
Chapter 2
Linear Applications

2.1 Concept of Linear Application

1. Assume that (E, +, .) and (F, +, .) are two K-vector spaces. Define f as a function that maps from
E to F . f is considered a linear application if and only if :

∀x, y ∈ E, ∀λ ∈ R, f(x + y) = f(x) + f(y) and f(λx) = λf(x)

Or, in the equivalent case :

∀x, y ∈ E, ∀λ, µ ∈ R, f(λx + µy) = λf(x) + µf(y)

2. Furthermore, we refer to f as an isomorphism from E to F if f is bijective.
3. A linear application from (E, +, .) to (E, +, .) is called an endomorphism.
4. An isomorphism from (E, +, .) to (E, +, .) is also called an automorphism of E.

Definition 2.1.1

1. The function
f1 : R2 → R

(x, y) 7→ x − y,

is a linear application, as :

f1(λ(x, y) + µ(x′, y′)) = f1((λx, λy) + (µx′, µy′))
= f1((λx + µx′), (λy + µy′))
= (λx + µx′) − (λy + µy′)
= λx − µy + µx′ − µy′,

= λ(x − y) + µ(x′ − y′),
= λf1(x, y) + µf1(x′, y′).

2. The function
f2 : R3 → R3

(x, y, z) 7→ (−x + y, x − 5z, y),

Example 2.1.2
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is a linear application, as :

f2(λ(x, y, z) + µ(x′, y′, z′)) = f2((λx, λy, λz) + (µx′, µy′, µz′))
= f2((λx + µx′), (λy + µy′), (λz + µz′))
= (−(λx + µx′) + (λy + µy′), (λx + µx′) − 5(λz + µz′), λy + µy′)
= (−λx − µx′ + λy + µy′, λx + µx′ − 5λz − 5µz′, λy + µy′)
= (−λx + λy − µx′ + µy′, λx − 5λz + µx′ − 5µz′, λy + µy′)
= (λ(−x + y) + µ(−x′ + y′), λ(x − 5z) + µ(x′ − 5z′), λy + µy′)
= λ(−x + y, x − 5z, y) + µ(−x′ + y′, x′ − 5z′, y′),
= λf2(x, y, z) + µf2(x′, y′, z′).

3. The function
f3 : R → R
x 7→ −5x,

is an isomorphism. Indeed, f3 is linear because for all x, y in R, and λ, µ in R :

f3(λx + µy) = −5(λx + µy),
= λf3(x) + µf3(y).

It can be easily shown that the sum of two linear applications is linear. Also, the product of a linear
application by a scalar and the composition of two linear applications are linear.

Note 2.1.3

Let f be a linear application from E to F .
1. f(OE) = OF .
2. ∀x ∈ E, f(−x) = −f(x).

Proposition 2.1.4

Because f is a linear application we have :
1. f(OE) = f(OE + OE) = f(OE) + f(OE) ⇒ f(OE) − f(OE) = f(OE). So, OF = f(OE) .
2. Since f is a linear application, then ∀x ∈ E, f(−x) + f(x) = f(−x + x) = f(OE) = OF

then, f(−x) = −f(x).

Proof

2.1.1 Image and Kernel of a Linear Application

1. The definition of the image of f , or Im f , is as follows :

Im f = {y ∈ F, ∃x ∈ E : f(x) = y} = {f(x), x ∈ E}.

2. The following is the definition of the kernel of f , or ker f :

ker f = {x ∈ E, f(x) = OF }.

Sometimes ker f is denoted by : f−1({0}).

Definition 2.1.5
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2.1.2 Rank of a Linear Application

If f is a linear application from E to F , and if dim Im f = n < +∞, then n is called the rank of f and
is denoted rg(f). Im f and ker f are vector subspaces of E.

Proposition 2.1.6

The dimension of the image of f is the definition of the rank of f :

rg(f) = dim Im f.

