

The structure of Diamond and Graphite (C)

We have selected two varieties of crystal structures composed of the same motif, carbon (C): the crystal structure of diamond and that of graphite. Diamond is defined within a face-centered cubic (FCC) lattice. The motif consists of carbon atoms occupying the vertices, the centers of the faces, and additional positions inside the cube at the coordinates: (1/4 1/4 1/4), (3/4 1/4 3/4), (1/4 3/4 3/4), and (3/4 3/4 1/4)

Graphite, on the other hand, has a more complex structure composed of hexagonal carbon chains arranged in parallel sheets, with a significant distance between them. It is defined within a hexagonal lattice based on a rhombus with an angle of $120^{\circ} (2\pi/3)$

Both structures (Diamond and Graphite) belong to the family of covalent bond crystals. However, unlike diamond, graphite is a soft solid and an excellent electrical conductor. This difference in properties arises from the distinct arrangements of carbon atoms in their respective structures. Diamond's tightly bonded three-dimensional network gives it exceptional hardness, while graphite's layered structure allows for electrical conductivity and a softer texture. These examples illustrate how the same element can form vastly different materials based on its crystalline arrangement.

