Chapter 3.

Matrices

3.1 Matrix Associated with a Linear Map

Let K be a commutative field.
Let E and F be two K vector spaces of finite dimension n and m, f a linear map from E to F. Let B =

{e1,ea,....,e,} be a basis of E, B = {e],ey,...,e,,} be a basis of F. Since f(e1), f(€2), ..., f(en) are vectors in
F and {ey,e,,...,€,,} is a basis of F, then f(e1), f(e2), ..., f(en) can be written as linear combinations of the
vectors in the basis B = {e}, ey, ...,e,,}. For every j = 1,...,n, we have :

n
’ ’ ’ ’
f(e;) = aje; + agjeq + ... + amje,, = E a;e;, i1=1,...m
Jj=1

a;  aiz2 -0 Qip 6/1
a21 agz - a2n €9
Then, we have (f(e1), f(e2), ..., f(en)) = ;
Am1 Am2 e Amn €;n
and
a11 a2 -+ Qln
a1 Qg2 - Q2p
Am1 Am2 e Amn

is called the matrix associated with f relative to the basis B and B'. The matrix is denoted by (a;;) where
1 denotes the row index and j denotes the column index.

Now, let’s introduce the concept of matrices and algebraic operations on matrices.

WDeﬁnition 3.1.1

A matrix in K of type (n,p) is a rectangular array A of elements from I K with n rows and p columns.

aip a2 G1p

a1 (22 a2p
A= i

Gp1  Qp2 - Anp

We denote a;; as the element at row number ¢ and column j, and we represent the matrix A by A =
(aij)1<i<n, 1<j<p- The set of matrices of type (n,p) is denoted as M, (I K).
1. For n =1, we say that A is a row matrix, A = (a11, @12, ..., a1p).
ail

az1
2. For p =1, we say that A is a column matrix, A =

24



3.2. Vector Space of Matrices with n Rows and m Columns

L , 3. For n = p, we say that A is a square matrix of order n, and we denote A € M, (K). J

B/‘Example 3.1.2

-10 2 O
1. 4 = _15 :3 8 , Ay is a matrix of type (4, 3).
-3 -1 0

2. Ay = < _04 :; 37 ), As is a matrix of type (2, 3).

4 -4

3. As = < -1 =5 ), As is a square matrix of order 2.

3.2 Vector Space of Matrices with n Rows and m Columns

3.2.1 Matrix Operations

( )

WDeﬁnition 3.2.1

Let A = (aij)1<i<n, 1<j<p and B = (b;j)1<i<n, 1<j<p be two matrices of types (n,p),
1. Wesay that A=BifVi=1,..,n,Vj=1,...,p; a;; = by;.
2. The transpose of matrix A is a matrix denoted by A? defined by :

A" = (aji)1<j<p, 1<i<n-

In other words, A? is the matrix of type (p,n) obtained by replacing the rows with the columns and the
columns with the rows, and we have :

(AN = A.

0/‘Example 3.2.2

1 0
LA=( -4 6 ¢A§<é_64 :‘2)

-3 -5

5 71 0 —10 ?_085_01
2. Ay = I = Ab = 1 5 3 5

79 3 -2 1

0 —-13 -2 0

-1 0 5 0 0 0 5 1 0

0 -1 0 5
3A3_<5_8):>A§:< 1—8)

Sum of Matrices

fTheorem 3.2.3
By equipping the set M, ,)(K) with the following operations :

(+) : M(nyp) (K) X M(n,p) (K) - M(n,p) (K)
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3.2. Vector Space of Matrices with n Rows and m Columns CHAPITRE 3. MATRICES

a1 Q12 .. G1p bir bz .. by a1 +bi1 a2 +biz .. ap+biy
a1 Q2 .. Ggp b1 bap .. bop ag1 + b1 agy +bao .. agy + by
aF — 5
Gn1 Ap2 .. Gnp bnl bn2 .. bnp ap1 + bnl Ap2 + bn2 - Qpp aF bnp
and

