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Chapter V: Direct Solution of Systems of Linear Equations 

The problem of solving systems of linear equations is frequently encountered. These systems are 

present, for example, in various numerical methods for solving partial differential equations. The latter 

model the majority of physical phenomena such as heat and mass transfer, fluid mechanics, etc. In this 

chapter, we will address systems of linear equations where the number of equations is equal to the 

number of unknowns and where the determinant is non-zero. That is, systems that have a unique 

solution. A system of linear equations with n equations and n unknowns is then written as: 

{

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 +⋯𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 +⋯𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………………… .
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 +⋯𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

This system can be written in matrix form: 

[

𝑎11 𝑎12
𝑎21 𝑎22

…
𝑎1𝑛
𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2…𝑎𝑛𝑛

]

⏟          
𝐴

[

𝑥1
𝑥2
⋮
𝑥𝑛

]

⏟
𝑋

= [

𝑏1
𝑏2
⋮
𝑏𝑛

]

⏟
𝐵

⇔𝐴𝑋 = 𝐵 

This system can be solved directly by various methods, including Cramer's rule (using determinants) 

or elimination. 

Systems with triangular matrices 

Let's start with some definitions. We say that a system UX=Y is a system with an upper triangular 

matrix if 𝑢𝑖𝑗 = 0 for  𝑖 > 𝑗 : 

{
 
 

 
 
𝑢11𝑥1 + 𝑢12𝑥2 + 𝑢13𝑥3 +⋯+𝑢1𝑛𝑥𝑛 = 𝑦1
                𝑢22𝑥2 + 𝑢23𝑥3 +⋯+𝑢2𝑛𝑥𝑛 = 𝑦2
                                 𝑢33𝑥3 +⋯+ 𝑢3𝑛𝑥𝑛 = 𝑦3
                                          ……………………… .
                                                        𝑢𝑛𝑛𝑥𝑛 = 𝑦𝑛

 

The solution of this system is easily calculated by backward substitution. From equation n, we 

calculate: 𝑥𝑛 = 𝑦𝑛 𝑢𝑛𝑛⁄  

We substitute 𝑥𝑛 into equation n-1 to calculate 𝑥𝑛−1 = (𝑦𝑛−1 − 𝑢𝑛−1𝑛𝑥𝑛)/𝑢𝑛−1𝑛−1. 

For the calculation of 𝑥𝑖, the components 𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, … . , 𝑥𝑖+1 are known, we substitute them 

into equation i, which gives: 

𝑥𝑖 = (𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗
𝑛
𝑗=𝑖+1 )/𝑢𝑖𝑖  i=n-1, n-2,….,1. 

The determinant of a triangular matrix (upper or lower) is the product of the diagonal (pivot) 

elements of that matrix. 

det(𝑈) =∏ 𝑢𝑖𝑖 = 𝑢11𝑢22… . 𝑢𝑛𝑛
𝑛

𝑖=1
 

Example: Consider the following system of equations: 

{
𝑥 − 𝑦 + 𝑧 = 1
              3𝑧 = 3
      2𝑦 − 𝑧 = 1
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1. Write the system in matrix form. 

2. Find the solution of the system. 

3. Calculate the determinant of the system's matrix. 

Solution 

1. Writing the system in matrix form by permuting rows 2 and 3 to obtain an upper triangular 

system. Let's not forget that the determinant will be multiplied by -1 due to the permutation. 

𝐴 = [
1 −1 1
0 2 −1
0 0 3

] [
𝑥
𝑦
𝑧
] = [

1
1
3
] 

2. Backward substitution gives: 

𝑒𝑞. 3 ∶ 𝑧 =
3

3
= 1,   𝑒𝑞. 2: 𝑦 =

1+1

2
= 1  𝑎𝑛𝑑  𝑥 = 1 + 1 − 1 = 1. 

3.  Det(A) = (−1) ∗ 1 ∗ 2 ∗ 3 =  −6. 

5.1 Gaussian Elimination Method 

In this chapter, we will start with the Gaussian elimination method, which is similar to the elimination 

method with a very important modification that greatly facilitates the solution even of large systems 

(thousands or even millions). This modification transforms a system with a full matrix A into another 

system with an upper triangular matrix U, such that the two systems AX=B and UX=Y are equivalent, 

i.e., have the same solution. 

