
Chapter 3
Matrices

3.1 Matrix Associated with a Linear Map
Let K be a commutative field.

Let E and F be two K vector spaces of finite dimension n and m, f a linear map from E to F . Let B =
{e1, e2, ..., en} be a basis of E, B

′ = {e
′

1, e
′

2, ..., e
′

m} be a basis of F . Since f(e1), f(e2), ..., f(en) are vectors in
F and {e

′

1, e
′

2, ..., e
′

m} is a basis of F , then f(e1), f(e2), ..., f(en) can be written as linear combinations of the
vectors in the basis B

′ = {e
′

1, e
′

2, ..., e
′

m}. For every j = 1, ..., n, we have :

f(ej) = a1je
′

1 + a2je
′

2 + ... + amje
′

m =
n∑

j=1
aije

′

i, i = 1, ..., m

Then, we have (f(e1), f(e2), ..., f(en)) =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn




e
′

1
e

′

2
...

e
′

m


and 

a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


is called the matrix associated with f relative to the basis B and B

′ . The matrix is denoted by (aij) where
i denotes the row index and j denotes the column index.

Now, let’s introduce the concept of matrices and algebraic operations on matrices.

A matrix in K of type (n, p) is a rectangular array A of elements from IK with n rows and p columns.

A =


a11 a12 · · · a1p

a21 a22 · · · a2p

...
... . . . ...

an1 an2 · · · anp

 .

We denote aij as the element at row number i and column j, and we represent the matrix A by A =
(aij)1≤i≤n, 1≤j≤p. The set of matrices of type (n, p) is denoted as M(n,p)(IK).

1. For n = 1, we say that A is a row matrix, A = (a11, a12, ..., a1p).

2. For p = 1, we say that A is a column matrix, A =


a11
a21
...

an1



Definition 3.1.1
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3.2. Vector Space of Matrices with n Rows and m Columns CHAPITRE 3. MATRICES

3. For n = p, we say that A is a square matrix of order n, and we denote A ∈ Mn(K).

1. A1 =


−10 2 0

1 −4 9
−5 −7 0
−3 −1 0

, A1 is a matrix of type (4, 3).

2. A2 =
(

−4 −1 3
0 −2 −7

)
, A2 is a matrix of type (2, 3).

3. A3 =
(

−1 −5
4 −4

)
, A3 is a square matrix of order 2.

Example 3.1.2

3.2 Vector Space of Matrices with n Rows and m Columns
3.2.1 Matrix Operations

Let A = (aij)1≤i≤n, 1≤j≤p and B = (bij)1≤i≤n, 1≤j≤p be two matrices of types (n, p),
1. We say that A = B if ∀i = 1, ..., n, ∀j = 1, ..., p ; aij = bij .
2. The transpose of matrix A is a matrix denoted by At defined by :

At = (aji)1≤j≤p, 1≤i≤n.

In other words, At is the matrix of type (p, n) obtained by replacing the rows with the columns and the
columns with the rows, and we have :

(At)t = A.

Definition 3.2.1

1. A1 =

 1 0
−4 6
−3 −5

 ⇒ At
1 =

(
1 −4 −3
0 6 −5

)
.

2. A2 =


5 7 1 0 −10

−8 0 5 −13 5
7 9 3 −2 1

−1 0 5 0 0

 ⇒ At
2 =


5 −8 7 −1
7 0 9 0
1 5 3 5
0 −13 −2 0

−10 5 1 0

 .

3. A3 =
(

0 −1
5 −8

)
⇒ At

3 =
(

0 5
−1 −8

)
.

Example 3.2.2

Sum of Matrices

By equipping the set M(n,p)(K) with the following operations :

(+) : M(n,p)(K) × M(n,p)(K) → M(n,p)(K)

Theorem 3.2.3
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


a11 a12 .. a1p

a21 a22 .. a2p

...
...

...
...

an1 an2 .. anp

 +


b11 b12 .. b1p

b21 b22 .. b2p

...
...

...
...

bn1 bn2 .. bnp


 7→


a11 + b11 a12 + b12 .. a1p + b1p

a21 + b21 a22 + b22 .. a2p + b2p

...
...

...
...

an1 + bn1 an2 + bn2 .. anp + bnp

 ,

and

(×) : K × M(n,p)(K) → M(n,p)(K).λ,


a11 a12 .. a1p

a21 a22 .. a2p

...
...