(x): Kx Map(K) = M, (K).

a1 ai2 .. Qip )\&11 )\@12 00 )\a1p

a1 a922 .. Q2p )\agl /\a22 o0 )\agp
A, —

n1  Qp2 .. Qpp Alp1 Aap2 .. Adpy

Then (M, ;) (K), +, -) is an K-vector space of dimension n x p,

00 .. O
00 .. O
where the additive identity is the zero matrix .
0 0 0
S J

Product of Two Matrices

s ~
¢ Definition 3.2.4
Let A € M, ,)(K) and B € M, ) (K), the product of matrix A by B is defined as a matrix
C = (cijh<icn, 1<j<m € M(n,m)(K), with
L Cij = ailblj + aigbgj + ai3b3lj + ...+ aipbpj. )
N

(&Note 3.2.5

1. The element c¢;; of matrix C is calculated by adding the product of the elements in the ¢-th row of
matrix A by the elements in the j-th column of matrix B.

2. The product of two matrices is possible only if the number of columns in matrix A is equal to the

L number of rows in matrix B. )

B/‘Example 3.2.6
2 1 3 1
(10 n) (0
0 3 00
A is of type (2,3) and B is of type (3,4), so C will be of type (2,4).

C_A.B_< 1.2+ 0.5+ 9.0 L1+0.(0)+9.3 1.(3) + 0(2)+90 1.(1) +0.(1) + 9.0
TP T 424754 (4.0 4147.00)+ (—4)3 4.(3)+7.(2) + (- ( )

2 28 3 1
C‘(43 -8 26 11>

&Note 3.2.7

The product of two matrices is not commutative, here is an example :

12 0 3 41
AXB_(4 5>X(21)_(10 17)

Algebra 2 Y. SOULA 26




3.83. Square Matrix Ring CHAPITRE 3. MATRICES

0 3 12 12 15
mea=(5 5)(405)=(% 1)

So AxB#BxA

3.3 Square Matrix Ring

( )

WDeﬁnition 3.3.1
Let A be a square matrix of order n, A = (a;;)i1<i<n, 1<j<n,
1. The sequence of elements {a11, ags, ..., any } is called the principal diagonal of A.
2. The trace of A is the number
TT(A) =ay11 +ags+ ... +ann-
3. A is called a diagonal matrix if a;; = 0, Vi # j, meaning all elements of A are zero except on the
principal diagonal.

4. Ais called an upper (resp. lower) triangular matrix if a;; = 0, Vi > j (resp. ¢ < j), meaning elements
below (resp. above) the diagonal are zero.

5. A is called symmetric if A = A’

Q/‘Example 3.3.2

4 0 O
1. A= 0 =17 0 |, A; is a diagonal matrix.
0o 0 2

1 =14 0 |, Ay is a lower triangular matrix.

0 0 1

2 10 -2 2 10 -2
10 -1 21 = Al = 10 -1 21 , A4 is a symmetric matrix.
-2 21 1 -2 21 1

2 10 =25
3. A3=1[ 0 -1 22 , Ag is an upper triangular matrix.

s N
?Proposition 3.3.3
| The matrix product is an internal operation in M, ,)(/K), and it has a neutral element called the
identity matrix, denoted by I,,, defined as :
100 0
010 0
0 0 1 0
=100 0 0
0 0 0 0 1
N\ J
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3.83. Square Matrix Ring CHAPITRE 3. MATRICES

3.3.1 Invertible Matrices

Definition 3.3.4
Let A € My, n)(IK), we say that A is invertible if there exists a matrix B € M, »)(IK) such that :

A.B=BA=1I,.

O/‘Example 3.3.5
Show that the matrix A = ( le _13 > is invertible.