Linear algebra shows that certain transformations applied to systems of equations do not change 

their solutions. In our case, the operations we will apply are the following: 

• Multiplication of equation 𝐸𝑖  by a non-zero constant 𝛼, the new equation obtained 𝐸𝑖𝑛 =

𝛼𝐸𝑖  will replace the old 𝐸𝑖. 

• Multiplication of equation 𝐸𝑗  by a non-zero 𝛼 and its addition to 𝐸𝑖 ,   𝐸𝑖𝑛 = 𝐸𝑖 + 𝛼𝐸𝑗, the 

equation obtained 𝐸𝑖𝑛 will replace 𝐸𝑖. 

• Permutation of equations 𝐸𝑖  and 𝐸𝑗. 

Applying a series of these operations will transform the system AX=B into UX=Y, and then backward 

substitution will give the solution of the system. 

5.1.1 Description of the Gaussian Elimination Method 

We will show how to apply the transformations to the system AX=B. For this, the right-hand side B 

will be considered as the (n+1)th column and will also be affected by the operations. We divide the 

work into (n-1) steps, each of which cancels the elements below the pivot of column (𝒂𝒊𝒋 pour 𝒊 > 𝒋). 

At the beginning of each step, we verify that the pivot is non-zero. For step i, the pivot is 𝒂𝒊𝒊
(𝒊−𝟏)

 at 

step (i-1). 

The system in its initial state or at step (0) is given by: 

[

𝑎11 𝑎12
𝑎21 𝑎22

…
𝑎1𝑛
𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2…𝑎𝑛𝑛

]

(0)

[

𝑥1
𝑥2
⋮
𝑥𝑛

] = [

𝑏1
𝑏2
⋮
𝑏𝑛

]

(0)

= [

𝑎1𝑛+1
𝑎2𝑛+1
⋮

𝑎𝑛𝑛+1

]

(0)
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First step:  

We first verify that the pivot of the first step, which is 𝑎𝑖𝑖
(𝑖−1)

≠ 0  𝑓𝑜𝑟 𝑖 = 1   i. e   𝑎11
(0)
≠ 0. 

To cancel the element 𝑎21
(0)

 of the second row, we multiply the first equation by 𝑎21
(0)

 and divide it by 

𝑎11
(0)

, then we take the difference of this new equation with the second. The resulting equation will 

replace the second one 𝐸2
(1)
= 𝐸2

(0)
− 𝐸1

(0) 𝑎21
(0)

𝑎11
(0) . 

This operation gives 𝑎21
(1)
= 0,  𝑎22

(1)
= 𝑎22

(0)
− 𝑎12

(0) 𝑎21
(0)

𝑎11
(0), ….., 𝑎2𝑛+1

(1)
= 𝑎2𝑛+1

(0)
− 𝑎1𝑛+1

(0) 𝑎21
(0)

𝑎11
(0). 

In general, we write: 𝑎2𝑗
(1)
= 𝑎2𝑗

(0)
− 𝑎1𝑗

(0) 𝑎21
(0)

𝑎11
(0)     for 𝑗 = 2, 𝑛 + 1 

We continue this procedure with rows 3, 4, ..., for row i we have:  𝐸𝑖
(1)
= 𝐸𝑖

(0)
− 𝐸1

(0) 𝑎𝑖1
(0)

𝑎11
(0) 

This operation gives 𝑎𝑖1
(1)
= 0,  𝑎𝑖2

(1)
= 𝑎𝑖2

(0)
− 𝑎12

(0) 𝑎𝑖1
(0)

𝑎11
(0), ….., 𝑎𝑖𝑛+1

(1)
= 𝑎𝑖𝑛+1

(0)
− 𝑎1𝑛+1

(0) 𝑎𝑖1
(0)

𝑎11
(0). 