...
...

an1 an2 .. anp


 7→


λa11 λa12 .. λa1p

λa21 λa22 .. λa2p

...
...

...
...

λan1 λan2 .. λanp

 .

Then (M(n,p)(K), +, ·) is an K-vector space of dimension n × p,

where the additive identity is the zero matrix


0 0 .. 0
0 0 .. 0
...

...
...

...
0 0 .. 0

 ..

Product of Two Matrices

Let A ∈ M(n,p)(K) and B ∈ M(p,m)(K), the product of matrix A by B is defined as a matrix
C = (cij)1≤i≤n, 1≤j≤m ∈ M(n, m)(K), with

cij = ai1b1j + ai2b2j + ai3b3j + ... + aipbpj .

Definition 3.2.4

1. The element cij of matrix C is calculated by adding the product of the elements in the i-th row of
matrix A by the elements in the j-th column of matrix B.

2. The product of two matrices is possible only if the number of columns in matrix A is equal to the
number of rows in matrix B.

Note 3.2.5

A =
(

1 0 9
4 7 −4

)
, B =

 2 1 3 1
5 0 2 1
0 3 0 0


A is of type (2, 3) and B is of type (3, 4), so C will be of type (2, 4).

C = A·B =
(

1.2 + 0.5 + 9.0 1.1 + 0.(0) + 9.3 1.(3) + 0.(2) + 9.0 1.(1) + 0.(1) + 9.0
4.2 + 7.5 + (−4).0 4.1 + 7.(0) + (−4).3 4.(3) + 7.(2) + (−4).0 4.(1) + 7.(1) + (−4).0

)

C =
(

2 28 3 1
43 −8 26 11

)

Example 3.2.6

The product of two matrices is not commutative, here is an example :

A × B =
(

1 2
−4 5

)
×

(
0 3
2 −1

)
=

(
4 1
10 −17

)
Note 3.2.7
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B × A =
(

0 3
2 −1

)
×

(
1 2

−4 5

)
=

(
−12 15

6 −1

)
So A × B ̸= B × A

3.3 Square Matrix Ring

Let A be a square matrix of order n, A = (aij)1≤i≤n, 1≤j≤n,
1. The sequence of elements {a11, a22, ..., ann} is called the principal diagonal of A.
2. The trace of A is the number

Tr(A) = a11 + a22 + ... + ann.

3. A is called a diagonal matrix if aij = 0, ∀i ̸= j, meaning all elements of A are zero except on the
principal diagonal.

4. A is called an upper (resp. lower) triangular matrix if aij = 0, ∀i > j (resp. i < j), meaning elements
below (resp. above) the diagonal are zero.

5. A is called symmetric if A = At.

Definition 3.3.1

1. A1 =

 4 0 0
0 −17 0
0 0 2

, A1 is a diagonal matrix.

2. A2 =

 2 0 0
1 −14 0

−3 7 2

, A2 is a lower triangular matrix.

3. A3 =

 2 10 −25
0 −1 22
0 0 1

, A3 is an upper triangular matrix.

4. A4 =

 2 10 −2
10 −1 21
−2 21 1

 ⇒ At
4 =

 2 10 −2
10 −1 21
−2 21 1

 , A4 is a symmetric matrix.

Example 3.3.2

The matrix product is an internal operation in M(n,n)(IK), and it has a neutral element called the
identity matrix, denoted by In, defined as :

In =



1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
0 0 1 · · · · · · 0

0 0 0 . . . · · · 0
...

...
... · · ·

. . . ...
0 0 0 · · · 0 1



Proposition 3.3.3
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3.3.1 Invertible Matrices

Let A ∈ M(n,n)(IK), we say that A is invertible if there exists a matrix B ∈ M(n,n)(IK) such that :

A.B = B.A = In.

Definition 3.3.4

Show that the matrix A =
(

1 1
4 −3

)
is invertible.

By seeking the matrix B =
(

a b
c d

)
such that :

A.B =
(

1 1
4 −3

)
×

(
a b
c d

)
=

(
1 0
0 1

)
= I2 =

(
a b
c d

)
×

(
1 1
4 −3

)
= B.A

This gives :

A.B =
(

a + c b + d
4a − 3c 4b − 3d

)
=

(
1 0
0 1

)
=

(
a + 4b a − 3b
c + 4d c − 3d

)
= B.A

Which leads to the system :

⇒


a + c = 1

4a − 3c = 0
b + d = 0

4b − 3d = 1

⇒


a = 3

7
c = 4

7
b = 1

7
d = −1

7

So, B =
( 3

7
1
74

7 − 1
7

)
. Then, B = 1

7 .

