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Differential equations are used in the mathematical modeling of almost all physical
phenomena. A differential equation is a relationship between a variable and its derivatives of various
orders. In this chapter, we will consider first-order ordinary differential equations with an imposed
initial condition (Cauchy problem).

The Cauchy problem is defined by the solution of the following differential equation:

{dlyi—(t” =y =f(ty®)

where y(ty) = ¥y, is an imposed initial condition.
y(to) = yo

We note that the solution must necessarily pass through the point (g, ¥o).

The solution of the Cauchy problem exists and is unique if the function f(t,y(t)) satisfies the Lipschitz
condition in y on a rectangle R defined by a <t < b and ¢ < y < d. This condition requires that
If(t,y1) — f(t,y2)| < Lly; — y2|, where Lis a constant.

. . . . aft,
In practice, to verify this condition, we calculate Max |%| <L onR.

4.1 Euler's Method

Let [a, b] be an interval on which we seek the solution of a Cauchy problem:

d
e (.0)

y(to=a) =1y,
The function f(t,y(t)) satisfies the Lipschitz condition in y on the rectangle R.

The first step is to divide the given interval into n equidistant points, which gives an integration step

h = b%a. The point with abscissa t; is given by ti=a +ih (fori=1, 2, ..., n).

a=toy 4, | 5 S t1 b=t t

We will therefore solve the problem on the interval [a = ty, b = t;,] with y(t; = @) = y,. If the
functions y(t),y'(t) and y"(t) are continuous, we can write the Taylor series expansion for y(t1) in
the neighborhood of tg, we have :

(t1—to)

Y(t1) = y(to) + ¥ (80) U2 + (2,

t1—to)?
)(1 0)

3 + .-

Knowing that y'(to) = f(to,¥(to)) et h =t; —to,

let's write: y(t1) = y(to) + f(to, ¥(to))h + y”(to)’;_T 4o
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If his sufficiently small, then we can neglect the terms of order two and higher, so we obtain:

y(t1) = y(tp) + hf(to')’(to)) - y1=Yo + hf(to,y0)
This is the first-order Euler approximation. By repeating the process, we generate a sequence of

points y4,¥2,¥3, «e- - ,VYn-1,Yn approximating y = y(t), in general:

{ ti=a+ih i=0,12,.....n—1
Yir1 =Yi + hf (&, y0), Yo = ¥Y(to)
Example:

Solve the following Cauchy problem by Euler's method with an integration step h = 0.25.

{y’ =2—-ty? te[0,1],y €[0,1]
y(0) =1

Let's verify the Lipschitz condition on the rectangle R defined by [0, 1] x [0, 1].

af(t, (2 —ty?
Max [P EP)| _ v [P =95
ay ay

=|-2ty|=2<1L

Condition verified.
We divide the interval of t, [0, 1] with a step h =0.25, i.e., 0, 0.25, 0.50, 0.75, and 1.

to =0 t1=0.25 tz =0.50 t3 =0.75 t4 =1

——————— & ——— & ———— & — 0 )

Yo=y(0)=1 v Y2 ys ya
We write: { t;=1ih, i=0,1,2¢t3
Vi1 = Vi + hf(t,y) =¥+ 0.25(2 — t;¥7), yo =1
i=0, y1=Yo + hf(to,¥0) =1+0.25(2 - 0x1?) =1.5
i=1, y2 =¥1 + hf(ty,¥1) = 1.5+ 0.25(2 — 0.25 x 1.5%) =1.8594
i=2, y3 =¥z + hf (t3,¥;) = 1.859 + 0.25(2 — 0.5 x 1.859%) =1.9272
i=3,

¥4 =y3 + hf(t3,¥3) =1.927 + 0.25(2 — 0.75 » 1.927%) = 1.7308
The exact solution is:

3.5]
(t) = 23/2cqt4i(22/3t)+2%2tBi(22/3t) N
YA = (e A (220 BY(2230) R —

With Ai and Bi being the Airy functions

and Airy functions of the second kind.
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Fig. 4.1. Solutions y(t) for different initial conditions y(0).
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4.2 Improved Euler's Method (Heun's Method)

From the Taylor series expansion, we have:

(t t) 1 (t t) nr (t -t )3
TR A G ek A Y ek

y(ty) = y(to) +y' (to) —— 5

If we take the first three terms and neglect the others of higher order, we obtain:

_ 2
Y(ts) = y(to) + ¥ (te) Lo+ y (2g) i 4

If h = t1 — tg, this gives:

! n hz
y(t1) = y(to) +y' (to)h +y" (to) 3;
. 7 1(tq)—-yI(t . h
Since y"(to) = 220 we will have: y(t1) = ¥(to) + 3 [f(t1,¥1) + f(to, ¥0)]
In general, the improved Euler formula is written:

h
Yirr = Yi + 5 [F(tivs, ¥ie1) + (80 30)]

We note that this formula gives y;,1 as a function of yl-E+1, which must be calculated by Euler's
method.

Example: Solve the previous Cauchy problem by the improved Euler method with an integration step
h =0.25.

We have:
t;=ih, i=012et3
h
{}’i+1 =yi+ 5 [f(tisn, ¥id) + F& ¥ = yi +3 [(2 —tyi) + (2 —tayii)]l  yo=1

With yE, 1 = y; + h(2 — ;%) the solution obtained by the modified or improved Euler method
(Heun). We replace y¥, ;, we will have

h
Yir1 = Yi+51(2 - ty) +( — tin (yi+ R(2 - lyl)) )
vy, =1.4297, y, = 1.6629, y; = 1.6805, y, = 1.5750
4.3 Fourth-Order Runge-Kutta Method

This is the most accurate and widely used method; it is of fourth order. The interval [a, b] is divided
into n subintervals of width h, this formula is written:

Yit1 =Yi +2(K1 +2(K; + K3) + Ky)
Ky =f(t,y:)
K, =f(ti+E:yi+EK1)
2 2
h h
K; =f(ti+i;}’i+EKz)

K,=f(t;+hy; +hK3)

Example: Solve the previous Cauchy problem by the fourth-order Runge-Kutta method with an
integration step h = 0.25.
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h
Yir1 = Yi + 5 (K1 + 2(Kz + K3) + Ky)

Ki=ft,y) =2 —t;y?

h h h h 2
Kz :f(ti +E,yi +EK1) =2 - (ti+§> (yl +§K1>

Ko=f(tit 50t 5Ka) =2~ (t43) (v + 3 K2)
2 2 2 2
Ky=f(ti+hy;+hK3)=2—(t; + h)(y; + hK3)?
i=0, K, = 2, K, = 1.8047, K5 = 1.8122,K, = 1.4722,y, = 1.4461
y2=1.7028, ys=1.7317, y+=1.6148

2

2.0
1.8 -
........ u.
mo- s T ~
=TT T S~ \"\_'
1.6 - RPN T~
g
- PP —— Euler Ordrel
,a" - - - Euler A Ordre2
1.4 4 o - --RK4 Ordre4
Y/,
/" = RK6 Ordre6
v
&4
1.2 4
(7
4
1.0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.2. Comparison between different methods