By seeking the matrix B = i fl ) such that :
1 1 a b 10 a b 1 1
A'B_(4 —3>X<c d)_<0 1)_12_<c d>x<4 —3)_3"4

This gives :
_ a+c b+d _ 1 0\ (a+4 a-3b)\
A'B_(4a3c 463d>_<0 1>_<c+4d ch)_B'A

Which leads to the system :

at+c=1 a=32
N 4da —3c=0 N c:%
b+d=0 b=z
4b—3d =1 d==

SIS
=

3 1
So,B< >.Then,B%.<4 _1)

=

3.3.2 Determinant of a Square Matrix and Properties

e N
W( Definition 3.3.6
Let A= ( ZH 212 > , be a matrix in M3 9)(R), the determinant of A is the real number given by :
21 @22
det(A) = a11 X A22 — A12021
It is denoted as det(A) or a2
a1 G22
\ J
Q/‘Example 3.3.7
Calculate det(A) for A = ( ; _54 )
1 —4
det(A) = |A| = | 5 ‘:1><5—2><(—4):13
Y. SOULA 28

Algebra 2



3.83. Square Matrix Ring CHAPITRE 3. MATRICES

s N
WDeﬁnition 3.3.8
a11  G12  a13
Similarly, the determinant of a 3 x 3 matrix A = as1 Qo9 (93 € M3,3)(R) is given by :
azi1 asz ass
a1l G2 a13
|[Al =1 a1 a2 a2z | =a11C11 + a12C12 + a13C13
azi1 asz2 asg
_ _ 1)+l 22 a23 + )2 az1 a23 + _1)1+3 az1 Q22
au(=1) az az | T 42D az az | T 3D az;  as
L Where C11, Ci2, and C3 are the cofactors of the elements a11, a2, and a3, respectively. )
B/‘Example 3.3.9
1 2
Calculate |A| for A= -1 3 1
2 1 -1
1 2 0
[Al=] -1 3 1
2 1 -1
3 1 -1 1 5 —1 3
(1141 _1\142 _\143
=1(-1) 1 _1’+2( 1) 9 1’+0( 1) 5 1’
=1(-3-1)—-2(1-2)4+0(-1-6) = -2.

fProposition 3.3.10
To calculate the determinant of a matrix A, one can expand A along any row or column. Following this
proposition, it is better to choose the row or column containing the most zeros.

e/‘Example 3.3.11

Using the same matrix as the previous example.
Method 1 : calculating along the third row, we have :

1 2 0
det(A) = A= | -1 3 1 :(_1)3“(2)’3 (1)‘+(—1)3+2(+1)‘ Y (1)‘+(—1)3+3(_1)‘ g g’
2 1 -1 B -

Therefore :
det(A) =1A4|=2(2)—-1-5=4-6=—-2.

Method 2 : Calculate |A| for

a11 G12 Q13 1 2 0
A= ag1 Q22 a23 = -1 3 1
a3; Qs Aass 2 1 -1

det(A) = |A| = a11(a2)(az3)+a12(a23)(asi)+az1(asz)(aiz) —[asi(aze)(a13)+as2(a3)(ai1)+a21 (a12)(ass)]

= 13)(~1) + 2(1)(2) + 1(~1)(0) — [2(3)(0) + L(1)(1) +2(~1)(~1)] =1 ~ 3 = —2
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CHAPITRE 3. MATRICES