(
3 1
4 −1

)

Example 3.3.5

3.3.2 Determinant of a Square Matrix and Properties

Let A =
(

a11 a12
a21 a22

)
, be a matrix in M(2,2)(R), the determinant of A is the real number given by :

det(A) = a11 × a22 − a12a21

It is denoted as det(A) or
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣.

Definition 3.3.6

Calculate det(A) for A =
(

1 −4
2 5

)
.

det(A) = |A| =
∣∣∣∣ 1 −4

2 5

∣∣∣∣ = 1 × 5 − 2 × (−4) = 13

Example 3.3.7
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Similarly, the determinant of a 3 × 3 matrix A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ M(3,3)(R) is given by :

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11C11 + a12C12 + a13C13

= a11(−1)1+1
∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ + a12(−1)1+2
∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13(−1)1+3
∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
Where C11, C12, and C13 are the cofactors of the elements a11, a12, and a13, respectively.

Definition 3.3.8

Calculate |A| for A =

 1 2 0
−1 3 1
2 1 −1

.

|A| =

∣∣∣∣∣∣
1 2 0

−1 3 1
2 1 −1

∣∣∣∣∣∣
= 1(−1)1+1

∣∣∣∣ 3 1
1 −1

∣∣∣∣ + 2(−1)1+2
∣∣∣∣ −1 1

2 −1

∣∣∣∣ + 0(−1)1+3
∣∣∣∣ −1 3

2 1

∣∣∣∣
= 1(−3 − 1) − 2(1 − 2) + 0(−1 − 6) = −2.

Example 3.3.9

To calculate the determinant of a matrix A, one can expand A along any row or column. Following this
proposition, it is better to choose the row or column containing the most zeros.

Proposition 3.3.10

Using the same matrix as the previous example.
Method 1 : calculating along the third row, we have :

det(A) = |A| =

∣∣∣∣∣∣
1 2 0

−1 3 1
2 1 −1

∣∣∣∣∣∣ = (−1)3+1(2)
∣∣∣∣ 2 0

3 1

∣∣∣∣+(−1)3+2(+1)
∣∣∣∣ 1 0

−1 1

∣∣∣∣+(−1)3+3(−1)
∣∣∣∣ 1 2

−1 3

∣∣∣∣
Therefore :

det(A) = |A| = 2(2) − 1 − 5 = 4 − 6 = −2.

Method 2 : Calculate |A| for

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 2 0
−1 3 1
2 1 −1


.

det(A) = |A| = a11(a22)(a23)+a12(a23)(a31)+a21(a32)(a13)−[a31(a22)(a13)+a32(a23)(a11)+a21(a12)(a33)]

= 1(3)(−1) + 2(1)(2) + 1(−1)(0) − [2(3)(0) + 1(1)(1) + 2(−1)(−1)] = 1 − 3 = −2

Example 3.3.11
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Similarly, the determinant of a 4 × 4 matrix A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ∈ M(4,4)(R) is given by :

|A| =

∣∣∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ = (−1)1+1(a11)

∣∣∣∣∣∣
a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣ + . . . + (−1)1+4(a14)

∣∣∣∣∣∣
a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣

Definition 3.3.12

Let A = (aij)1≤i≤n,1≤j≤n be a matrix. The determinant along the j-th column is given by :

det(A) = (−1)1+ja1jD1j + (−1)2+ja2jD2j + · · · + (−1)n+janjDnj , j = 1, . . . , n.

The determinant along the i-th row is given by :

det(A) = (−1)i+1ai1Di1 + (−1)i+2ai2Di2 + · · · + (−1)i+nainDin, i = 1, . . . , n.

Here, Aij represents the minor determinant of the term aij , which is the determinant of order n − 1
obtained from det(A) by removing the i-th row and j-th column.

Definition 3.3.13

Let A ∈ Mn(IK). We have :
1. det(A) = det(At).
2. det(A) = 0 if two rows (or two columns) of A are equal.
3. det(A) = 0 if two rows (or two columns) of A are proportional.
4. det(A) = 0 if one row is a linear combination of two other rows of A (similarly for columns).
5. det(A) remains unchanged if a linear combination of other rows is added to one row (similarly for

columns).
6. If B ∈ Mn(IK), then det(A · B) = det(A) · det(B).

