
University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

1

Chapter 05: Relational Calculus

1. Introduction :

Relational calculus is a declarative language used to query relational databases. Unlike

relational algebra (which specifies how to perform a query), relational calculus focuses on

what the query should retrieve without specifying how to achieve it. It is based on formal

mathematics and exists in two main forms:

TRC (Tuple Relational Calculus):

Uses tuple variables (complete records). Each variable represents an entire row in a relation.

Example 01: If the relation Employees contains the columns name and salary, a variable T in

TRC would refer to a complete row such as (Alice, 6000).

DRC (Domain Relational Calculus):

Uses variables for each domain (i.e., each column). Each variable corresponds to an

individual value in a column.

Example 02: If the relation Employees contains the columns name and salary, two variables

like X (for name) and Y (for salary) would be used.

2. Query Notation:

TRC (Tuple Relational Calculus):

Queries are written in the form:

{T | condition(T)}

Where T is a tuple variable, and condition(T) describes the criteria that the tuple must satisfy.

Example 03: Retrieve the names of employees with a salary greater than 5000:

{T.name | T ∈ Employees ∧ T.salary > 5000}

DRC (Domain Relational Calculus):

Queries are written in the form:

University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

2

{X, Y, ... | condition(X, Y, ...)}

Where X, Y, ... are variables for the domains, and condition(X, Y, ...) describes the criteria for

these values.

Example 04: Retrieve the names of employees with a salary greater than 5000:

{Name | ∃Salary (Employees(Name, Salary) ∧ Salary > 5000)}

3. Difference beteween TRC and DRC

In summary:

Characteristic TRC (Tuple Relational Calculus) DRC (Domain Relational Calculus)

Type of variable Tuples Individual columns

Readability More intuitive Can be complex

Focus Complete rows Specific values

Usage Tuple-oriented queries Value-oriented queries

Both approaches are equivalent in expressive power, but the choice often depends on the
designer's preference or the specific situation.

In this course, we see only the TRC.

4. TRC (Tuple Relational Calculus)

4.1 Union:

In Tuple Relational Calculus (TRC), the union of two relations can be expressed by combining

the conditions of the two relations using the logical operator OR (∨). The syntax for the union

is therefore based on defining tuples that belong to either one of the relations.

General Syntax for Union in TRC:

{T | T ∈ R1 ∨ T ∈ R2}

 R1 and R2 are the two relations.

 T is a tuple variable.

 The logical condition T ∈ R1 ∨ T ∈ R2 indicates that the tuple T belongs to either R1

or R2.

Example 05:

University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

3

Suppose we have two relations:

 Employees1(name, salary)

 Employees2(name, salary)

To get the union of the two relations:

{T | T ∈ Employees1 ∨ T ∈ Employees2}

This query returns all tuples that are present in Employees1, Employees2, or both.

4.2 Intersection:

In Tuple Relational Calculus (TRC), the intersection of two relations is expressed by

specifying that a tuple must belong to both relations. This is achieved using the logical

operator AND (∧).

General Syntax for Intersection in TRC:

{T | T ∈ R1 ∧ T ∈ R2}

 R1 and R2 are the two relations.

 T is a tuple variable.

 The condition T ∈ R1 ∧ T ∈ R2 ensures that the tuple T exists in both R1 and R2.

Example 06:

Suppose we have two relations:

 Employees1(name, salary)

 Employees2(name, salary)

To get the intersection of the two relations:

{T | T ∈ Employees1 ∧ T ∈ Employees2}

This query returns all tuples that are present in both Employees1 and Employees2.

University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

4

4.3 Difference:

In Tuple Relational Calculus (TRC), the difference of two relations is expressed by specifying

that a tuple belongs to the first relation but not to the second relation. This is achieved using

the logical operator AND (∧) combined with NOT (¬).

General Syntax for Difference in TRC:

{T | T ∈ R1 ∧ ¬(T ∈ R2)}

 R1 and R2 are the two relations.

 T is a tuple variable.

 The condition T ∈ R1 ∧ ¬(T ∈ R2) ensures that the tuple T is in R1 but not in R2.

Example 07:

Suppose we have two relations:

 Employees1(name, salary)

 Employees2(name, salary)

To get the difference of the two relations (i.e., tuples in Employees1 but not in Employees2):

{T | T ∈ Employees1 ∧ ¬(T ∈ Employees2)}

This query returns all tuples that are present in Employees1 but not in Employees2.

4.4. Projection

In Tuple Relational Calculus (TRC), projection is used to select specific attributes (columns)

from a relation by filtering out other attributes. It is expressed by specifying a tuple variable

and listing the desired attributes to retrieve.

General Syntax for Projection in TRC:

{T.attribute1, T.attribute2, ... | T ∈ R}

 T is a tuple variable.

 attribute1, attribute2, ... are the attributes (columns) that you want to project

(retrieve).