r N
WDeﬁnition 3.3.12
a1l a2 a1z a4
Similarly, the determinant of a 4 x 4 matrix A = o1 22 G2z G4 o M 4,4)(R) is given by :
azr Gz2 433 a34 ’
aq1 Q42 Q43 Q44
a1 a2 Gi13 @
a; a;z a;z a;i Q22 Q23 Q24 az1 Q22 @23
|A|l = = (=1)"""a11)| as2 ass ass |+...+(=1)""(a14)| az1 as2 ass
dsr faz s dsd Q42 Q43 Q44 aq1 Q42 Q43
aq1 Q42 Q43 Q44
\ J
r N
WDeﬁnition 3.3.13
Let A = (a;j)1<i<n,1<j<n be a matrix. The determinant along the j-th column is given by :
det(A) = (—1)1+ja1jD1j + (—1)2+ja2jD2j +---+ (—].)n+jananj, j = ]., ceeyn.
The determinant along the i-th row is given by :
det(A) = (—1)i+1a1‘1Di1 + (—1)i+2ai2Di2 + -+ (—1)i+nainDin, 1=1,...,n.
Here, A;; represents the minor determinant of the term a;;, which is the determinant of order n — 1
L obtained from det(A) by removing the i-th row and j-th column. )
r N
fProposition 3.3.14
Let A € M, (IK). We have :
1. det(A) = det(A").
2. det(A) = 0 if two rows (or two columns) of A are equal.
3. det(A) = 0 if two rows (or two columns) of A are proportional.
4. det(A) = 0 if one row is a linear combination of two other rows of A (similarly for columns).
5. det(A) remains unchanged if a linear combination of other rows is added to one row (similarly for
columns).
L 6. If B € M, (IK), then det(A - B) = det(A) - det(B). )

B/‘Example 3.3.15

1 0 =5

1. |[Al=| 5 4 —2 | =0, because row 1 is equal to row 3, L; = Ls.
1 0 -5
2 -4 6 10
0 8 -

2. |B| = 1 2 3 5 |= 0, because Ly = 2L3.
2 -3 0 -1
2 -3 2

3. |C) = (1) _84 (1) = 0, because C; = Cj.
-2 -3 -2
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3.83. Square Matrix Ring CHAPITRE 3. MATRICES

s N
WDeﬁnition 3.3.16
Let V4, Va, ..., V, be n vectors in R™. The determinant of the vectors (V1, Va,...,V,,), denoted as
det(Vq, Vo, ..., Vy)
, is the determinant whose columns are the vectors Vi, Vs, ..., V. )

c/‘Example 3.3.17

Let V4 = (=1,—1,0), Vo = (0,—1,0), V3 = (0,1,1). Then
-1 0 0
det(Vy, Vo, Va) = | =1 -1 1
0 0 1
-1 1
_(_1)‘ 0 1‘
= (D=1
=1.

fProposition 3.3.18
| The vectors (V4,Va,...,V,) form a basis for R" if and only if det(Vy,Va,...,V;) # 0.

O/‘Example 3.3.19
| LetV; =(—1,-2,0), Vo = (0,—1,—1), V5 = (0,2,1). They form a basis for R? because det(V, Va, V3) # 0.

3.3.3 Rank of a Matrix (Associated Application)

,/Kf Definition 3.3.20

Let A € M(n,p)(IK). The rank of A, denoted as rgA, is the order of the largest square matrix B
extracted from A such that det(B) # 0.

c/‘Example 3.3.21

1. A:(_ll i>:>det(A):1><4—(—1)><2:67é0:>7‘gA:2.

2.B:< 1 _4):>det(B)=O;thus7“gB:1.

3. C = 1 -1 0 1 , rgC < 4 (rgC < 3). The largest square matrix contained in C' is of
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3.83. Square Matrix Ring CHAPITRE 3. MATRICES

order 3. In this example, there are 4 possibilities :

0 1 -1

= -10 1],
0 0 -1
0o 1 -1

Co=| 1 0 1 |,
-1 0 -1
0 0 -1

o= 1 -1 1 |,
-1 0 -1
0 0 1

Cy= 1 -1 0
-1 0 0

det(C1) = det(Cs) = det(C3) = det(Cy) = 0, so rgC < 3, and we have
1 -1
’ 1 0 '2—1750:>rgC’:2.
e w

fTheorem 3.3.22

L | The rank of a matrix is equal to the maximum number of linearly independent row (or column) vectors. )

p
,f Definition 3.3.23

Let A = (aj)1<i<n,1<j<n € My (IK). The cofactor of index 7 and j of A is the scalar ¢;; = (—1)i+jdetAijl,
where A;; is the matrix obtained from A by removing the i-th row and the j-th column. The matrix
C = (¢ij)1<i<n,i<j<n is called the matrix of cofactors, and the transpose of C' is called the adjugate or