In general, we write: 𝑎𝑖𝑗
(1)
= 𝑎𝑖𝑗

(0)
− 𝑎1𝑗

(0) 𝑎𝑖1
(0)

𝑎11
(0)     for 𝑖 = 2, n et 𝑗 = 2, 𝑛 + 1  

At the end of the first step, we obtain zero elements below the pivot of the first step. The system is 

written as: 

[
 
 
 
 𝑎11
(0)

𝑎12
(0)

0 𝑎22
(1)
…
𝑎1𝑛
(0)

𝑎2𝑛
(1)

⋮

0   𝑎𝑛2
(1)…𝑎𝑛𝑛

(1)
]
 
 
 
 

[

𝑥1
𝑥2
⋮
𝑥𝑛

] =

[
 
 
 
 𝑎1𝑛+1
(0)

𝑎2𝑛+1
(1)

⋮

𝑎𝑛𝑛+1
(1)

]
 
 
 
 

 

Second step:  𝑎𝑖𝑖
(𝑖−1)

≠ 0  pour  𝑖 = 2   i. e   𝑎22
(1)
≠ 0. 

De la même façon, on obtient pour le cas général 

     𝑎𝑖𝑗
(2)
= 𝑎𝑖𝑗

(1)
− 𝑎2𝑗

(1) 𝑎𝑖2
(1)

𝑎22
(1)     Pour i = 3, n et 𝑗 = 3, 𝑛 + 1 

 

Step k :   𝑎𝑖𝑖
(𝑖−1)

≠ 0  for  𝑖 = 𝑘   i. e   𝑎𝑘𝑘
(𝑘−1)

≠ 0. 

For an arbitrary step k, we have: 

𝑎𝑖𝑗
(𝑘)
= 𝑎𝑖𝑗

(𝑘−1)
− 𝑎𝑘𝑗

(𝑘−1) 𝑎𝑖𝑘
(𝑘−1)

𝑎𝑘𝑘
(𝑘−1)     For  𝑘 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,    𝑖 = 𝑘 + 1, 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and  𝑗 = 𝑘 + 1, 𝑛 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

At the end of the procedure, we obtain a system with an upper triangular matrix, 

which is written as: 

[
 
 
 
 𝑎11
(0)

𝑎12
(0)

0 𝑎22
(1)
…
𝑎1𝑛
(0)

𝑎2𝑛
(1)

⋮

  0     0   𝑎𝑛𝑛
(𝑛−1)

]
 
 
 
 

[

𝑥1
𝑥2
⋮
𝑥𝑛

] =

[
 
 
 
 𝑎1𝑛+1
(0)

𝑎2𝑛+1
(1)

⋮

𝑎𝑛𝑛+1
(𝑛−1)

]
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The solution of this system is done by backward substitution. 

5.1.2 The number of operations required for the application of the Gaussian algorithm is: 

Number of multiplications and additions: 

𝑛𝑚 = 𝑛𝑎 =
𝑛(𝑛 − 1)(2𝑛 + 5)

6
 

Number of divisions: 

𝑛𝑑 =
𝑛(𝑛 + 1)

2
 

5.1.3 Applications of the Gaussian method. 

a) The determinant of a triangular matrix is given by: 

 det(𝑈) = (−1)𝑃∏ 𝑢𝑖𝑖 = (−1)
𝑃𝑢11𝑢22… . 𝑢𝑛𝑛

𝑛
𝑖=1  

With P being the number of row or column permutations performed during the application of the 

Gaussian algorithm. 

Example: Consider the following system of equations: 

{

 2𝑥 + 𝑦 + 2𝑧 = 10
3𝑥 + 5𝑦 + 𝑧 = 16
−𝑥 + 4𝑦 + 7𝑧 = 28

 

1. Calculate the number of elementary operations for the Gauss method. 2. Calculate the 

determinant of the system's matrix. 3. Solve the system by Gaussian elimination. 4. Recalculate the 

determinant of the system's matrix. 

b) Simultaneous solution of multiple systems with the same matrix A: In practice, we often encounter 

the case of several systems of equations that differ only in the right-hand side B. We can apply the 

Gaussian algorithm to the matrix A augmented by all the right-hand sides. In this way, we do the 

calculations only once on the matrix A, and the substitution is done with each right-hand side obtained 

separately. 

