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Chapter VI: Numerical Resolution of Ordinary Differential Equations: Cauchy Problem 

 

Differential equations are used in the mathematical modeling of almost all physical 

phenomena. A differential equation is a relationship between a variable and its derivatives of various 

orders. In this chapter, we will consider first-order ordinary differential equations with an imposed 

initial condition (Cauchy problem). 

The Cauchy problem is defined by the solution of the following differential equation: 

{
𝒅𝒚(𝒕)

𝒅𝒕
= 𝒚′ = 𝒇(𝒕, 𝒚(𝒕))

𝒚(𝒕𝟎) = 𝒚𝟎

     where  𝒚(𝒕𝟎) = 𝒚𝟎  is an imposed initial condition. 

We note that the solution must necessarily pass through the point (𝒕𝟎, 𝒚𝟎). 

The solution of the Cauchy problem exists and is unique if the function 𝒇(𝒕, 𝒚(𝒕)) satisfies the Lipschitz 

condition in y on a rectangle R defined by 𝒂 ≤ 𝒕 ≤ 𝒃 and 𝒄 ≤ 𝒚 ≤ 𝒅. This condition requires that 

|𝒇(𝒕, 𝒚𝟏) − 𝒇(𝒕, 𝒚𝟐)| ≤ 𝑳|𝒚𝟏 − 𝒚𝟐|, where L is a constant. 

In practice, to verify this condition, we calculate 𝑴𝒂𝒙 |
𝝏𝒇(𝒕,𝒚)

𝝏𝒚
| ≤ 𝑳  on R. 

4.1 Euler's Method 

Let [a, b] be an interval on which we seek the solution of a Cauchy problem: 

{

𝒅𝒚(𝒕)

𝒅𝒕
= 𝒚′ = 𝒇(𝒕, 𝒚(𝒕))

𝒚(𝒕𝟎 = 𝒂) = 𝒚𝟎

 

The function 𝒇(𝒕, 𝒚(𝒕)) satisfies the Lipschitz condition in y on the rectangle R. 

The first step is to divide the given interval into n equidistant points, which gives an integration step 

𝒉 =
𝒃−𝒂

𝒏
. The point with abscissa ti is given by ti = a + ih (for i = 1, 2, ..., n). 

 

 

 

 

We will therefore solve the problem on the interval [𝒂 = 𝒕𝟎, 𝒃 = 𝒕𝒏]  with 𝒚(𝒕𝟎 = 𝒂) = 𝒚𝟎. If the 

functions 𝑦(𝒕), 𝒚′(𝒕) and 𝒚′′(𝒕) are continuous, we can write the Taylor series expansion for y(t1) in 

the neighborhood of t0, we have : 

𝒚(𝒕𝟏) = 𝒚(𝒕𝟎) + 𝒚′(𝒕𝟎)
(𝒕𝟏−𝒕𝟎)

𝟏!
+ 𝒚′′(𝒕𝟎)

(𝒕𝟏−𝒕𝟎)𝟐

𝟐!
+ ⋯  

 

Knowing that  𝒚′(𝒕𝟎) = 𝒇(𝒕𝟎, 𝒚(𝒕𝟎)) et  𝒉 = 𝒕𝟏 − 𝒕𝟎,  

let's write:  𝒚(𝒕𝟏) = 𝒚(𝒕𝟎) + 𝒇(𝒕𝟎, 𝒚(𝒕𝟎))𝒉 + 𝒚′′(𝒕𝟎)
𝒉𝟐

𝟐!
+ ⋯ 
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If h is sufficiently small, then we can neglect the terms of order two and higher, so we obtain: 

𝒚(𝒕𝟏) = 𝒚(𝒕𝟎) + 𝒉𝒇(𝒕𝟎, 𝒚(𝒕𝟎)) → 𝒚𝟏 = 𝒚𝟎 + 𝒉𝒇(𝒕𝟎, 𝒚𝟎) 

This is the first-order Euler approximation. By repeating the process, we generate a sequence of 

points 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … … , 𝒚𝒏−𝟏, 𝒚𝒏  approximating 𝒚 = 𝒚(𝒕), in general: 

{
𝒕𝒊 = 𝒂 + 𝒊𝒉,   𝒊 = 𝟎, 𝟏, 𝟐, … . . , 𝒏 − 𝟏

𝒚𝒊+𝟏 = 𝒚𝒊 + 𝒉𝒇(𝒕𝒊, 𝒚𝒊), 𝒚𝟎 = 𝒚(𝒕𝟎)
 

Example: 

Solve the following Cauchy problem by Euler's method with an integration step h = 0.25. 

{
𝑦′ = 2 − 𝑡𝑦2  𝑡 ∈ [0,1], 𝑦 ∈ [0,1] 

𝑦(0) = 1
 

Let's verify the Lipschitz condition on the rectangle R defined by [0, 1] x [0, 1]. 

Max |
𝝏𝒇(𝒕, 𝒚)

𝝏𝒚
| = Max |

𝝏(2 − 𝑡𝑦2)

𝝏𝒚
| = |−𝟐𝒕𝒚| = 𝟐 < 𝑳 

Condition verified. 