! comatrix of A. )

/Example 3.3.24

1 -2 0
Consider the matrix A = 5 3 1
0 1 -1
The cofactors of A are calculated as follows :
cin = (1) det(An) = (-1)? il)) _11 ‘ = —4,
C12 = (—1>1+2d€t(A12) = (—1)3 8 jl ‘ = 5,
C13 = (—1)1+3d€t(1413) = (—1)4 8 i ’ = 5,
co1 = (=1)*"det(Aar) = (1) _12 _01 ‘ -2,
_ 242 _ 41 0 |
Coo = (—1) det(Agg) = (—1) 0 —1 ‘ = —1,
_ 2+3 _ 501 =2 _
Co3 — (—1) det(Agg) = (—1) 0 1 ‘ = 1,
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3.4. Relations between a linear map and its associated matriz CHAPITRE 3. MATRICES

cs1 = (=1)""det(4z1) = (1) 7 | [=-2,
342 5010
C32 = (—1) det(A'g,z) = (—1) 5 1 = —1,
_ 3+3 _ 6| 1 =2 _
€33 = (71) det<A33) = (71) 5 3 =13.
The matrix of cofactors is :
-4 5 5
C= -2 -1 1
-2 -1 13
The transpose of the matrix of cofactors (adjugate or comatrix of A) is :
-4 -2 =2
c'=| 5 -1 -1
5 1 13
s 2
?Theorem 3.3.25
| Let A e M, (IK), then :
A is invertible < det(A) # 0
In this case, the inverse of matrix A is given by :
1 _ 1 t
det(A)
L where C'* is the adjugate (or comatrix) of A. )

0/‘Example 3.3.26

1 -2 0
Consider the matrix A= | 5 3 1
0o 1 -1
Here, det(A) = —14 #£ 0, so A is invertible. The inverse of A is calculated as :
-4 -2 -9 4 2 2
14 14 14
A—lzdtl(A)Ctz—l14 5 —-1 -1 | = ;% L 4
e - = i =13
One can verify that :
1 0 0
A'A=L=(0 1 0 | =441
0 0 1

3.4 Relations between a linear map and its associated matrix

Definition 3.4.1

we say that A is the matrix of f with respect to the base B and denote it by Mg (f).
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3.4. Relations between a linear map and its associated matriz CHAPITRE 3. MATRICES

O/‘Example 3.4.2
1. Consider the linear map :
f:R3 -5 R?
(,y,2) = f(z,y,2) = (@ +y + 2,2 —y).

Using the canonical basis B = {e; = (1,0,0),e2 = (0,1,0),e3 = (0,0,1)} for R® and B = {n =
(1,0),v9 = (0,1)} for R?, we have :

f(xa Y,z ) f(xel +yez + 263)
f(zer) + fyea) + f(ze3)
= f(2(1,0,0)) + f(y(0,1,0)) + f(2(0,0,1))
= f((z,0,0)) + f((0,4,0)) + f((0,0,2))
= (z,2) + (y,—y) + (2,0)
=z(1,1)+y(1,-1) + 2(1,0)
So,

1 1 1
M(B,B/)(f) = < 1 -1 0 )

2. Consider the linear map :

g:R2—>R2
(z,y) = f(z,y) = (z+y,z—y).