 R is the relation from which the projection is made.

Example 08:

Suppose we have a relation:

University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

5

 Employees(name, salary, department)

To project only the name and salary columns from the relation Employees:

{T.name, T.salary | T ∈ Employees}

This query retrieves all tuples with only the name and salary attributes, excluding the

department attribute.

4.5 Selection:

In Tuple Relational Calculus (TRC), selection is used to filter rows based on certain

conditions. It is expressed by specifying a tuple variable and applying a condition (predicate)

that the tuple must satisfy.

General Syntax for Selection in TRC:

{T | T ∈ R ∧ condition(T)}

 T is a tuple variable.

 R is the relation from which the tuples are selected.

 condition(T) is a predicate that filters the tuples, ensuring only those that satisfy the

condition are selected.

Example 09:

Suppose we have a relation:

Employees(name, salary, department)

To select the employees whose salary is greater than 5000:

{T | T ∈ Employees ∧ T.salary > 5000}

This query retrieves all tuples from the Employees relation where the salary attribute is

greater than 5000.

4.6 Join
In Tuple Relational Calculus (TRC), a join operation is used to combine tuples from two

relations based on a matching condition. The join condition specifies how the tuples from the

two relations are related, typically based on matching attributes.

The syntax for a join in TRC combines the conditions for both relations and specifies the

criteria for matching the tuples.

General Syntax for Join in TRC:

{T1, T2 | T1 ∈ R1 ∧ T2 ∈ R2 ∧ condition(T1, T2)}

 T1 and T2 are tuple variables for the relations R1 and R2, respectively.

 R1 and R2 are the two relations being joined.

University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

6

 condition(T1, T2) is the condition that specifies how the tuples from R1 and R2 are

related (e.g., matching a common attribute).

Example 10:

Suppose we have two relations:

 Employees(name, emp_id, dep_id)

 Departments(dep_id, name)

To perform a natural join between Employees and Departments based on a matching dep_id:

{T1.name, T2.name | T1 ∈ Employees ∧ T2 ∈ Departments ∧ T1.dep_id = T2.dep_id}

This query retrieves the name of employees and their corresponding department name by

joining the Employees and Departments relations based on the matching dep_id attribute.

4.7 Division

In Tuple Relational Calculus (TRC), the division operation is used to find tuples in one

relation that are associated with all tuples in another relation. This operation is often used

when you want to find records in one relation that match a set of values in another relation,

essentially performing a "for all" check.

General Syntax for Division in TRC:

{T1 | T1 ∈ R1 ∧ ∀T2 (T2 ∈ R2 → ∃T3 (T3 ∈ R1 ∧ T3.attribute = T1.attribute ∧

T3.other_attribute = T2.other_attribute))}

 R1 and R2 are the two relations involved in the division.

 T1 is the tuple variable for the relation from which we are retrieving results.

 The condition ∀T2 (T2 ∈ R2 → ∃T3 (T3 ∈ R1 ∧ ...)) ensures that for every tuple in R2,

there is a corresponding tuple in R1 that matches.

Example 11:

Suppose we have two relations:

 Employees(emp_id, skill)

 Skills(skill)

If we want to find the emp_id of employees who have all the skills listed in the Skills relation

(i.e., those who have every skill), the division operation in TRC would look like this:

University El Arbi ben M’Hidi Oum El Bouaghi
Level : LCS2
Dr Bouneb Messaouda
Chapter 05: Relational Calculus

7

{T1.emp_id | T1 ∈ Employees ∧ ∀T2 (T2 ∈ Skills → ∃T3 (T3 ∈ Employees ∧ T3.emp_id =

T1.emp_id ∧ T3.skill = T2.skill))}

This query retrieves the emp_id of employees who have every skill listed in the Skills relation.

The ∀T2 (T2 ∈ Skills → ...) ensures that for each skill in Skills, there is a corresponding tuple

in Employees for that employee.

Exercise :

Consider the following two relations:

Students(student_id, name, age)

Courses(course_id, course_name, student_id)

Questions:

1. Query 1:

Write a TRC query to find the names of all students who are older than 20.

2. Query 2:

Write a TRC query to find the names of all students who are enrolled in both “Math” and
“Science” courses.

3. Query 3:

Write a TRC query to find the names of students who are not enrolled in any course.

Solution:

1. {T.name | T ∈ Students ∧ T.age > 20}
2. {T1.name | T1 ∈ Students ∧ ∃ T2 ∈ Courses ∧ (T1.student_id = T2.student_id) ∧

T2.course_name =’math’) ∧ ∃ T3 ∈ Courses∧ (T1.student_id = T3.student_id) ∧

T3.course_name =’science’) }

3. {T1.name | T1∈ Students ∧ ¬(T2 ∈ Courses ∧ T1.student_id= T2.student_id)}