[

𝑎11 𝑎12
𝑎21 𝑎22

…
𝑎1𝑛
𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2…𝑎𝑛𝑛

] [

𝑏1 𝑐1
𝑏2 𝑐2

…
𝑧1
𝑧2

⋮
𝑏𝑛 𝑐𝑛…𝑧𝑛

] 

c) Calculation of the inverse of a matrix: 

If A is a matrix of order n, the matrix A⁻¹ such that AA⁻¹ = I is called the inverse matrix of A. 

𝐴 = [

𝑎11 𝑎12
𝑎21 𝑎22

…
𝑎1𝑛
𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2…𝑎𝑛𝑛

]  et  𝑨−𝟏 = [

𝑥11 𝑥12
𝑥21 𝑥22

…
𝑥1𝑛
𝑥2𝑛

⋮
𝑥𝑛1 𝑥𝑛2…𝑥𝑛𝑛

] 

 

                           [

𝑎11 𝑎12
𝑎21 𝑎22

…
𝑎1𝑛
𝑎2𝑛

⋮
𝑎𝑛1 𝑎𝑛2…𝑎𝑛𝑛

] [

𝑥11 𝑥12
𝑥21 𝑥22

…
𝑥1𝑛
𝑥2𝑛

⋮
𝑥𝑛1 𝑥𝑛2…𝑥𝑛𝑛

] = [

1 0
0 1

…
0
0

⋮
0 0…1

] 
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Example: Consider the following matrix: 

[
1 1 2
1 2 1
2 1 1

] 

1. Use the Gauss method to calculate the inverse matrix. 

2. Calculate the number of operations. 

5.2. Use of pivoting.  

In the development of the Gaussian algorithm, it was assumed that the pivot is not zero, which is not 

always the case. Sometimes the pivot is very small compared to the other terms or even zero, in 

which case we can use the technique of pivoting, either partial or total. 

Partial pivoting: 

In this case, we choose as the pivot the element 𝑎𝑙𝑘
(𝑘−1)

such that: 

𝑎𝑙𝑘
(𝑘−1)

= 𝑚𝑎𝑥
𝑖∈[𝑘,𝑛]

|𝑎𝑖𝑘
(𝑘−1)

| 

[

𝑎11… 𝑎1𝑘
0… 𝒂𝒌𝒌

…
𝑎1𝑛
𝑎𝑘𝑛

⋮
0…    𝒂𝒏𝒌…𝑎𝑛𝑛

] 

In partial pivoting, we use row permutations, which do not affect the solution of the system. 

Total pivoting: 

In total pivoting, the choice of the pivot is made from a submatrix including the permutation of rows 

and columns such that: 

𝑎𝑙𝑚
(𝑘−1)

= 𝑚𝑎𝑥
𝑖,𝑗∈[𝑘,𝑛]

|𝑎𝑖𝑗
(𝑘−1)

| 

[

𝑎11… 𝑎1𝑘
0… 𝒂𝒌𝒌

…
𝑎1𝑛
𝑎𝑘𝑛

⋮
0…    𝒂𝒏𝒌…𝑎𝑛𝑛

] 

Example: Consider the following system: 

[
1 1 2
1 2 1
2 1 1

] [
𝑥
𝑦
𝑧
] = [

9
8
7
] 

Use the Gauss method with partial pivoting, then total pivoting, to solve the system. 

5.2 Thomas Algorithm TDMA 

In numerical methods for solving partial differential equations, we encounter matrices with three 

diagonals (main diagonal, sub-diagonal, and super-diagonal). This type of matrix is called tri-diagonal. 

The algorithm for solving this type of system is a special case of Gaussian elimination. Consider the 

following system with a tri-diagonal matrix: 
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(

 
 
 
 

𝑏1 𝑐1
𝑎2 𝑏2 𝑐2             

𝑎3 𝑏3   𝑐3  

⋯

⋮ ⋱ ⋮

⋯

𝑎𝑛−2 𝑏𝑛−2 𝑐𝑛−2
𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1

𝑎𝑛 𝑏𝑛 )

 
 
 
 

(

 
 
 
 

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛−2
𝑥𝑛−1
𝑥𝑛 )

 
 
 
 

=

(

 
 
 
 

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛 )

 
 
 
 

 