With basis B = {e; = (1,2),e3 = (=1,1)} and B’ = {v; = (0,2), vy = (=2,1)}.

f(l, 2) = (3, —1) = /\1111 + )\21)2
=X1(0,2) + A2(—2,1)
=(0,2XA1) + (—2A2, A2)
= (—=2X2,2A\1 + \2)

—2X=3= X ==2

So,

20+ A =22+F=-1= X\ =1

Then (Al,)\g) (i 73)

Now,

f(*l, 1) = (0, 72) = )\11)1 + )\21}2
=XA1(0,2) + X2(—2,1)
=(0,2X1) + (—2A2, A2)
= (—=2X2,2A1 + \2)

—2X=0= X =0

So,

M+ X =21 =-2= )\ = —

Then (Al,)\g) = (—1,0)

We find :

fProposition 3.4.3

Let E and F be two K-vector spaces of dimensions n and m, and B = (e, ea,...,e,) a basis of E, and
B = (v1,v2,...,vm,) a basis of F. Then, the matrix A € M, ,)(K) corresponds to a unique linear map

f from E to F. The matrix representation of f with respect to basis B and B'is given by A.
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3.4. Relations between a linear map and its associated matriz

O/‘Example 3.4.4

-1 4
2 -3

A(5)=(5 5)00) =5 )

The associated linear application is :

Consider the matrix A = ( ) We have :

f:R? - R

( )

&Note 3.4.5

If R™ and R™ are equipped with their canonical bases, the linear map f from R™ to R™ associated with

e

L1

X2
f(.Tl,LL’Q, ,ZIJn) =A

Ln

Q/‘Example 3.4.6

2 -1 0
Consider the matrix A = 0 1 —2 |. We have :
-1 1
T 2 -1 0 T 2z —y
Al v | = 0 1 =2 y | = y— 2z
z -1 0 1 z —x 4z
The associated linear map is :
f:R3 = R3
(337%2’) Hf(xvyvz) = (2$—y,y—22,—l‘+2).

fTheorem 3.4.7

Let F, F, and G be I K-vector spaces with basis B, Bl, and B”, respectively.
If f:E— Fandg:F — G are linear maps, then :

M(B,B")(go f) = M(B",B")(g) - M(B,B')(f).

Q/‘Example 3.4.8

Consider linear applications :
f:R3 = R?
(xayaz) — f(.]f,y,Z) = (2x+y—z,2m—y)

And
g:R? = R?,

The matrix representations are :
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3.5. Invariance of rank under transposition

CHAPITRE 3. MATRICES

a5 =( 1 7
M(B,B’)=<§ ! 01>
M(B',B")(g) - M(B,B')(f) = M(B,B")(g0 f)
(0 32)0 8 )= (7 )

s a
?Theorem 3.4.9

For linear application f: F — F, where B is a basis of £ and B’ is a basis of F :

f is bijective < det(M(RB/)(f)) # 0.
In this case :
M(B,B’)(f_l) = Mp,5(f)) -

S J
0/‘Example 3.4.10

Consider the linear application :

f:R? = R?,
(z,y) = flz,y) = (—z +y,z +y).
Show that f is bijective and calculate its inverse.
The matrix representation is :
-1 1
The inverse is given by :
1 (-1 1 L -1
y—1_ + — 2
a3 1)-(4 )

Therefore, f~!(z,y) = (3 — 3y, —3z — 3y).

3.5 Invariance of rank under transposition
N

g
fProposition 3.5.1

If A€ M,,m(K) is associated with a linear map f : E — F, where B is a basis of E' and B' is a basis

of F, then :
rank(A) = rank(f).
Also,
rank(A) = rank(4 )
-
3.6 Matrices and Change of Basis

WDeﬁnition 3.6.1

Let E be a vector space, and let B = (e, ea,...,e,) and B’

,e) be two basis for E. The

(e, eh,...

change of basis matrix from B’ to B is, by definition, the matrix det (M(ByB/)(IdE)),

Algebra 2 Y. SOULA
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CHAPITRE 3. MATRICES

where Idg is the identity map :
IdE EF— FE
x = Idg(z) = .

