculus has many applications:
e Finding maxima and minima (optimization problems).
e Studying concavity and inflection points.
e In physics: velocity and acceleration are derivatives of position.

e In economics: marginal cost and marginal revenue are derivatives of cost and
revenue functions.

1.1 First-Order Differential
Let U C R be an open set and f : U — R™, such that for z = (21, 29,...,2,)" we

have
fi(z)

fz) = f2@)

Before giving the definition of differentiability, it is important to recall that of
continuity:
Definition 1.1.1. A function f is said to be continuous at the point xg if

Ve>0,36>0: ||z —xollee <6 = ||f(x) — flao)zm < e

In dimension 1, a function f : R — R is differentiable at zy € R if there exists a
real number f’(xg) such that:

i |f(zo+h) — f(xo) — f'(20)h]|

h—0 |1 =0

In strictly higher dimensions, this definition is expressed as f



Example 1.1.2. Let f(z) = Az +0b, with A € L(R™",R™) and b € R™, and let xy € R™.
Then

f(@o+h) = Alwo +h) +b = [fzo) + A(h),
hence

Exercise 1.1.3. Show that if f is differentiable at a point zy, then f is necessarily
continuous at xg.

Definition 1.1.4. Let U be an open subset of R” and let f be a function defined from
U into R™. We say that f is differentiable on U if f is differentiable at every point
xo € U. In this case, we call the differential of f the function

Df:U— LR",R™), z— Df(z).

If, in addition, the differential D f is a continuous function on U, then we say that f
is continuously differentiable, or that f is of class C!.

The partial derivatives of f are the functions denoted

Ofi
8xj
defined by
dfi(x) — lim fizy, ... g+t T, ,Tn) = fi(T1, .., 1)
81']‘ t—0 t '

We define the Jacobian matrix at the point x as the matrix of the linear map
D f(z) in the canonical bases of R" and R™. It is given by

Ofi
8:1;]-

If m = 1, we denote by V f(x) the transpose of D f(z), called the gradient of f at
the point z.

[Df ()i =

(), i=1,....m, j=1,...,n.

Remark 1.1.5. A function f may have partial derivatives without being differentiable.
For example, let f : R? — R be defined by

Y e 9 2
Wit A0,
flz,y) = Va2 +y?
0, if (z,y) = (0,0).

The function f is zero at the point (0,0), and its partial derivatives exist and are
zero, although f is not differentiable at this point.
Indeed, by the previous theorem we should have

f(h1, ha) = f(0,0) + Df(0,0)(h) + [[h]le(h) = [|h][e(R),

where ||h]| = \/h? + h3. For h = (3t,4t) we get
F(3t,4t) 12

Inll 25

which does not tend to zero as t — 0. Hence f is not differentiable at (0, 0).
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Lemma 1.1.6. Let [ be a function from R™ to R™ differentiable at the point x. Then

o L@+ h) = f(@)
t

t—0

= Df(x)(h).

1.1.1 Proof of Lemma 1.1

Proof. Assume f is differentiable at the point x. For all ¢ in some open interval I C R
containing 0, we have

f(x+th) = f(x) +tDf(x)(h) + [[th] e(th),
with PHOI e(th) = 0. Dividing by ¢ and passing to the limit yields
—

= Df(x)(h).

lim
t—0

[z +1th) — f(x)
t

Example 1.1.7 (Example 1.3). Let f be the quadratic function

f(z) = 5z, Az) — (b, z),

where A € M, (R) is a symmetric matrix and b € R”. Compute the differential of f
at the point z.
We compute
th) —
D) (h) = lim LEF ) = f(@)

t—0 t

First expand:

f(x+th) = $(x +th, A(z + th)) — (b,x + th)
f(z) + L(t(h, AR) + 2t(h, Az)) — t(b, h) + Lt*(h, Ah)
=/

+
(z) 4+ t(Az — b, h) + +t*(h, Ah).

Thus

fla +fht) —S@ g bmy+ 3t(h, Ah),

and letting t — 0 gives
Df(x)(h) = (Ax — b, h), Vh € R".

Therefore, in matrix form,

Df(z) = (Az —b)".

Exercise 1.1.8 (Exercise 1.2). Show that the following functions are differentiable and
compute their differentials:

1. f(z) = (z,Ax), =z eR” with A€ M,(R).
2. f(xa/y) :xQ_y27 <I7y) GRQ‘
3. flx) =], zeR"



1.2 Second-Order Differential

Definition 1.2.1. Let f be a function defined on an open set U C R™ with values in R.
Assume f is differentiable at every point of U, so that Df : U — L(R™,R) is defined.
If moreover D f is differentiable at a point x € U, we say that f is twice differentiable
at z. The second-order differential at z is denoted by V?f(z).

Theorem 1.2.2. Let U be an open subset of R™ and f : U — R. If [ is twice
differentiable at x, then there exists a symmetric matriz V2 f(x) and a continuous
function (-) with £(||h]]) — 0 as h — 0, such that

f@+h)=f(z)+Df(x) b+ Ih"V?f(z)h+|h|*e(h).
The matriz V2 f(z) is called the Hessian of f at x and is given by

0% f
2 _
Vi) = <8xiaxj (I)>i,j=1 ..... n7
1.€. (92f
2 L. =

V2@l = 5y (0)
Example 1.2.3. Consider the quadratic form

q(z) = %(az,H@ — (b, z), (1.1)

where H is a symmetric n X n matrix. We have already seen that
Dq(z) = (Hz = b)",

and therefore

V3q(z) = H.