We divide the first row by 𝑏1, which gives: 1 𝑐1/𝑏1 ⋯  𝑦1/𝑏1 

We denote 𝛾1 = 𝑐1/𝑏1  and  𝛽1 = 𝑦1/𝑏1 

Next, we transform the second row by: 𝐸2
(1)
= 𝐸2

(0)
− 𝐸1

(0)
𝑎2 which gives : 

0         𝑏2 − 𝑎2𝛾1      𝑐2…… 𝑦2 − 𝑎2𝛽1 

We divide the new second row by 𝑏2 − 𝑎2𝛾1 which gives : 

0          1        𝑐2/(𝑏2 − 𝑎2𝛾1)…… (𝑦2 − 𝑎2𝛽1)/(𝑏2 − 𝑎2𝛾1) 

 

 

We denote 𝛾2 = 𝑐2/(𝑏2 − 𝑎2𝛾1) and 𝛽2 = (𝑦2 − 𝑎2𝛽1)/(𝑏2 − 𝑎2𝛾1) 

In the same way, we continue with the third row, which gives:  

0         0        1        𝑐3/(𝑏3 − 𝑎3𝛾2)     …… (𝑦3 − 𝑎3𝛽2)/(𝑏3 − 𝑎3𝛾2) 

We denote 𝛾3 = 𝑐3/(𝑏3 − 𝑎3𝛾2) and 𝛽3 = (𝑦3 − 𝑎3𝛽2)/(𝑏3 − 𝑎3𝛾2) 

In general, for a row i, we have:  

0         0… . .0       1        𝑐𝑖/(𝑏𝑖 − 𝑎𝑖𝛾𝑖−1)     …… (𝑦𝑖 − 𝑎𝑖𝛽𝑖−1)/(𝑏𝑖 − 𝑎𝑖𝛾𝑖−1) 

with        𝛾𝑖 = 𝑐𝑖/(𝑏𝑖 − 𝑎𝑖𝛾𝑖−1)                         𝑖 = 2, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and         𝛽𝑖 = (𝑦𝑖 − 𝑎𝑖𝛽𝑖−1)/(𝑏𝑖 − 𝑎𝑖𝛾𝑖−1)    𝑖 = 2, 𝑛̅̅ ̅̅̅ 

We continue until we obtain the following system: 

(

 
 
 
 

1  𝛾1
 1 𝛾2

 1    𝛾3  

⋯

⋮ ⋱ ⋮

⋯
1 𝛾𝑛−2
  1 𝛾𝑛−1

 1 )

 
 
 
 

(

 
 
 
 

𝑥1
𝑥2
𝑥3
⋮

𝑥𝑛−2
𝑥𝑛−1
𝑥𝑛 )

 
 
 
 

=

(

 
 
 
 

𝛽1
𝛽2
𝛽3
⋮

𝛽𝑛−2
𝛽𝑛−1
𝛽𝑛 )

 
 
 
 

 

The solution of the system is easily obtained by backward substitution: 

𝑥𝑛 = 𝛽𝑛 

𝑥𝑖 = 𝛽𝑖 − 𝛾𝑖𝑥𝑖+1   𝑖 = 𝑛 − 1,1̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

In summary, to apply the Thomas algorithm, we calculate: 

{
𝛾1 =

𝑐1
𝑏1
                                                     

𝛾𝑖 = 𝑐𝑖/(𝑏𝑖 − 𝑎𝑖𝛾𝑖−1)     𝑖 = 2, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅
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{
𝛽1 =

𝑦1
𝑏1
                                                                  

𝛽𝑖 = (𝑦𝑖 − 𝑎𝑖𝛽𝑖−1)/(𝑏𝑖 − 𝑎𝑖𝛾𝑖−1)    𝑖 = 2, 𝑛̅̅ ̅̅̅
 

{
𝑥𝑛 = 𝛽𝑛                                       

𝑥𝑖 = 𝛽𝑖 − 𝛾𝑖𝑥𝑖+1   𝑖 = 𝑛 − 1,1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Example: Consider the following system: 

[
2 1 0
1 2 1
0 1 2

] [
𝑥
𝑦
𝑧
] = [

4
8
8
] 

Use the Thomas algorithm to solve the system. 

 