We divide the interval of t, [0, 1] with a step h = 0.25, i.e., 0, 0.25, 0.50, 0.75, and 1. 

 

 

 

 

We write:  {
𝒕𝒊 = 𝒊𝒉,   𝒊 = 𝟎, 𝟏, 𝟐 et 𝟑 

𝒚𝒊+𝟏 = 𝒚𝒊 + 𝒉𝒇(𝒕𝒊, 𝒚𝒊) = 𝒚𝒊 + 𝟎. 𝟐𝟓(𝟐 − 𝒕𝒊𝒚𝒊
𝟐), 𝒚𝟎 = 𝟏

 

𝒊 = 𝟎,          𝒚𝟏 = 𝒚𝟎 + 𝒉𝒇(𝒕𝟎, 𝒚𝟎) = 𝟏 + 𝟎. 𝟐𝟓(𝟐 − 𝟎 ∗ 𝟏𝟐)                          = 𝟏. 𝟓         

 𝒊 = 𝟏,            𝒚𝟐 = 𝒚𝟏 + 𝒉𝒇(𝒕𝟏, 𝒚𝟏) = 𝟏. 𝟓 + 𝟎. 𝟐𝟓(𝟐 − 𝟎. 𝟐𝟓 ∗ 𝟏. 𝟓𝟐)            = 𝟏. 𝟖𝟓𝟗𝟒    

𝒊 = 𝟐,          𝒚𝟑 = 𝒚𝟐 + 𝒉𝒇(𝒕𝟐, 𝒚𝟐) = 𝟏. 𝟖𝟓𝟗 + 𝟎. 𝟐𝟓(𝟐 − 𝟎. 𝟓 ∗ 𝟏. 𝟖𝟓𝟗𝟐)    = 𝟏. 𝟗𝟐𝟕𝟐 

𝒊 = 𝟑, 𝒚𝟒 = 𝒚𝟑 + 𝒉𝒇(𝒕𝟑, 𝒚𝟑) = 𝟏. 𝟗𝟐𝟕 + 𝟎. 𝟐𝟓(𝟐 − 𝟎. 𝟕𝟓 ∗ 𝟏. 𝟗𝟐𝟕𝟐) = 𝟏. 𝟕𝟑𝟎𝟖 

The exact solution is: 

 𝒚(𝒕) =
𝟐 √𝟐

𝟑
𝒄𝟏𝒕𝑨𝒊(𝟐𝟐 𝟑⁄ 𝒕)+𝟐 √𝟐

𝟑
𝒕𝑩𝒊(𝟐𝟐 𝟑⁄ 𝒕)

𝟐𝒕(𝒄𝟏𝑨𝒊
′(𝟐𝟐 𝟑⁄ 𝒕)+𝑩𝒊

′(𝟐𝟐 𝟑⁄ 𝒕))
 

With Ai and Bi being the Airy functions  

and Airy functions of the second kind. 

 

 

Fig. 4.1. Solutions y(t) for different initial conditions y(0). 
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4.2 Improved Euler's Method (Heun's Method) 

From the Taylor series expansion, we have: 

𝒚(𝒕𝟏) = 𝒚(𝒕𝟎) + 𝒚′(𝒕𝟎)
(𝒕𝟏−𝒕𝟎)

𝟏!
+ 𝒚′′(𝒕𝟎)

(𝒕𝟏−𝒕𝟎)𝟐

𝟐!
+ 𝒚′′′(𝒕𝟎)

(𝒕𝟏−𝒕𝟎)𝟑

𝟑!
+ ⋯  

If we take the first three terms and neglect the others of higher order, we obtain: 

𝒚(𝒕𝟏) ≅ 𝒚(𝒕𝟎) + 𝒚′(𝒕𝟎)
(𝒕𝟏−𝒕𝟎)

𝟏!
+ 𝒚′′(𝒕𝟎)

(𝒕𝟏−𝒕𝟎)𝟐

𝟐!
+ ⋯  

If ℎ = 𝒕𝟏 − 𝒕𝟎, this gives: 

𝒚(𝒕𝟏) = 𝒚(𝒕𝟎) + 𝒚′(𝒕𝟎)𝒉 + 𝒚′′(𝒕𝟎)
𝒉𝟐

𝟐!
  

Since 𝒚′′(𝒕𝟎) =
𝒚′(𝒕𝟏)−𝒚′(𝒕𝟎)

𝒉
, we will have:  𝒚(𝒕𝟏) = 𝒚(𝒕𝟎) +

𝒉

𝟐
[𝒇(𝒕𝟏, 𝒚𝟏) + 𝒇(𝒕𝟎, 𝒚𝟎)] 

In general, the improved Euler formula is written: 

𝒚𝒊+𝟏 = 𝒚𝒊 +
𝒉

𝟐
[𝒇(𝒕𝒊+𝟏, 𝒚𝒊+𝟏

𝑬 ) + 𝒇(𝒕𝒊, 𝒚𝒊)]  

We note that this formula gives 𝒚𝒊+𝟏 as a function of  𝒚𝒊+𝟏
𝑬 , which must be calculated by Euler's 

method. 

