Chapter 2

Linear Applications

2.1 Concept of Linear Application

p
e/‘fDeﬁnition 2.1.1

1. Assume that (E,+,.) and (F,+,.) are two K-vector spaces. Define f as a function that maps from
FE to F. f is considered a linear application if and only if :

Vo,y e EVAER, flz+y)=f(z)+ f(y) and f(iz)=Af(z)
Or, in the equivalent case :

Vo,y € E,VApeR, f(Ax + py) = Mf(z) + pnf(y)

2. Furthermore, we refer to f as an isomorphism from F to F if f is bijective.

3. A linear application from (E,+,.) to (E,+,.) is called an endomorphism.

4. An isomorphism from (E,+,.) to (E,+,.) is also called an automorphism of E.

Example 2.1.2

1. The function
fi:R2=>R
(z,y) =z —y,

is a linear application, as :

FiM@,y) + p(a’,y') = fr((Az, Ay) + (pa’, py'))
= fil(Az + pa’), Ay + py'))
= Az + px') — (\y + pny')
= \x — py + px’ — py',
=Mz —y) +p(" —y),
= Mz, y) + pfi(@'y).

2. The function
fo : R® — R3
(z,y,2) = (—x + y,x — bz,y),
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is a linear application, as :

foN(@,y, 2) + p(a’,y', 2") = fo((Aw, Ay, Az) + (ua', py', pz")
fo((Aw + pa’), Ay + py'), (A2 + p2’))
= (—(A\z +pa’) + My + '), Az + pa’) = 5(Az + pz'), Ay + py')
= (=Az — px’ + My + py', e + px’ — 5 z —dbuz’, Ny + py')
= (=Az+ Ay — px’ + py', e — 5 z + pa’ —5pz’, Ny + py')
= M-z +y) +p(=2' +y), Mz — 52) + p(z’ = 52'), Ay + /)
=AN—z+y,x—52,y) +p(—2' +y,2" -5y,
= Moa(x,y,2) + pfa(a’,y', 2).

3. The function
fg :R—R

T — —dx,

is an isomorphism. Indeed, f3 is linear because for all z, y in R, and A, pin R :

f3(Ar + py) = =5z + py),
= As(z) + pfs(y).

s 2
[\Note 2.1.3
It can be easily shown that the sum of two linear applications is linear. Also, the product of a linear
application by a scalar and the composition of two linear applications are linear. )
e 2
fProposition 2.1.4
Let f be a linear application from F to F.
1. f(Og) =OF.
2. Ve € E, f(—z) = —f(x). )
55 Proof
Because f is a linear application we have :
1. f(Op) = f(Op + Og) = f(Og) + f(Or) = f(Og) — f(Or) = f(OE). So, Or = f(Ok) .
2. Since f is a linear application, then Vo € E, f(—z)+ f(z) = f(—z +z) = f(Og) = OF
then, f(~z) = —f(x).
2.1.1 Image and Kernel of a Linear Application
e N
Definition 2.1.5
1. The definition of the image of f, or Im f, is as follows :
Imf={yerF, Irek:f(x)=y}={f(x), v€kL}
2. The following is the definition of the kernel of f, or ker f :
ker f={x € E, f(z)=O0r}.
L Sometimes ker f is denoted by : f~({0}). )
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2.1.2 Rank of a Linear Application
N
fProposition 2.1.6
| If f is a linear application from E to F, and if dim Im f = n < 400, then n is called the rank of f and
is denoted rg(f). Im f and ker f are vector subspaces of E. )
N
WDeﬁnition 2.1.7
The dimension of the image of f is the definition of the rank of f :
rg(f) =dim Im f. )

0/‘Example 2.1.8

1. Determine the kernel of the function f; :

The kernel is given by :

So, ker fi is a line in R2.

2. Determine the kernel of the function fs :

The kernel is given by :

filz,y) =2 +2y

ker fi = {(z,y) € R?/fi(z,y) = 0}
{(z,y) € R?*/x + 2y = 0}
{(z,y) € R?Jx = —2y}

f2($7y72) = (—1'+y,517 - 527y)

ker fo = {(x,y,2) € R*/fo(x,y,2) = (0,0,0)}
:{(xvyvz) GRg/—$+y:071’—5Z:0,y:0}

Solving this system of equations gives the solution space, which is a subspace of R3.

fProposition 2.1.9

Let f be a linear application from E to F. The following are equivalent :

1. f is surjective & Im f = F.
2. f is injective < ker f = {0g}.

Q/‘Example 2.1.10

ker fo = {(x,y,2) € R®, fa(x,y,2) = (0,0,0)},

ker f2={(2,y,2) € R®,(—z +y,2 — z,y) = (0,0,0)}

In the previous example Im fo = R3 then f; is surjective. We are going to demonstrate that fs is injective

—z+y=0 —z4+0=0 z=0
r—2z=0 = r—2z=0 = z2=0
Algebra 2 Y. SOULA 15
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Therefore, ker fo = {(0,0,0)}, hence fs is injective. So fo is bijective.

2.2 Finite dimension and rank theorem

fProposition 2.2.1

Let f, g be two linear mappings from F to F', such as E and F' be two K vector spaces. If F is of finite
dimension n and {ey, eq, ..., e, } is a basis of E. Then

fg Proof

The implication (<) is obvious. For (=)
Since E is generated by {ej,eq,...,en}, for any z € E, there exist Aj )\, ..., A, € K such that z =
Ater + does + ...+ \en,

As f and g are linear, we have

f(I) = f(>\1€1 + Ageg + ... + )\nen) = /\1f(€1) + )\Qf(eg) —+ ...+ )\nf(en),

g(w) = g(Arer + Agea + ... + Anen) = Aigler) + Aaglez) + ... + Anglen),

so if we assume that Vk € {1,2,..,n}, f(ex) = g(ex), then we deduce that

Ve e E, f(z) = g(x).