Proposition 3.3.14

1. |A| =

∣∣∣∣∣∣
1 0 −5
5 4 −2
1 0 −5

∣∣∣∣∣∣ = 0, because row 1 is equal to row 3, L1 = L3.

2. |B| =

∣∣∣∣∣∣∣∣
2 −4 6 10
0 8 −7 1
1 −2 3 5
2 −3 0 −1

∣∣∣∣∣∣∣∣ = 0, because L1 = 2L3.

3. |C| =

∣∣∣∣∣∣∣∣
2 −3 2 6
1 8 1 −1
0 −4 0 5

−2 −3 −2 −1

∣∣∣∣∣∣∣∣ = 0, because C1 = C3.

Example 3.3.15
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Let V1, V2, . . . , Vn be n vectors in Rn. The determinant of the vectors (V1, V2, . . . , Vn), denoted as

det(V1, V2, . . . , Vn)

, is the determinant whose columns are the vectors V1, V2, . . . , Vn.

Definition 3.3.16

Let V1 = (−1, −1, 0), V2 = (0, −1, 0), V3 = (0, 1, 1). Then

det(V1, V2, V3) =

∣∣∣∣∣∣
−1 0 0
−1 −1 1
0 0 1

∣∣∣∣∣∣
= (−1)

∣∣∣∣ −1 1
0 1

∣∣∣∣
= (−1)(−1)
= 1.

Example 3.3.17

The vectors (V1, V2, . . . , Vn) form a basis for Rn if and only if det(V1, V2, . . . , Vn) ̸= 0.
Proposition 3.3.18

Let V1 = (−1, −2, 0), V2 = (0, −1, −1), V3 = (0, 2, 1). They form a basis for R3 because det(V1, V2, V3) ̸= 0.
Example 3.3.19

3.3.3 Rank of a Matrix (Associated Application)

Let A ∈ M(n, p)(IK). The rank of A, denoted as rgA, is the order of the largest square matrix B
extracted from A such that det(B) ̸= 0.

Definition 3.3.20

1. A =
(

1 2
−1 4

)
⇒ det(A) = 1 × 4 − (−1) × 2 = 6 ̸= 0 ⇒ rgA = 2.

2. B =
(

1 −4
−1 4

)
⇒ det(B) = 0 ; thus rgB = 1.

3. C =

 0 0 1 −1
1 −1 0 1

−1 0 0 −1

, rgC < 4 (rgC ≤ 3). The largest square matrix contained in C is of

Example 3.3.21
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order 3. In this example, there are 4 possibilities :

C1 =

 0 1 −1
−1 0 1
0 0 −1

 ,

C2 =

 0 1 −1
1 0 1

−1 0 −1

 ,

C3 =

 0 0 −1
1 −1 1

−1 0 −1

 ,

C4 =

 0 0 1
1 −1 0

−1 0 0

 .

det(C1) = det(C2) = det(C3) = det(C4) = 0, so rgC < 3, and we have :∣∣∣∣ 1 −1
−1 0

∣∣∣∣ = −1 ̸= 0 ⇒ rgC = 2.

The rank of a matrix is equal to the maximum number of linearly independent row (or column) vectors.
Theorem 3.3.22

Let A = (aij)1≤i≤n,1≤j≤n ∈ Mn(IK). The cofactor of index i and j of A is the scalar cij = (−1)i+jdetAij.
,

where Aij is the matrix obtained from A by removing the i-th row and the j-th column. The matrix
C = (cij)1≤i≤n,1≤j≤n is called the matrix of cofactors, and the transpose of C is called the adjugate or
comatrix of A.

Definition 3.3.23

Consider the matrix A =

 1 −2 0
5 3 1
0 1 −1

.

The cofactors of A are calculated as follows :

c11 = (−1)1+1det(A11) = (−1)2
∣∣∣∣ 3 1

1 −1

∣∣∣∣ = −4,

c12 = (−1)1+2det(A12) = (−1)3
∣∣∣∣ 5 1

0 −1

∣∣∣∣ = 5,

c13 = (−1)1+3det(A13) = (−1)4
∣∣∣∣ 5 3

0 1

∣∣∣∣ = 5,

c21 = (−1)2+1det(A21) = (−1)3
∣∣∣∣ −2 0

1 −1

∣∣∣∣ = −2,

c22 = (−1)2+2det(A22) = (−1)4
∣∣∣∣ 1 0

0 −1

∣∣∣∣ = −1,

c23 = (−1)2+3det(A23) = (−1)5
∣∣∣∣ 1 −2

0 1

∣∣∣∣ = 1,

Example 3.3.24
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c31 = (−1)3+1det(A31) = (−1)4
∣∣∣∣ −2 0

3 1

∣∣∣∣ = −2,

c32 = (−1)3+2det(A32) = (−1)5
∣∣∣∣ 1 0

5 1

∣∣∣∣ = −1,

c33 = (−1)3+3det(A33) = (−1)6
∣∣∣∣ 1 −2

5 3

∣∣∣∣ = 13.

