University of Oum El Bouaghi Analysis 4 Academic year: 2024/2025 License 2 - Mathematics

Sheet of exercises $N^{\circ}3$ - Differential calculus

Exercice 1

- 1. Show that the function $f : (x, y) \in \mathbb{R}^2 \mapsto \sin(x+y)$ admits directional derivative according to the two vectors $\mathbf{u} = (-1, 1)$ and $\mathbf{v} = (1, 1)$ at every point $a \in \mathbb{R}^2$ and calculate $\frac{\partial f}{\partial \mathbf{u}}(a)$ and $\frac{\partial f}{\partial \mathbf{v}}(a)$.
- 2. Let g be a function from \mathbb{R} to \mathbb{R} differentiable on \mathbb{R} and f the function $f : (x, y) \in \mathbb{R}^2 \mapsto g(x + y)$. Determine the derivatives of f in all directions $\mathbf{v} \in \mathbb{R}^2 \setminus \{(0, 0)\}$ and at every point $a \in \mathbb{R}^2$.

Exercice 2 Write the Jacobian matrix of the function $f : (x, y, z) \in \mathbb{R}^3 \mapsto (xyz, x^2y + y)$ at every point of \mathbb{R}^3 .

Exercice 3 Calculate the differential of the function $f : (x, y) \mapsto 3x^2y - 4xy$ at the point a = (1, 2).

Deduce the directional derivative of f at the point a = (1, 2) along the direction $\mathbf{v} = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$.

Exercice 4 Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- 1. Calculate the first partial derivatives of f.
- 2. Determine the Jacobian matrix of f at the point (1,1) then deduce the expression of the differential of f at (1,1).

Exercice 5 Form the equations of the tangent plane and the normal to the surface $z = \frac{x^2}{2} - y^2$ at the point (2, -1, 1).

Exercice 6 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x, y) = x e^{xy}.$$

Is f differentiable at the point (1,0) ? If yes, linearize f in the neighborhood of (1,0) and approach the value f(1.1,-0.1).

Exercice 7 The height of a cone is H = 30 cm, the radius of its base is R = 10 cm. Study the variation of the volume of the cone if we increase H by 3 mm and decrease R by 1 mm. <u>Indication</u>: the volume of the cone is given by the relation $V = \frac{1}{3}\pi R^2 H$.

Exercice 8 One side of a rectangle is a = 10 cm, the other b = 24 cm. Study the variation of the diagonal l of the rectangle if side a lengthens by 4 mm and side b shortens by 1 mm. Calculate the approximate value of the variation and compare with the exact value.

Exercice 9 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2 y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{else.} \end{cases}$$

- 1. Explain why f is of class C^1 on $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 2. Is f continuous on \mathbb{R}^2 ? (We can switch to polar coordinates)
- 3. Does f admit partial derivatives of order 1 on \mathbb{R}^2 ?
- 4. Is f of class C^1 on \mathbb{R}^2 ? (We can switch to polar coordinates)
- 5. Is f differentiable on \mathbb{R}^2 ?

Exercice 10 Consider the function f from \mathbb{R}^2 to \mathbb{R} defined by

$$f(x,y) = \begin{cases} y^2 \sin\left(\frac{x}{y}\right) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

- 1. Show that f is of class C^1 on the open set $U = \{(x, y) \in \mathbb{R}^2 : y \neq 0\}$.
- 2. Show that f is continuous on \mathbb{R}^2 .
- 3. Show that f is differentiable on \mathbb{R}^2 .
- 4. Calculate the two partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ on \mathbb{R}^2 . Deduce that f is not of class C^1 on \mathbb{R}^2 .

5. Calculate
$$\frac{\partial^2 f}{\partial y \partial x}(0,0)$$
 and $\frac{\partial^2 f}{\partial x \partial y}(0,0)$.

Exercice 11 Consider the function f defined on \mathbb{R}^2 by:

$$f(x,y) = \frac{\sin(xy)}{|x| + |y|} \quad \text{if } (x,y) \neq (0,0) \qquad \text{and} \qquad f(0,0) = 0$$