The basis vectors of B can be expressed in B’ according to the relations :
e1 = ane] + arzeh + arzes + - -+ aipel,

ex = a1€] + azeh + aszely + - - - + asgpel,
e3 = ag1€} + asaeh + aszely + - + agpel,

S :

The matrix of passage from B’ to B is the square matrix P defined by :

€n = An1€] + anoeh + anzeh + -+ + apnel,.

aj; a2 @13 QA1n
az1 G22 (23 QA2n
P = asy asz2 as3 a3n
an1  QAp2 Gp3 Ann
\
a/“Example 3.6.2
B' = (e}, ¢e5,eh), e =(1,1,1), e5=(1,1,0), e =(1,0,0) and B = (e, €2, e3) is the canonical basis of
R3.
Idg : RY — RY,
(x7yaz) — IdRS(%ZJvZ) = (1‘,y,2)
M(B’B/)(Id]RS) =7
Id (61) = (1,0,0) = (1116/1 -+ a12€/2 + algeg
S . Id (62) = (0, 170) = CL216/1 + (L226/2 + azgeé
Id (63) = (O,O7 1) = a316’1 + a32€/2 + a33eé
Id (61) = (1,0,0) = au(l, 1, 1) =+ Cl12(17 1,0) + a13(1,0,0)
S & Id (62) = (O, 1,0) = agl(l, 1, 1) + (122(1, 1,0) + a23(1,0,0)
Id (63) = (O,O7 1) = agl(l, 17 1) =+ a32(1, 1,0) =+ a33(1,0,0)
ail = %, a2 = —%, a3 = %
S an =3, ap=3, a23 = —3
azl = —3, Gz =13, Az =3
Therefore :
1 -1 1
M(B,B’)(Id]RS) :% 1 ]. _1
-1 1 1

fProposition 3.6.3

The change of basis matrix from a basis B to a basis B’ is the inverse matrix of the change of basis matrix

from B’ to B :

M(BI’B) (Id]RS) == (M(B’B/)(Id]RS)>_1
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~

(&Note 3.6.4

Let E be a vector space, and let B = (ej,es,...,e,) and B’ = (€}, €),...,¢e.) be two basis for E. The
basis vectors of B’ can be expressed in B according to the relations :

el =biier + bizes + aizes + - - + binen
e5 = bareq + bages + bazes + - - - + banen
S - eé = b31e1 + bzoes + byzes + - - - + bspen

e;, = bpie1 + bpaeg + bpges + - - + bpnen

The change of basis matrix from B to B’ is the square matrix P~! defined by :

bir bz bz - bin
bor  baz baz - boy
p1—| bs1 bs2 b3z -+ bsn
bnl bn2 bn3 U bnn
S J
0/‘Example 3.6.5
1 -1 1
Mppyldgs)=31 1 1 -1
-1 1 1
-1
1 -1 1 1 1 0
Mppy(Idgs)= |3 1 1 -1 =011
-1 1 1 1 0 1
Change of basis matrix from basis B to B’'.
e N

fTheorem 3.6.6

" Let f:E— F, By, B} be two basis for E, By, B}, bases of F.

If P denotes the change of basis matrix from B; to Bf, and @ denotes the change of basis matrix from
Bs to Bj, then

My By (f) = Q™' Mz, 5,)(f)P.

B/‘Example 3.6.7
Let f: R? = R? be defined by
(x7yﬂz) = (-T+y+2,$—y)

We equip R? with the canonical basis B3 = (e, €2, e3) and R? with the canonical basis By = (v1,v2).
The matrix representation M(Bs, Bs)(f) is given by

MBaBD =y )

We also consider another basis B = (€], e, e4) for R3 with ¢} = (1,0,1), e = (1,1,0), €5 = (0,1, 1).
For R?, we have the basis By = (v}, v}) with v] = (=1,1) and v} = (1,1).
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The change of basis matrices are given by

P = Mp; p,(Idgs) =

—_ O =

1 0
1 1
0 1

-1 1
Q = My, B,)(Idr2) = [ 1 1]

The linear transformation f can be represented as

Mpy,)(f) = Q, 5y P = Q" M,y (/)P

Substituting the matrices, we get

M(Bé,Bé)(f):|:11//22 1?;} E —11 (1)]

=
O = =
= O

C[-172 -1 —1)2
_[3/2 1 1/2

3.7 Diagonalization

WDeﬁnition 3.7.1

Let A € M(n,n)(K) and A € K. We say that A is an eigenvalue of A if there exists a non-zero column
vector v such that Av = Av. The vector v is called the eigenvector associated with the eigenvalue \.

