- 1. Explain why f is of class C^1 on the open set $\mathbb{R}^* \times \mathbb{R}^*$.
- 2. Study the derivability at 0 of the function

$$g: \mathbb{R} \to \mathbb{R}, \ x \mapsto g(x) = f(x, x).$$

Deduce that the function f is not of class C^1 on \mathbb{R}^2 .

Exercice 12 Let $f : \mathbb{R}^3 \to \mathbb{R}$ be the function defined by :

$$f(x, y, z) = x^{3}y + x^{2} - y^{2} - x^{4} + z^{5}.$$

Calculate the Hessian matrix of f.

Exercise 13 Let $\theta : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function that satisfies $\frac{\partial \theta}{\partial x}(1,2) = -1$ and $\frac{\partial \theta}{\partial y}(1,2) = 3$. We define the function $f : \mathbb{R} \to \mathbb{R}$ by $f(t) := \theta(t^2, 3t - 1)$. Calculate f'(1).

Exercice 14 Using the chain rule, calculate the derivative of the function $w : \mathbb{R} \to \mathbb{R}$, where

$$w(t) = f(x(t), y(t), z(t)),$$

$$f(x, y, z) = x e^{\frac{y}{z}},$$

$$x(t) = t^{2}, \quad y(t) = 1, \quad z(t) = 1 + 2t.$$

Exercice 15 Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ be a function of class C^1 and $g : \mathbb{R}^2 \to \mathbb{R}^2$ be the function

$$g(u, v) = f(\cos u + \sin v, \sin u + \cos v, e^{u-v}).$$

- 1. Show that g is of class C^1 .
- 2. We assume that the Jacobian matrix of f at the point a = (1, 1, 1) is

$$\mathbf{J}(f)_a = \left(\begin{array}{rrr} 1 & 3 & 4\\ 2 & -1 & 3 \end{array}\right).$$

Determine the differential of g at point $b = \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Exercice 16 (Spherical coordinates) Let the function $f : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$f(\rho, \theta, \varphi) = (\rho \cos \theta \sin \varphi, \rho \sin \theta \sin \varphi, \rho \cos \varphi)$$

- 1. Calculate the partial derivatives of f with respect to the variables ρ, θ and φ .
- 2. Determine the Jacobian matrix as well as the Jacobian of f.

3. Let $g : \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function on \mathbb{R}^3 . Calculate the partial derivatives of the composite function $\psi = g \circ f$ as a function of the partial derivatives of the function g.

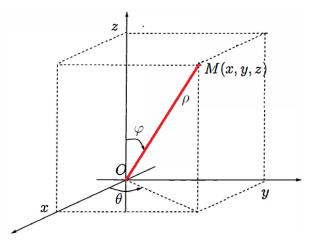


Illustration of the transition to spherical coordinates

Exercice 17 Let f be a function of class C^1 on \mathbb{R}^2 . Calculate the derivatives (possibly partial) of the following functions:

- 1. g(x, y) = f(y, x),
- 2. g(x) = f(x, x),
- 3. g(x, y) = f(y, f(x, x)),
- 4. g(x) = f(x, f(x, x)).

Exercice 18 Show that the function $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x^3 + 3x e^y, y - x^2)$ is a C^1 -diffeomorphism of \mathbb{R}^2 onto \mathbb{R}^2 .

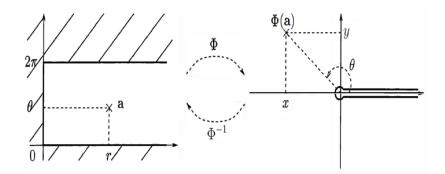
Exercice 19 We denote $U = [0, +\infty)^2$ and $\varphi : (x, y) \mapsto \left(x^3y^2, \frac{1}{x^2y}\right)$. Show that φ is a C^{∞} -diffeomorphism of U onto U.

Exercice 20 Let the function $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$\Phi(r,\theta) = (r\cos\theta, r\sin\theta)$$

- 1. Show that Φ is not a C^1 -diffeomorphism on \mathbb{R}^2 .
- 2. Show that if we restrict the function Φ to the open $U =]0, +\infty[\times]0, 2\pi[$, then we obtain an injective application.

3. Deduce that Φ is a C^1 -diffeomorphism of U onto $V = \mathbb{R}^2 \setminus \{(x, 0) \in \mathbb{R}^2 ; x \ge 0\}$.



Exercice 21 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by:

$$f(x, y) = \sin x \sin y.$$

Write the Taylor-Young expansion of order 2 of f in the neighborhood of the point (0,0).

Exercice 22 Let $f:]-1, 1[^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x,y) = -\frac{1+x}{\left((1+x)^2 + y^2\right)^{3/2}}$$

Write the Taylor-Young expansion of order 2 of f in the neighborhood of (0,0).

Exercice 23 Show that there exists a neighborhood V of (0,0) in \mathbb{R}^2 and a unique function $\varphi: V \to \mathbb{R}$ such that: φ is of class C^{∞} on V, $\varphi(0,0) = 1$, and, for all $(x,y) \in V$, $\varphi(x,y)$ is a solution to the equation $z^5 + xz^2 + yz - 1 = 0$, with unknown $z \in \mathbb{R}$.

Exercice 24 Let $f : \mathbb{R}^2 \to \mathbb{R}$ of class C^1 such that:

$$f(0,0) = 0, \quad \frac{\partial f}{\partial x}(0,0) \neq -1, \quad \frac{\partial f}{\partial y}(0,0) \neq 0.$$

Show that the relation f(f(x, y), y) = 0 implicitly defines y as a function of x in the neighborhood of (0, 0).