&Note 2.2.2

For two linear mappings f and g from E to F' to be equal, it is sufficient that they coincide on the basis
of the K vector space E.

Q/‘Example 2.2.3
Let g be a mapping from R? to R? such that

9(170) - (271)7 g(oa 1) - (*13 71)'
Then let’s determine the value of g at all points of R2, in fact, we have :

V(z,y) € R? (z,y) = 2(1,0) + y(0,1).

V(z,y) € R?,

g(z,y) = g(x(1,0) + y(0,1)) = 2g(1,0) + yg(0,1)
=2z —y,x—y).

So, g(z,y) = (2 —y,x — y).

p
fTheorem 2.2.4

(Rank Theorem)

Let E be a vector space of finite dimension and f a linear mapping from E to F. Next, there is the
equality.

[ dim (Im f ) +dim (Ker f )=dim(E) |

Another way to express the rank theorem is as

[ rg(f) +dim (Ker f)=dim(E) |
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Example 2.2.5
We have shown that dim ker f; =1 for fi; defined by
fl : RQ — R
(z,y) — x+ 2y
Since dim R? = 2 then, dim Im (f1) = dim R? —dim ker f; =2 —1=1.

(&Note 2.2.6

1. Always , the rank of f is either the same as or less than the dimension of E.

2. Additionally, if F' has a finite dimension, we have rg(f) < dim(F). Indeed, Im(f) is a subspace of
F, and therefore its dimension (equal to rg(f) by definition) is less than or equal to that of F'.

3. In the case when F has a finite dimension, then f is surjective if and only if rg (f) = dim (F).
Indeed, Im(f) is a subspace of F, and therefore Im(f) = F if and only if dim(Im(f)) = dim(F). )

g
fCorollary 2.2.7

Assuming that FE is of finite dimension. Let f be a linear mapping from F to F.

1. f is an injective linear application if and only if rg(f) = dim(E). Then we have :
dim(E) < dim(F).

2. When f is surjective, then F' is of finite dimension and
dim(F) < dim(E).

3. When f is bijective, then F is of finite dimension and

dim(F) = dim(FE)

2.2.1 Rank theorem if dim(E) = dim(F)

A very important consequence of the rank theorem is the following :

-

fTheorem 2.2.8

| The following equivalencies hold if F' has a finite dimension and dim(E) = dim(F) = n.

f injective < f surjective < f bijective < f isomorphism

This result applies in particular to endomorphisms.

e/‘Example 2.2.9

1. The mapping f; is not an isomorphism because dim R? # dim R.

2. Let g(x,y) = (22 — y,x — y), g defined from R? to R2.
We have g is an isomorphism (dimR? = dim R? = 2)
because dim ker g = 0 indeed :

ker g ={(z,y) € R*, (22 —y,z —y) = (0,0)} = {(0,0)},

it is even an automorphism.
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2.2.2 Composition of linear applications

N
fProposition 2.2.10
| The composition of two linear mappings is still linear. More formally, it can be stated as :
Vp,q,r € N,Vf € Lq,r,¥Yg € Lp,q, go f is linear. )
N

-
[N\Note 2.2.11
Recall that Lp, g designates the set of linear mappings from R? to RP.

opar i LpgX Lgy— Ly,
(9, f) =gof
(9, f) = (v g(f(v)-

It should be seen as follows :

R™ % R? % RP

fg Proof
Let p, g, r be three integers, f in Lg,r and g in Lp,q. In order to demonstrate that g o f is linear, we

must :
YA p€R,Vu,v € R, (go f)(Au+ pv) = Ago f)(u) + u(go f)(v)
We have : (go f)(Au+ pv) = g(f(Au + pv)) (by definition of composition)

=g\ f(u) + pf(v)) (by linearity of f )
=Ag(f(u) + pg(f(v))  (by linecarity of g)

e/‘Example 2.2.12

Determine the composition g o f using

g: R? — R?
($7y) »—>(ai+y,x—y)

f+ R SR
(x,y,2) — (Bx+5by+ 7z, 2x+2y+22)

(9o f)(z,y,2) = (9(f(z,y,%)), by using composition definition
= ¢g(3xz 4 by + 7z,2x + 2y + 2z), by definition of f
= (bx+ Ty +9z,2 + 3y + 5z), by definition of g

The composition go f is (z,y,2) — (b + Ty + 9z, =+ 3y + 52).

fProposition 2.2.13

l The composition of linear applications is associative. More formally, this can be expressed as :
Vp,q,r,s € N,VYh € Lp,q,Vg € Lq,n,Vf € Lr,s,(hog)o f=ho(go f).

:g Proof

Let p,q,7,s, f » 9, h’ ,We are gOing to prove
(hog)o f=ho(gof) we say that
Vu € R®, (hog)o f)(u) = (ho(gof))(u).
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Let then u in R®. By usnig the definition of the composition we get

((hog)o f)(u) = (hog)(f(u) = h(g(f(w)))

The same (ho (go f))(u) = h((ge f)(w)) = h(g(f (u))).
Then, ((hog)o f)(u) = (ho(go f))(u).

2.2.3 Inverse of a Bijective Linear application, Automorphism.

fTheorem 2.2.14

| When f be an isomorphism from E to F, then, f~! is an isomorphism from F to E.

fProposition 2.2.15

When f be an automorphism from E to F, then, f~! is an automorphism from F to E.
Assume that E has two automorphisms : f andg. Then, g o f is an automorphism of F, and we have :

(gof)t=ftog ™"
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