The matrix of cofactors is :

C =

 −4 5 5
−2 −1 1
−2 −1 13


The transpose of the matrix of cofactors (adjugate or comatrix of A) is :

C t =

 −4 −2 −2
5 −1 −1
5 1 13



Let A ∈ Mn(IK), then :
A is invertible ⇔ det(A) ̸= 0

In this case, the inverse of matrix A is given by :

A−1 = 1
det(A)C t

where C t is the adjugate (or comatrix) of A.

Theorem 3.3.25

Consider the matrix A =

 1 −2 0
5 3 1
0 1 −1

.

Here, det(A) = −14 ̸= 0, so A is invertible. The inverse of A is calculated as :

A−1 = 1
det(A)C t = 1

−14

 −4 −2 −2
5 −1 −1
5 1 13

 =

 4
14

2
14

2
14−5

14
1

14
1

14−5
14

1
14

−13
14


One can verify that :

A−1A = I3 =

 1 0 0
0 1 0
0 0 1

 = AA−1.

Example 3.3.26

3.4 Relations between a linear map and its associated matrix

Let A = (aij)1≤i≤m,1≤j≤n be the matrix of f with respect to the basis B and B
′ . If E = F and B = B

′ ,
we say that A is the matrix of f with respect to the base B and denote it by M(B)(f).

Definition 3.4.1
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1. Consider the linear map :

f : R3 → R2

(x, y, z) 7→ f(x, y, z) = (x + y + z, x − y).

Using the canonical basis B = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} for R3 and B
′ = {v1 =

(1, 0), v2 = (0, 1)} for R2, we have :

f(x, y, z) = f(xe1 + ye2 + ze3)
= f(xe1) + f(ye2) + f(ze3)
= f(x(1, 0, 0)) + f(y(0, 1, 0)) + f(z(0, 0, 1))
= f((x, 0, 0)) + f((0, y, 0)) + f((0, 0, z))
= (x, x) + (y, −y) + (z, 0)
= x(1, 1) + y(1, −1) + z(1, 0)

So,
M(B,B′ )(f) =

(
1 1 1
1 −1 0

)
2. Consider the linear map :

g : R2 → R2

(x, y) 7→ f(x, y) = (x + y, x − y).

With basis B = {e1 = (1, 2), e2 = (−1, 1)} and B
′ = {v1 = (0, 2), v2 = (−2, 1)}.

f(1, 2) = (3, −1) = λ1v1 + λ2v2

= λ1(0, 2) + λ2(−2, 1)
= (0, 2λ1) + (−2λ2, λ2)
= (−2λ2, 2λ1 + λ2)

−2λ2 = 3 ⇒ λ2 = −3
2

So,
2λ1 + λ2 = 2λ1 + −3

2 = −1 ⇒ λ1 = 1
4 .

Then (λ1, λ2) = ( 1
4 , −3

2 ).
Now,
f(−1, 1) = (0, −2) = λ1v1 + λ2v2

= λ1(0, 2) + λ2(−2, 1)
= (0, 2λ1) + (−2λ2, λ2)
= (−2λ2, 2λ1 + λ2)

−2λ2 = 0 ⇒ λ2 = 0
So,
2λ1 + λ2 = 2λ1 = −2 ⇒ λ1 = −1.
Then (λ1, λ2) = (−1, 0).
We find :

M(B,B′ )(g) =
( 1

4 −1
−3
2 0

)

Example 3.4.2

Let E and F be two K-vector spaces of dimensions n and m, and B = (e1, e2, ..., en) a basis of E, and
B

′ = (v1, v2, ..., vm) a basis of F . Then, the matrix A ∈ M(n,m)(K) corresponds to a unique linear map
f from E to F . The matrix representation of f with respect to basis B and B

′ is given by A.

Proposition 3.4.3
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Consider the matrix A =
(

−1 4
2 −3

)
. We have :

A

(
x
y

)
=

(
−1 4
2 −3

) (
x
y

)
=

(
−x + 4y
2x − 3y

)
.