Example: Solve the previous Cauchy problem by the improved Euler method with an integration step 

h = 0.25. 

We have: 

{
𝒕𝒊 = 𝒊𝒉,   𝒊 = 𝟎, 𝟏, 𝟐 et 𝟑                                                                                                                                

𝒚𝒊+𝟏 = 𝒚𝒊 +
𝒉

𝟐
[𝒇(𝒕𝒊+𝟏, 𝒚𝒊+𝟏

𝑬 ) + 𝒇(𝒕𝒊, 𝒚𝒊)] = 𝒚𝒊 +
𝒉

𝟐
[(𝟐 − 𝒕𝒊𝒚𝒊

𝟐) + (𝟐 − 𝒕𝒊+𝟏𝒚𝒊+𝟏
𝟐  𝑬)],        𝒚𝟎 = 𝟏

  

With 𝒚𝒊+𝟏
𝑬 = 𝒚𝒊 + 𝒉(𝟐 − 𝒕𝒊𝒚𝒊

𝟐) the solution obtained by the modified or improved Euler method 

(Heun). We replace 𝒚𝒊+𝟏
𝑬 , we will have 

 𝒚𝒊+𝟏 = 𝒚𝒊 +
𝒉

𝟐
[(𝟐 − 𝒕𝒊𝒚𝒊

𝟐) + (𝟐 − 𝒕𝒊+𝟏 (𝒚𝒊 + 𝒉(𝟐 − 𝒕𝒊𝒚𝒊
𝟐))

𝟐
 )] 

𝒚𝟏 = 𝟏. 𝟒𝟐𝟗𝟕, 𝒚𝟐 = 𝟏. 𝟔𝟔𝟐𝟗, 𝒚𝟑 = 𝟏. 𝟔𝟖𝟎𝟓, 𝒚𝟒 = 𝟏. 𝟓𝟕𝟓𝟎 

 

4.3 Fourth-Order Runge-Kutta Method 

This is the most accurate and widely used method; it is of fourth order. The interval [a, b] is divided 

into n subintervals of width h, this formula is written: 

𝒚𝒊+𝟏 = 𝒚𝒊 +
𝒉

𝟔
(𝑲𝟏 + 𝟐(𝑲𝟐 + 𝑲𝟑) + 𝑲𝟒)  

𝑲𝟏 = 𝒇(𝒕𝒊, 𝒚𝒊) 

𝑲𝟐 = 𝒇 (𝒕𝒊 +
𝒉

𝟐
, 𝒚𝒊 +

𝒉

𝟐
𝑲𝟏) 

𝑲𝟑 = 𝒇 (𝒕𝒊 +
𝒉

𝟐
, 𝒚𝒊 +

𝒉

𝟐
𝑲𝟐) 

𝑲𝟒 = 𝒇(𝒕𝒊 + 𝒉, 𝒚𝒊 + 𝒉𝑲𝟑) 

Example: Solve the previous Cauchy problem by the fourth-order Runge-Kutta method with an 

integration step h = 0.25. 
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𝒚𝒊+𝟏 = 𝒚𝒊 +
𝒉

𝟔
(𝑲𝟏 + 𝟐(𝑲𝟐 + 𝑲𝟑) + 𝑲𝟒)  

𝑲𝟏 = 𝒇(𝒕𝒊, 𝒚𝒊) = 𝟐 − 𝒕𝒊𝒚𝒊
𝟐 

𝑲𝟐 = 𝒇 (𝒕𝒊 +
𝒉

𝟐
, 𝒚𝒊 +

𝒉

𝟐
𝑲𝟏) = 𝟐 − (𝒕𝒊 +

𝒉

𝟐
) (𝒚𝒊 +

𝒉

𝟐
𝑲𝟏)

𝟐

 

𝑲𝟑 = 𝒇 (𝒕𝒊 +
𝒉

𝟐
, 𝒚𝒊 +

𝒉

𝟐
𝑲𝟐) = 𝟐 − (𝒕𝒊 +

𝒉

𝟐
) (𝒚𝒊 +

𝒉

𝟐
𝑲𝟐)

𝟐

 

𝑲𝟒 = 𝒇(𝒕𝒊 + 𝒉, 𝒚𝒊 + 𝒉𝑲𝟑) = 𝟐 − (𝒕𝒊 + 𝒉)(𝒚𝒊 + 𝒉𝑲𝟑)𝟐 

i=0, 𝑲𝟏 = 𝟐, 𝑲𝟐 = 𝟏. 𝟖𝟎𝟒𝟕,  𝑲𝟑 = 𝟏. 𝟖𝟏𝟐𝟐, 𝑲𝟒 = 𝟏. 𝟒𝟕𝟐𝟐, 𝒚𝟏 = 𝟏. 𝟒𝟒𝟔𝟏 

y2=1.7028, y3=1.7317, y4=1.6148 
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Fig. 4.2. Comparison between different methods  

 