1. First-Order Derivative

Example: Find the first derivative of
f(x) =32 —52% + 22 — 7.

Solution:
d

T dr

(32°) — %(5#) + %(290) - d%(?).

f'(z) = 92° — 102 + 2.

f'(x)

2. Second-Order Derivative

Example: Find the second derivative of

f(z) = sin(x).
Solution:

f'(z) = cos(x), [f"(x)= —sin(x).

9



3. Gradient of a Scalar Function

Example: Let
flz,y) = 2y + 3y°.
Find Vf(z,y).

Solution:
of
Vf(z,y) = 35%
y
Compute each derivative:
ﬁ =2 g = 2 + 6y.

o Y oy
Thus,

Vi(x,y) = LQQ_T_%J .

4. Jacobian of a Vector Function

Example: Let F : R? — R? be defined by
fl(fv,y)] { %y }

F = = .

(z.9) {f2(93, v ety

Find the Jacobian matrix Jg(z,y).
Solution: The Jacobian is

of 05

JF(:Ev y) = g}; g 5

dr Oy

Compute each partial derivative:

0fi _,. Oh_
Ox Oy ’

of _ . 92 _,
Ox T Oy v

Thus,
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5. Second-Order Partial Derivatives (Hessian Matrix)

Example: Let
fla,y) =a® + zy”.

Find the Hessian matrix Hy(z,y).
Solution: First-order derivatives:

f 9 o Of
= - =2
3 3z° +y°, 3y Ty
Second-order derivatives:
D*f o*f
— = =2
Ox? 62, Oxdy v
2 2
o7 =2 ﬂ = 2.

Oyox v 2

Thus the Hessian is
|6z 2y

Hyto) = o0 3]

11



1.3 Exercises

Exercise 1.3 Let the following functions be defined on R" (or R? where indicated):

1. fi(x) = gxf — 223 — %x% + 12y — 2@ox3 — 3T — X3,
2. fg(ﬂ?) = (ZL’l — ].)2 — ]_0(1'1 — ZE2)2,
3. f3(z) = ba? — 5x2 — xy29 — 11wy — 1129 — 11,

For each i = 1,2, 3:
1. Calculate V f;(z) (the gradient or the transpose of D f;(x)).
2. Calculate V?f;(z) (the Hessian matrix).

2. Among these functions, which ones are quadratic? Justify your answer.

Exercise 1.4 Determine D f(z) and V?f(x) for the quadratic function
f(ZL‘) = %<I’,Al’> - <b7 l‘) +c,

where A € M, (R) (an n x n matrix), b € R” and ¢ € R.

Exercise 1.5 Give the second-order Taylor expansion of the function f in a neigh-
borhood of the point z( for the following cases:

a) flx)=me ™ —xy—1, z9=(1,0)".
b) f(x) =2} — 22323 — 25, x9=(1,1)".

Exercise 1.6 Let z(t) = (¢, €', t*)7, t € R, and let f(z) = 123 — 1105 — 23 for

r = (1,29, 73)" € R3. Find Ef(:z:(t)) in terms of ¢.

Exercise 1.7 The goal of this exercise is to recover the Taylor formula for a function
f:R* = R. Let f € C?, let z and 2y € R", and define

(x — z9)

T G eR,
|2 — |

z2(a) =z — «

and the function ®(a) = f(z(«a)).
1. Compute ¢'(a) and ¢”(«).
2. Noting that f(x) = ®(||z — zo||), deduce that

f(x) = f(xzo) + Df(xo)(x — o) + 5(x — o) V2 f(wo)(x — o) + o([|z = zol?).

12



Exercise 1.8 Let ¢ be a continuous function ¢ : R — R, and define f,g : R> -+ R
by

fe = [ewa g - | o .

1. Show that f and g are of class C! on R

2. Denote by Df(x,y) and Dg(z,y) the differentials of f and g at the point (z,y).
Compute
Df(z,y)(h, k) and  Dg(x,y)(h, k)

for every (h, k) € R

Exercise 1.9 Let f : R — R and z : R — R" be two C? functions. Define the
real-valued function g(t) = f(z(t)).

1. Compute ¢”(t) in the case x(t) = u + tv, where v and v are two vectors in R™.

2. Compute ¢”(t) for a general C* curve z(t).

Solutions to the Exercises

Solution 1.1 Let the functions be
filz) = %x% — 215 — %x% + T1x9 — 2wox3 — 31 — X3,
f2($) = (33'1 — 1)2 — 10(33‘1 — 372)2,

f3(x) = 5] — 525 — 11wy — 112y — 113y — 11.

1. Calculate V f;(z) and V?f;(z) for i =1,2,3.

31 —x9 — 3 310
Vfl(ZL‘) = 4]72 — T — 2373 s V2f1(x) = 1 4 2
3x3 — 219 — 1 0 2 3

e - 2201202 v (2
297N o0my — 202, | 2= og 90 /-

Y fa(2) 10z — 29 — 11 VQf (2) 10 -1

x) = : x) = .

’ —zy — 10z, — 11 ’ ~1 10

2. Since each V2f;(z) is constant and symmetric, the functions f; are quadratic for
i=1,2,3.
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