The associated linear application is :

f : R2 → R2,
(x, y) 7→ f(x, y) = (−x + 4y, 2x − 3y).

Example 3.4.4

If Rn and Rm are equipped with their canonical bases, the linear map f from Rn to Rm associated with
a matrix A = (aij)1≤i≤m,1≤j≤n is given by :

f(x1, x2, ..., xn) = A


x1
x2
...

xn



Note 3.4.5

Consider the matrix A =

 2 −1 0
0 1 −2

−1 0 1

. We have :

A

 x
y
z

 =

 2 −1 0
0 1 −2

−1 0 1

  x
y
z

 =

 2x − y
y − 2z
−x + z

.

The associated linear map is :

f : R3 → R3,
(x, y, z) 7→ f(x, y, z) = (2x − y, y − 2z, −x + z).

Example 3.4.6

Let E, F , and G be IK-vector spaces with basis B, B
′ , and B

′′ , respectively.
If f : E → F and g : F → G are linear maps, then :

M(B, B
′′
)(g ◦ f) = M(B

′
, B

′′
)(g) · M(B, B

′
)(f).

Theorem 3.4.7

Consider linear applications :

f : R3 → R2,
(x, y, z) 7→ f(x, y, z) = (2x + y − z, 2x − y).

And
g : R2 → R2,
(x, y) 7→ g(x, y) = (x − 2y, x + y).

The matrix representations are :

M(B, B
′′
)(g ◦ f) =

(
−2 3 −1
4 0 −1

)

Example 3.4.8
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M(B
′
, B

′′
)(g) =

(
1 −2
1 1

)
M(B, B

′
) =

(
2 1 −1
2 −1 0

)
M(B

′
, B

′′
)(g) · M(B, B

′
)(f) = M(B, B

′′
)(g ◦ f)(

1 −2
1 1

)
.

(
2 1 −1
2 −1 0

)
=

(
−2 3 −1
4 0 −1

)

For linear application f : E → F , where B is a basis of E and B
′ is a basis of F :

f is bijective ⇔ det
(

M(B,B′ )(f)
)

̸= 0.

In this case :
M(B,B′ )(f−1) = (M(B,B′ )(f)) −1.

Theorem 3.4.9

Consider the linear application :

f : R2 → R2,
(x, y) 7→ f(x, y) = (−x + y, x + y).

Show that f is bijective and calculate its inverse.
The matrix representation is :

M2(f) =
(

−1 1
1 1

)
.

The inverse is given by :

(M2(f−1))−1 = 1
−2

(
−1 1
1 1

)
=

( 1
2 − 1

2
− 1

2 − 1
2

)
Therefore, f−1(x, y) =

( 1
2 − 1

2 y, − 1
2 x − 1

2 y
)
.

Example 3.4.10

3.5 Invariance of rank under transposition

If A ∈ M(n,m)(K) is associated with a linear map f : E → F , where B is a basis of E and B
′ is a basis

of F , then :
rank(A) = rank(f).

Also,
rank(A) = rank(A t)

Proposition 3.5.1

3.6 Matrices and Change of Basis

Let E be a vector space, and let B = (e1, e2, . . . , en) and B′ = (e′
1, e′

2, . . . , e′
n) be two basis for E. The

change of basis matrix from B′ to B is, by definition, the matrix det
(
M(B,B′)(IdE)

)
,

Definition 3.6.1
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where IdE is the identity map :
IdE : E → E

x 7→ Id′
E(x) = x.

The basis vectors of B can be expressed in B′ according to the relations :

S :



e1 = a11e′
1 + a12e′

2 + a13e′
3 + · · · + a1ne′

n

e2 = a21e′
1 + a22e′

2 + a23e′
3 + · · · + a2ne′

n

e3 = a31e′
1 + a32e′

2 + a33e′
3 + · · · + a3ne′

n
...

en = an1e′
1 + an2e′

2 + an3e′
3 + · · · + anne′

n.

The matrix of passage from B′ to B is the square matrix P defined by :

P =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

... . . . ...
an1 an2 an3 · · · ann



B′ = (e′
1, e′

2, e′
3), e′

1 = (1, 1, 1), e′
2 = (1, 1, 0), e′

3 = (1, 0, 0) and B = (e1, e2, e3) is the canonical basis of
R3.