Definition 2.1.7

1. Determine the kernel of the function f1 :

f1(x, y) = x + 2y

The kernel is given by :

ker f1 = {(x, y) ∈ R2/f1(x, y) = 0}
= {(x, y) ∈ R2/x + 2y = 0}
= {(x, y) ∈ R2/x = −2y}

So, ker f1 is a line in R2.
2. Determine the kernel of the function f2 :

f2(x, y, z) = (−x + y, x − 5z, y)

The kernel is given by :

ker f2 = {(x, y, z) ∈ R3/f2(x, y, z) = (0, 0, 0)}
= {(x, y, z) ∈ R3/ − x + y = 0, x − 5z = 0, y = 0}

Solving this system of equations gives the solution space, which is a subspace of R3.

Example 2.1.8

Let f be a linear application from E to F . The following are equivalent :
1. f is surjective ⇔ Im f = F.

2. f is injective ⇔ ker f = {0E}.

Proposition 2.1.9

In the previous example Im f2 = R3 then f2 is surjective. We are going to demonstrate that f2 is injective

ker f2 = {(x, y, z) ∈ R3, f2(x, y, z) = (0, 0, 0)},

ker f2 = {(x, y, z) ∈ R3, (−x + y, x − z, y) = (0, 0, 0)} −x + y = 0
x − z = 0

y = 0
⇒

 −x + 0 = 0
x − z = 0

y = 0
⇒

 x = 0
z = 0
y = 0

Example 2.1.10
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Therefore, ker f2 = {(0, 0, 0)}, hence f2 is injective. So f2 is bijective.

2.2 Finite dimension and rank theorem

Let f , g be two linear mappings from E to F , such as E and F be two K vector spaces. If E is of finite
dimension n and {e1, e2, ..., en} is a basis of E. Then
∀k ∈ {1, 2, .., n}, f(ek) = g(ek) ⇔ ∀x ∈ E, f(x) = g(x).

Proposition 2.2.1

The implication (⇐) is obvious. For (⇒)
Since E is generated by {e1, e2, ..., en}, for any x ∈ E, there exist λ1,λ2, ..., λn ∈ K such that x =
λ1e1 + λ2e2 + ... + λnen,

As f and g are linear, we have
f(x) = f(λ1e1 + λ2e2 + ... + λnen) = λ1f(e1) + λ2f(e2) + ... + λnf(en),
g(x) = g(λ1e1 + λ2e2 + ... + λnen) = λ1g(e1) + λ2g(e2) + ... + λng(en),
so if we assume that ∀k ∈ {1, 2, .., n}, f(ek) = g(ek), then we deduce that
∀x ∈ E, f(x) = g(x).

Proof

For two linear mappings f and g from E to F to be equal, it is sufficient that they coincide on the basis
of the K vector space E.

Note 2.2.2

Let g be a mapping from R2 to R2 such that
g(1, 0) = (2, 1), g(0, 1) = (−1, −1).
Then let’s determine the value of g at all points of R2, in fact, we have :

∀(x, y) ∈ R2, (x, y) = x(1, 0) + y(0, 1).

∀(x, y) ∈ R2,
g(x, y) = g(x(1, 0) + y(0, 1)) = xg(1, 0) + yg(0, 1)
= x(2, 1) + y(−1, −1)
= (2x, x) + (−y, −y)
= (2x − y, x − y).
So, g(x, y) = (2x − y, x − y).

Example 2.2.3

(Rank Theorem)
Let E be a vector space of finite dimension and f a linear mapping from E to F . Next, there is the
equality.

dim (Im f ) + dim ( Ker f ) = dim(E )

Another way to express the rank theorem is as

rg(f ) + dim (Ker f ) = dim(E )

Theorem 2.2.4
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We have shown that dim ker f1 = 1 for f1 defined by
f1 : R2 → R
(x, y) 7→ x + 2y

Since dim R2 = 2 then, dim Im (f1) = dim R2 −dim ker f1 = 2 − 1 = 1.

Example 2.2.5

1. Always , the rank of f is either the same as or less than the dimension of E.
2. Additionally, if F has a finite dimension, we have rg(f) ≤ dim(F ). Indeed, Im(f) is a subspace of

F , and therefore its dimension (equal to rg(f) by definition) is less than or equal to that of F .
3. In the case when F has a finite dimension, then f is surjective if and only if rg (f) = dim (F ).

Indeed, Im(f) is a subspace of F , and therefore Im(f) = F if and only if dim(Im(f)) = dim(F ).