0/‘Example 3.7.2

Consider the matrix

(31)

The eigenvalues of A are A\ =1 and A\ = 2.
For A1 = 1, the corresponding eigenvector is
[ -2
V1 = 1
and for Ay = 2, the corresponding eigenvector is

== ()

fProposition 3.7.3

Let Ae M(n,n)(K) and A € K. X is an eigenvalue of A if and only if P4(A) = det(A — AI,) = 0. Here,
P4 (A) is called the characteristic polynomial of A.

Example 3.7.4

For the matrix

The characteristic polynomial is

Pa(X) = det(A — ) = (2— \)(1 = A) =0
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Then

pA<A>=det(<<2) ?)‘A(é (1)>)

This gives the eigenvalues \; = 2 and Ay = 1.

N
Definition 3.7.5
Let A € M(n,n)(K) and A € K. If A is an eigenvalue of A, then the set
E={veR"or C": Av = \v}
is called the eigenspace associated with the eigenvalue A. The set E is a subspace of R™ or C™. )

e/“Example 3.7.6

Consider the matrix
1

0 1
A= -1 2 1
0 0 2

The eigenvalues of A are 2 (double) and 1 (simple). For A = 2, the eigenspace Es is spanned by the vectors
(1,1,0) and (0,1,1). For A = 1, the eigenspace F; is spanned by the vector (1, 1,0).

(/(//Deﬁnition 3.7.7

A matrix A € M,,(IK) is said to be diagonalizable if there exists an invertible matrix P and a diagonal

matrix D such that A = PDP~! (where P is the change of basis matrix). )

Ve

?Theorem 3.7.8
| Tet A € M, (IK), and let A1, \a,...,\, € IK be the eigenvalues of A with respective multiplicities

~

mi,ma, ...,my. Then, if either :
1. dimEy, =m,; fori=1,2,...,p. or
2. dimEy, +dimEy, + ... +dimEy, = n.
Then, matrix A is diagonalizable, and the associated diagonal matrix D is given by :

[Ay 0 0 0

0 X O 0

0 0 A3 0
D=0 0 0

0 0 Ap

0 0 -cr e e el

(0 0 0 - oo 0 Al

Each entry repeats m; times, and matrix P is formed by the eigenvectors.
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~

(&Note 3.7.9

If matrix A € M,,(IK) has n distinct eigenvalues, then A is diagonalizable, and the associated diagonal
matrix D is :
A 0 0 - 0
0 X O --- 0
D=0 0 A3 -~ 0
0 0
0 O An
S J
Q/‘Example 3.7.10
1 01
Consider the matrix A = |—1 2 1|. It has eigenvalues \y = 2 (double) and A2 = 1 (simple). The
0 0 2
diagonal matrix D is :
1 0 0]
D= 20
0 0 2]
And the change of basis matrix P is :
[1 1 0]
P=1]1 0 1
_O 1 -

3.8 Exercises

s N
? Exercise 3.8.1
1 0 0
Let A=1{0 0 1
0 -1 0
1. Calculate A% and A%. Evaluate 43 — A2+ A —I.
2. Express A~' in terms of A%, A, and I.
L 3. Express A% in terms of A%, A, and I. )
s N
) Exercise 3.8.2
3 0 1
Let A=|-1 3 =2
-1 1 0
Calculate (A — 21)3, then deduce that A is invertible and find A~! in terms of I, A, and AZ. )
s N
2 Exercise 3.8.3
Consider the matrix A defined as :
A= |-18 —-19 9
-30 —-30 14
1. Is A invertible ? If yes, determine its inverse A~!.
L 2. Calculate A2 — A — 213 = 0, where I5 is the identity matrix. )
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