IdE : R3
B → R3

B′

(x, y, z) 7→ IdR3(x, y, z) = (x, y, z)

M(B,B′)(IdR3) =?

S :

 Id (e1) = (1, 0, 0) = a11e′
1 + a12e′

2 + a13e′
3

Id (e2) = (0, 1, 0) = a21e′
1 + a22e′

2 + a23e′
3

Id (e3) = (0, 0, 1) = a31e′
1 + a32e′

2 + a33e′
3

S ⇔

 Id (e1) = (1, 0, 0) = a11(1, 1, 1) + a12(1, 1, 0) + a13(1, 0, 0)
Id (e2) = (0, 1, 0) = a21(1, 1, 1) + a22(1, 1, 0) + a23(1, 0, 0)
Id (e3) = (0, 0, 1) = a31(1, 1, 1) + a32(1, 1, 0) + a33(1, 0, 0)

S ⇔

 a11 = 1
2 , a12 = − 1

2 , a13 = 1
2

a21 = 1
2 , a22 = 1

2 , a23 = − 1
2

a31 = − 1
2 , a32 = 1

2 , a33 = 1
2

Therefore :

M(B,B′)(IdR3) = 1
2

 1 −1 1
1 1 −1

−1 1 1



Example 3.6.2

The change of basis matrix from a basis B to a basis B′ is the inverse matrix of the change of basis matrix
from B′ to B :

M(B′,B)(IdR3) =
(
M(B,B′)(IdR3)

)−1
.

Proposition 3.6.3
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Let E be a vector space, and let B = (e1, e2, . . . , en) and B′ = (e′
1, e′

2, . . . , e′
n) be two basis for E. The

basis vectors of B′ can be expressed in B according to the relations :

S :



e′
1 = b11e1 + b12e2 + a13e3 + · · · + b1nen

e′
2 = b21e1 + b22e2 + b23e3 + · · · + b2nen

e′
3 = b31e1 + b32e2 + b33e3 + · · · + b3nen

...
e′

n = bn1e1 + bn2e2 + bn3e3 + · · · + bnnen

The change of basis matrix from B to B′ is the square matrix P −1 defined by :

P −1 =


b11 b12 b13 · · · b1n

b21 b22 b23 · · · b2n

b31 b32 b33 · · · b3n

...
...

... . . . ...
bn1 bn2 bn3 · · · bnn



Note 3.6.4

M(B,B′)(IdR3) = 1
2

 1 −1 1
1 1 −1

−1 1 1



M(B′,B)(IdR3) =

 1
2

 1 −1 1
1 1 −1

−1 1 1

−1

=

 1 1 0
0 1 1
1 0 1


Change of basis matrix from basis B to B′.

Example 3.6.5

Let f : E → F , B1, B′
1 be two basis for E, B2, B′

2 bases of F .
If P denotes the change of basis matrix from B1 to B′

1, and Q denotes the change of basis matrix from
B2 to B′

2, then

M(B′
1,B′

2)(f) = Q−1M(B1,B2)(f)P.

Theorem 3.6.6

Let f : R3 → R2 be defined by
(x, y, z) 7→ (x + y + z, x − y)

We equip R3 with the canonical basis B3 = (e1, e2, e3) and R2 with the canonical basis B2 = (v1, v2).
The matrix representation M(B3, B2)(f) is given by

M(B3, B2)(f) =
[
1 1 1
1 −1 0

]
We also consider another basis B′

3 = (e′
1, e′

2, e′
3) for R3 with e′

1 = (1, 0, 1), e′
2 = (1, 1, 0), e′

3 = (0, 1, 1).
For R2, we have the basis B′

2 = (v′
1, v′

2) with v′
1 = (−1, 1) and v′

2 = (1, 1).

Example 3.6.7
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The change of basis matrices are given by

P = M(B′
3,B3)(IdR3) =

1 1 0
0 1 1
1 0 1


Q = M(B′

2,B2)(IdR2) =
[
−1 1
1 1

]

The linear transformation f can be represented as

M(B′
2,B′

3)(f) = Q−1
(B2,B′

2)P = Q−1M(B3,B′
2)(f)P

Substituting the matrices, we get

M(B′
2,B′

3)(f) =
[
−1/2 1/2
1/2 1/2

] [
1 1 1
1 −1 0

] 1 1 0
0 1 1
1 0 1

 =
[
−1/2 −1 −1/2
3/2 1 1/2

]

3.7 Diagonalization

Let A ∈ M(n, n)(K) and λ ∈ K. We say that λ is an eigenvalue of A if there exists a non-zero column
vector v such that Av = λv. The vector v is called the eigenvector associated with the eigenvalue λ.