Note 2.2.6

Assuming that E is of finite dimension. Let f be a linear mapping from E to F .
1. f is an injective linear application if and only if rg(f) = dim(E). Then we have :

dim(E) ≤ dim(F ).

2. When f is surjective, then F is of finite dimension and

dim(F ) ≤ dim(E).

3. When f is bijective, then F is of finite dimension and

dim(F ) = dim(E)

Corollary 2.2.7

2.2.1 Rank theorem if dim(E) = dim(F )
A very important consequence of the rank theorem is the following :

The following equivalencies hold if F has a finite dimension and dim(E) = dim(F ) = n.

f injective ⇔ f surjective ⇔ f bijective ⇔ f isomorphism

This result applies in particular to endomorphisms.

Theorem 2.2.8

1. The mapping f1 is not an isomorphism because dim R2 ̸= dim R.

2. Let g(x, y) = (2x − y, x − y), g defined from R2 to R2.
We have g is an isomorphism (dimR2 = dimR2 = 2)
because dim ker g = 0 indeed :

ker g = {(x, y) ∈ R2, (2x − y, x − y) = (0, 0)} = {(0, 0)},

it is even an automorphism.

Example 2.2.9
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2.2.2 Composition of linear applications

The composition of two linear mappings is still linear. More formally, it can be stated as :
∀p, q, r ∈ N, ∀f ∈ Lq, r, ∀g ∈ Lp, q , g ◦ f is linear.

Proposition 2.2.10

Recall that Lp, q designates the set of linear mappings from Rq to Rp.

◦p,q,r : Lp,q × Lq,r → Lp,r

(g, f) 7→ g ◦ f,

(g, f) 7→ (v 7→ g(f(v)).

It should be seen as follows :
Rr f→ Rq g→ Rp

Note 2.2.11

Let p, q, r be three integers, f in Lq, r and g in Lp, q. In order to demonstrate that g ◦ f is linear, we
must :

∀λ, µ ∈ R, ∀u, v ∈ Rr, (g ◦ f)(λu + µv) = λ(g ◦ f)(u) + µ(g ◦ f)(v)
We have : (g ◦ f)(λu + µv) = g(f(λu + µv)) (by definition of composition)

= g(λf(u) + µf(v)) (by linearity of f )
= λg(f(u)) + µg(f(v)) (by linearity of g)

Proof

Determine the composition g ◦ f using

g : R2 → R2

(x, y) 7→ (x + y, x − y)

f : R3 → R2

(x, y, z) 7→ (3x + 5y + 7z, 2x + 2y + 2z)

(g ◦ f)(x, y, z) = (g(f(x, y, z)), by using composition definition
= g(3x + 5y + 7z, 2x + 2y + 2z), by definition of f

= (5x + 7y + 9z, x + 3y + 5z), by definition of g

The composition g ◦ f is (x, y, z) 7→ (5x + 7y + 9z, x + 3y + 5z).

Example 2.2.12

The composition of linear applications is associative. More formally, this can be expressed as :
∀p, q, r, s ∈ N, ∀h ∈ Lp, q, ∀g ∈ Lq, r, ∀f ∈ Lr, s, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Proposition 2.2.13

Let p, q, r, s, f , g , h ´We are going to prove
(h ◦ g) ◦ f = h ◦ (g ◦ f) we say that
∀u ∈ Rs, ((h ◦ g) ◦ f)(u) = (h ◦ (g ◦ f))(u).

Proof
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Let then u in Rs. By usnig the definition of the composition we get

((h ◦ g) ◦ f)(u) = (h ◦ g)(f(u)) = h(g(f(u))).

The same (h ◦ (g ◦ f ))(u) = h((g ◦ f )(u)) = h(g(f (u))).
Then, ((h ◦ g) ◦ f)(u) = (h ◦ (g ◦ f))(u).

2.2.3 Inverse of a Bijective Linear application, Automorphism.

When f be an isomorphism from E to F , then, f−1 is an isomorphism from F to E.
Theorem 2.2.14

When f be an automorphism from E to F , then, f−1 is an automorphism from F to E.
Assume that E has two automorphisms : f andg. Then, g ◦ f is an automorphism of E, and we have :

(g ◦ f)−1 = f−1 ◦ g−1.

Proposition 2.2.15
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