Definition 3.7.1

Consider the matrix
A =

(
2 2
0 1

)
The eigenvalues of A are λ1 = 1 and λ2 = 2.
For λ1 = 1, the corresponding eigenvector is

v1 =
(

−2
1

)
and for λ2 = 2, the corresponding eigenvector is

v2 =
(

1
0

)

Example 3.7.2

Let A ∈ M(n, n)(K) and λ ∈ K. λ is an eigenvalue of A if and only if PA(λ) = det(A − λIn) = 0. Here,
PA(λ) is called the characteristic polynomial of A.

Proposition 3.7.3

For the matrix
A =

(
2 2
0 1

)
The characteristic polynomial is

PA(λ) = det(A − λI2) = (2 − λ)(1 − λ) = 0

Example 3.7.4
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Then
PA(λ) = det

((
2 2
0 1

)
− λ

(
1 0
0 1

))
= det

((
2 2
0 1

)
−

(
λ 0
0 λ

))
= det

((
2 − λ 2

0 1 − λ

))
= (2 − λ)(1 − λ) = 0

This gives the eigenvalues λ1 = 2 and λ2 = 1.

Let A ∈ M(n, n)(K) and λ ∈ K. If λ is an eigenvalue of A, then the set

E = {v ∈ Rn or Cn : Av = λv}

is called the eigenspace associated with the eigenvalue λ. The set E is a subspace of Rn or Cn.

Definition 3.7.5

Consider the matrix

A =

 1 0 1
−1 2 1
0 0 2


The eigenvalues of A are 2 (double) and 1 (simple). For λ = 2, the eigenspace E2 is spanned by the vectors
(1, 1, 0) and (0, 1, 1). For λ = 1, the eigenspace E1 is spanned by the vector (1, 1, 0).

Example 3.7.6

A matrix A ∈ Mn(IK) is said to be diagonalizable if there exists an invertible matrix P and a diagonal
matrix D such that A = PDP −1 (where P is the change of basis matrix).

Definition 3.7.7

Let A ∈ Mn(IK), and let λ1, λ2, ..., λn ∈ IK be the eigenvalues of A with respective multiplicities
m1, m2, ..., mp. Then, if either :

1. dimEλi
= mi for i = 1, 2, ..., p. or

2. dimEλ1 + dimEλ2 + ... + dimEλp = n.
Then, matrix A is diagonalizable, and the associated diagonal matrix D is given by :

D =



λ1 0 0 · · · · · · · · · 0
0 λ2 0 · · · · · · · · · 0
0 0 λ3 · · · · · · · · · 0

0 0 · · ·
. . . · · · · · · 0

0 0 · · · · · · λp · · ·
...

0 0 · · · · · · · · ·
. . . ...

0 0 0 · · · · · · 0 λn


Each entry repeats mi times, and matrix P is formed by the eigenvectors.

Theorem 3.7.8
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If matrix A ∈ Mn(IK) has n distinct eigenvalues, then A is diagonalizable, and the associated diagonal
matrix D is :

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0

0 0 · · ·
. . . · · ·

0 0 · · · · · · λn



Note 3.7.9

Consider the matrix A =

 1 0 1
−1 2 1
0 0 2

. It has eigenvalues λ1 = 2 (double) and λ2 = 1 (simple). The

diagonal matrix D is :

D =

1 0 0
0 2 0
0 0 2

 .

And the change of basis matrix P is :

P =

1 1 0
1 0 1
0 1 0

 .

Example 3.7.10

3.8 Exercises

Let A =

1 0 0
0 0 1
0 −1 0


1. Calculate A2 and A3. Evaluate A3 − A2 + A − I.
2. Express A−1 in terms of A2, A, and I.
3. Express A4 in terms of A2, A, and I.

Exercise 3.8.1

Let A =

 3 0 1
−1 3 −2
−1 1 0


Calculate (A − 2I)3, then deduce that A is invertible and find A−1 in terms of I, A, and A2.

Exercise 3.8.2

Consider the matrix A defined as :

A =

 5 6 −3
−18 −19 9
−30 −30 14


1. Is A invertible ? If yes, determine its inverse A−1.
2. Calculate A2 − A − 2I3 = 0, where I3 is the identity matrix.

Exercise 3.8.3
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